rpcs3/rpcs3/Emu/Memory/vm.cpp
Nekotekina 3ed603074c Changes done by [DH] rewritten
Added rsx_program_decompiler submodule
Added fs::dir iterator
Added fmt::match
2015-12-22 23:11:20 +03:00

1195 lines
27 KiB
C++

#include "stdafx.h"
#include "Memory.h"
#include "Emu/System.h"
#include "Utilities/Thread.h"
#include "Emu/CPU/CPUThread.h"
#include "Emu/Cell/PPUThread.h"
#include "Emu/Cell/SPUThread.h"
#include "Emu/ARMv7/ARMv7Thread.h"
#ifdef _WIN32
#include <Windows.h>
#else
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
/* OS X uses MAP_ANON instead of MAP_ANONYMOUS */
#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif
#endif
namespace vm
{
template<std::size_t Size> struct mapped_ptr_deleter
{
void operator ()(void* ptr)
{
#ifdef _WIN32
::UnmapViewOfFile(ptr);
#else
::munmap(ptr, Size);
#endif
}
};
using mapped_ptr_t = std::unique_ptr<u8[], mapped_ptr_deleter<0x100000000>>;
std::array<mapped_ptr_t, 2> initialize()
{
#ifdef _WIN32
const HANDLE memory_handle = ::CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE | SEC_RESERVE, 0x1, 0x0, NULL);
if (memory_handle == NULL)
{
MessageBoxA(0, fmt::format("CreateFileMapping() failed (0x%x).", GetLastError()).c_str(), "vm::initialize()", MB_ICONERROR);
std::abort();
}
mapped_ptr_t base_addr(static_cast<u8*>(::MapViewOfFile(memory_handle, FILE_MAP_WRITE, 0, 0, 0x100000000)));
mapped_ptr_t priv_addr(static_cast<u8*>(::MapViewOfFile(memory_handle, FILE_MAP_WRITE, 0, 0, 0x100000000)));
::CloseHandle(memory_handle);
#else
const int memory_handle = ::shm_open("/rpcs3_vm", O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR);
if (memory_handle == -1)
{
std::printf("shm_open('/rpcs3_vm') failed (%d).\n", errno);
std::abort();
}
if (::ftruncate(memory_handle, 0x100000000) == -1)
{
std::printf("ftruncate(memory_handle) failed (%d).\n", errno);
::shm_unlink("/rpcs3_vm");
std::abort();
}
mapped_ptr_t base_addr(static_cast<u8*>(::mmap(nullptr, 0x100000000, PROT_NONE, MAP_SHARED, memory_handle, 0)));
mapped_ptr_t priv_addr(static_cast<u8*>(::mmap(nullptr, 0x100000000, PROT_NONE, MAP_SHARED, memory_handle, 0)));
::shm_unlink("/rpcs3_vm");
#endif
std::printf("vm::g_base_addr = %p\nvm::g_priv_addr = %p\n", base_addr.get(), priv_addr.get());
return{ std::move(base_addr), std::move(priv_addr) };
}
const auto g_addr_set = vm::initialize();
u8* const g_base_addr = g_addr_set[0].get();
u8* const g_priv_addr = g_addr_set[1].get();
std::array<atomic_t<u8>, 0x100000000ull / 4096> g_pages{}; // information about every page
std::vector<std::shared_ptr<block_t>> g_locations; // memory locations
//using reservation_mutex_t = std::mutex;
class reservation_mutex_t
{
std::atomic<bool> m_lock{ false };
std::thread::id m_owner{};
std::condition_variable m_cv;
std::mutex m_mutex;
public:
bool do_notify = false;
never_inline void lock()
{
std::unique_lock<std::mutex> lock(m_mutex, std::defer_lock);
while (m_lock.exchange(true) == true)
{
if (m_owner == std::this_thread::get_id())
{
throw EXCEPTION("Deadlock");
}
if (!lock)
{
lock.lock();
continue;
}
m_cv.wait_for(lock, std::chrono::milliseconds(1));
}
m_owner = std::this_thread::get_id();
do_notify = true;
}
never_inline void unlock()
{
if (m_owner != std::this_thread::get_id())
{
throw EXCEPTION("Mutex not owned");
}
m_owner = {};
if (m_lock.exchange(false) == false)
{
throw EXCEPTION("Lost lock");
}
if (do_notify)
{
std::lock_guard<std::mutex> lock(m_mutex);
m_cv.notify_one();
}
}
};
const thread_ctrl* volatile g_reservation_owner = nullptr;
u32 g_reservation_addr = 0;
u32 g_reservation_size = 0;
thread_local bool g_tls_did_break_reservation = false;
reservation_mutex_t g_reservation_mutex;
std::array<waiter_t, 1024> g_waiter_list;
std::size_t g_waiter_max = 0; // min unused position
std::size_t g_waiter_nil = 0; // min search position
std::mutex g_waiter_list_mutex;
waiter_t* _add_waiter(named_thread_t& thread, u32 addr, u32 size)
{
std::lock_guard<std::mutex> lock(g_waiter_list_mutex);
const u64 align = 0x80000000ull >> cntlz32(size);
if (!size || !addr || size > 4096 || size != align || addr & (align - 1))
{
throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size);
}
thread.mutex.lock();
// look for empty position
for (; g_waiter_nil < g_waiter_max; g_waiter_nil++)
{
waiter_t& waiter = g_waiter_list[g_waiter_nil];
if (!waiter.thread)
{
// store next position for further addition
g_waiter_nil++;
return waiter.reset(addr, size, thread);
}
}
if (g_waiter_max >= g_waiter_list.size())
{
throw EXCEPTION("Waiter list limit broken (%lld)", g_waiter_max);
}
waiter_t& waiter = g_waiter_list[g_waiter_max++];
g_waiter_nil = g_waiter_max;
return waiter.reset(addr, size, thread);
}
void _remove_waiter(waiter_t* waiter)
{
std::lock_guard<std::mutex> lock(g_waiter_list_mutex);
// mark as deleted
waiter->thread = nullptr;
// amortize adding new element
g_waiter_nil = std::min<std::size_t>(g_waiter_nil, waiter - g_waiter_list.data());
// amortize polling
while (g_waiter_max && !g_waiter_list[g_waiter_max - 1].thread)
{
g_waiter_max--;
}
}
bool waiter_t::try_notify()
{
std::lock_guard<std::mutex> lock(thread->mutex);
try
{
// test predicate
if (!pred || !pred())
{
return false;
}
// clear predicate
pred = nullptr;
}
catch (...)
{
// capture any exception possibly thrown by predicate
pred = [exception = std::current_exception()]
{
// new predicate will throw the captured exception from the original thread
std::rethrow_exception(exception);
// dummy return value, remove when std::rethrow_exception gains [[noreturn]] attribute in MSVC
return true;
};
}
// set addr and mask to invalid values to prevent further polling
addr = 0;
mask = ~0;
// signal thread
thread->cv.notify_one();
return true;
}
waiter_lock_t::waiter_lock_t(named_thread_t& thread, u32 addr, u32 size)
: m_waiter(_add_waiter(thread, addr, size))
, m_lock(thread.mutex, std::adopt_lock) // must be locked in _add_waiter
{
}
void waiter_lock_t::wait()
{
// if another thread successfully called pred(), it must be set to null
while (m_waiter->pred)
{
// if pred() called by another thread threw an exception, it'll be rethrown
if (m_waiter->pred())
{
return;
}
CHECK_EMU_STATUS;
m_waiter->thread->cv.wait(m_lock);
}
}
waiter_lock_t::~waiter_lock_t()
{
// reset some data to avoid excessive signaling
m_waiter->addr = 0;
m_waiter->mask = ~0;
m_waiter->pred = nullptr;
// unlock thread's mutex to avoid deadlock with g_waiter_list_mutex
m_lock.unlock();
_remove_waiter(m_waiter);
}
void _notify_at(u32 addr, u32 size)
{
// skip notification if no waiters available
if (_mm_mfence(), !g_waiter_max) return;
std::lock_guard<std::mutex> lock(g_waiter_list_mutex);
const u32 mask = ~(size - 1);
for (std::size_t i = 0; i < g_waiter_max; i++)
{
waiter_t& waiter = g_waiter_list[i];
// check address range overlapping using masks generated from size (power of 2)
if (waiter.thread && ((waiter.addr ^ addr) & (mask & waiter.mask)) == 0)
{
waiter.try_notify();
}
}
}
void notify_at(u32 addr, u32 size)
{
const u64 align = 0x80000000ull >> cntlz32(size);
if (!size || !addr || size > 4096 || size != align || addr & (align - 1))
{
throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size);
}
_notify_at(addr, size);
}
bool notify_all()
{
std::unique_lock<std::mutex> lock(g_waiter_list_mutex);
std::size_t waiters = 0;
std::size_t signaled = 0;
for (std::size_t i = 0; i < g_waiter_max; i++)
{
waiter_t& waiter = g_waiter_list[i];
if (waiter.thread && waiter.addr)
{
waiters++;
if (waiter.try_notify())
{
signaled++;
}
}
}
// return true if waiter list is empty or all available waiters were signaled
return waiters == signaled;
}
void start()
{
// start notification thread
thread_ctrl::spawn(PURE_EXPR("vm::start thread"s), []()
{
while (!Emu.IsStopped())
{
// poll waiters periodically (TODO)
while (!notify_all() && !Emu.IsPaused())
{
std::this_thread::yield();
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
});
}
void _reservation_set(u32 addr, bool no_access = false)
{
#ifdef _WIN32
DWORD old;
if (!::VirtualProtect(vm::base(addr & ~0xfff), 4096, no_access ? PAGE_NOACCESS : PAGE_READONLY, &old))
#else
if (::mprotect(vm::base(addr & ~0xfff), 4096, no_access ? PROT_NONE : PROT_READ))
#endif
{
throw EXCEPTION("System failure (addr=0x%x)", addr);
}
}
bool _reservation_break(u32 addr)
{
if (g_reservation_addr >> 12 == addr >> 12)
{
#ifdef _WIN32
DWORD old;
if (!::VirtualProtect(vm::base(addr & ~0xfff), 4096, PAGE_READWRITE, &old))
#else
if (::mprotect(vm::base(addr & ~0xfff), 4096, PROT_READ | PROT_WRITE))
#endif
{
throw EXCEPTION("System failure (addr=0x%x)", addr);
}
g_reservation_addr = 0;
g_reservation_size = 0;
g_reservation_owner = nullptr;
return true;
}
return false;
}
void reservation_break(u32 addr)
{
std::unique_lock<reservation_mutex_t> lock(g_reservation_mutex);
const u32 raddr = g_reservation_addr;
const u32 rsize = g_reservation_size;
if ((g_tls_did_break_reservation = _reservation_break(addr)))
{
lock.unlock(), _notify_at(raddr, rsize);
}
}
void reservation_acquire(void* data, u32 addr, u32 size)
{
std::lock_guard<reservation_mutex_t> lock(g_reservation_mutex);
const u64 align = 0x80000000ull >> cntlz32(size);
if (!size || !addr || size > 4096 || size != align || addr & (align - 1))
{
throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size);
}
const u8 flags = g_pages[addr >> 12];
if (!(flags & page_writable) || !(flags & page_allocated) || (flags & page_no_reservations))
{
throw EXCEPTION("Invalid page flags (addr=0x%x, size=0x%x, flags=0x%x)", addr, size, flags);
}
// break the reservation
g_tls_did_break_reservation = g_reservation_owner && _reservation_break(g_reservation_addr);
// change memory protection to read-only
_reservation_set(addr);
// may not be necessary
_mm_mfence();
// set additional information
g_reservation_addr = addr;
g_reservation_size = size;
g_reservation_owner = thread_ctrl::get_current();
// copy data
std::memcpy(data, vm::base(addr), size);
}
bool reservation_update(u32 addr, const void* data, u32 size)
{
std::unique_lock<reservation_mutex_t> lock(g_reservation_mutex);
const u64 align = 0x80000000ull >> cntlz32(size);
if (!size || !addr || size > 4096 || size != align || addr & (align - 1))
{
throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size);
}
if (g_reservation_owner != thread_ctrl::get_current() || g_reservation_addr != addr || g_reservation_size != size)
{
// atomic update failed
return false;
}
// change memory protection to no access
_reservation_set(addr, true);
// update memory using privileged access
std::memcpy(vm::base_priv(addr), data, size);
// free the reservation and restore memory protection
_reservation_break(addr);
// notify waiter
lock.unlock(), _notify_at(addr, size);
// atomic update succeeded
return true;
}
bool reservation_query(u32 addr, u32 size, bool is_writing, std::function<bool()> callback)
{
std::unique_lock<reservation_mutex_t> lock(g_reservation_mutex);
if (!check_addr(addr))
{
return false;
}
// check if current reservation and address may overlap
if (g_reservation_addr >> 12 == addr >> 12 && is_writing)
{
const bool result = callback();
if (result && size && addr + size - 1 >= g_reservation_addr && g_reservation_addr + g_reservation_size - 1 >= addr)
{
const u32 raddr = g_reservation_addr;
const u32 rsize = g_reservation_size;
// break the reservation if overlap
if ((g_tls_did_break_reservation = _reservation_break(addr)))
{
lock.unlock(), _notify_at(raddr, rsize);
}
}
return result;
}
return true;
}
bool reservation_test(const thread_ctrl* current)
{
const auto owner = g_reservation_owner;
return owner && owner == current;
}
void reservation_free()
{
if (reservation_test())
{
std::lock_guard<reservation_mutex_t> lock(g_reservation_mutex);
if (g_reservation_owner && g_reservation_owner == thread_ctrl::get_current())
{
g_tls_did_break_reservation = _reservation_break(g_reservation_addr);
}
}
}
void reservation_op(u32 addr, u32 size, std::function<void()> proc)
{
std::unique_lock<reservation_mutex_t> lock(g_reservation_mutex);
const u64 align = 0x80000000ull >> cntlz32(size);
if (!size || !addr || size > 4096 || size != align || addr & (align - 1))
{
throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size);
}
g_tls_did_break_reservation = false;
// check and possibly break previous reservation
if (g_reservation_owner != thread_ctrl::get_current() || g_reservation_addr != addr || g_reservation_size != size)
{
if (g_reservation_owner)
{
_reservation_break(g_reservation_addr);
}
g_tls_did_break_reservation = true;
}
// change memory protection to no access
_reservation_set(addr, true);
// set additional information
g_reservation_addr = addr;
g_reservation_size = size;
g_reservation_owner = thread_ctrl::get_current();
// may not be necessary
_mm_mfence();
// do the operation
proc();
// remove the reservation
_reservation_break(addr);
// notify waiter
lock.unlock(), _notify_at(addr, size);
}
void _page_map(u32 addr, u32 size, u8 flags)
{
if (!size || (size | addr) % 4096 || flags & page_allocated)
{
throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size);
}
for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++)
{
if (g_pages[i])
{
throw EXCEPTION("Memory already mapped (addr=0x%x, size=0x%x, flags=0x%x, current_addr=0x%x)", addr, size, flags, i * 4096);
}
}
void* real_addr = vm::base(addr);
void* priv_addr = vm::base_priv(addr);
#ifdef _WIN32
auto protection = flags & page_writable ? PAGE_READWRITE : (flags & page_readable ? PAGE_READONLY : PAGE_NOACCESS);
if (!::VirtualAlloc(priv_addr, size, MEM_COMMIT, PAGE_READWRITE) || !::VirtualAlloc(real_addr, size, MEM_COMMIT, protection))
#else
auto protection = flags & page_writable ? PROT_WRITE | PROT_READ : (flags & page_readable ? PROT_READ : PROT_NONE);
if (::mprotect(priv_addr, size, PROT_READ | PROT_WRITE) || ::mprotect(real_addr, size, protection))
#endif
{
throw EXCEPTION("System failure (addr=0x%x, size=0x%x, flags=0x%x)", addr, size, flags);
}
for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++)
{
if (g_pages[i].exchange(flags | page_allocated))
{
throw EXCEPTION("Concurrent access (addr=0x%x, size=0x%x, flags=0x%x, current_addr=0x%x)", addr, size, flags, i * 4096);
}
}
std::memset(priv_addr, 0, size); // ???
}
bool page_protect(u32 addr, u32 size, u8 flags_test, u8 flags_set, u8 flags_clear)
{
std::lock_guard<reservation_mutex_t> lock(g_reservation_mutex);
if (!size || (size | addr) % 4096)
{
throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size);
}
const u8 flags_inv = flags_set & flags_clear;
flags_test |= page_allocated;
for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++)
{
if ((g_pages[i] & flags_test) != (flags_test | page_allocated))
{
return false;
}
}
if (!flags_inv && !flags_set && !flags_clear)
{
return true;
}
for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++)
{
_reservation_break(i * 4096);
const u8 f1 = g_pages[i]._or(flags_set & ~flags_inv) & (page_writable | page_readable);
g_pages[i]._and_not(flags_clear & ~flags_inv);
const u8 f2 = (g_pages[i] ^= flags_inv) & (page_writable | page_readable);
if (f1 != f2)
{
void* real_addr = vm::base(i * 4096);
#ifdef _WIN32
DWORD old;
auto protection = f2 & page_writable ? PAGE_READWRITE : (f2 & page_readable ? PAGE_READONLY : PAGE_NOACCESS);
if (!::VirtualProtect(real_addr, 4096, protection, &old))
#else
auto protection = f2 & page_writable ? PROT_WRITE | PROT_READ : (f2 & page_readable ? PROT_READ : PROT_NONE);
if (::mprotect(real_addr, 4096, protection))
#endif
{
throw EXCEPTION("System failure (addr=0x%x, size=0x%x, flags_test=0x%x, flags_set=0x%x, flags_clear=0x%x)", addr, size, flags_test, flags_set, flags_clear);
}
}
}
return true;
}
void _page_unmap(u32 addr, u32 size)
{
if (!size || (size | addr) % 4096)
{
throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size);
}
for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++)
{
if ((g_pages[i] & page_allocated) == 0)
{
throw EXCEPTION("Memory not mapped (addr=0x%x, size=0x%x, current_addr=0x%x)", addr, size, i * 4096);
}
}
for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++)
{
_reservation_break(i * 4096);
if (!(g_pages[i].exchange(0) & page_allocated))
{
throw EXCEPTION("Concurrent access (addr=0x%x, size=0x%x, current_addr=0x%x)", addr, size, i * 4096);
}
}
void* real_addr = vm::base(addr);
void* priv_addr = vm::base_priv(addr);
#ifdef _WIN32
DWORD old;
if (!::VirtualProtect(real_addr, size, PAGE_NOACCESS, &old) || !::VirtualProtect(priv_addr, size, PAGE_NOACCESS, &old))
#else
if (::mprotect(real_addr, size, PROT_NONE) || ::mprotect(priv_addr, size, PROT_NONE))
#endif
{
throw EXCEPTION("System failure (addr=0x%x, size=0x%x)", addr, size);
}
}
bool check_addr(u32 addr, u32 size)
{
if (addr + (size - 1) < addr)
{
return false;
}
for (u32 i = addr / 4096; i <= (addr + size - 1) / 4096; i++)
{
if ((g_pages[i] & page_allocated) == 0)
{
return false;
}
}
return true;
}
u32 alloc(u32 size, memory_location_t location, u32 align)
{
const auto block = get(location);
if (!block)
{
throw EXCEPTION("Invalid memory location (%d)", location);
}
return block->alloc(size, align);
}
u32 falloc(u32 addr, u32 size, memory_location_t location)
{
const auto block = get(location, addr);
if (!block)
{
throw EXCEPTION("Invalid memory location (%d, addr=0x%x)", location, addr);
}
return block->falloc(addr, size);
}
bool dealloc(u32 addr, memory_location_t location)
{
const auto block = get(location, addr);
if (!block)
{
throw EXCEPTION("Invalid memory location (%d, addr=0x%x)", location, addr);
}
return block->dealloc(addr);
}
void dealloc_verbose_nothrow(u32 addr, memory_location_t location) noexcept
{
const auto block = get(location, addr);
if (!block)
{
LOG_ERROR(MEMORY, "vm::dealloc(): invalid memory location (%d, addr=0x%x)\n", location, addr);
return;
}
if (!block->dealloc(addr))
{
LOG_ERROR(MEMORY, "vm::dealloc(): deallocation failed (addr=0x%x)\n", addr);
return;
}
}
bool block_t::try_alloc(u32 addr, u32 size)
{
// check if memory area is already mapped
for (u32 i = addr / 4096; i <= (addr + size - 1) / 4096; i++)
{
if (g_pages[i])
{
return false;
}
}
// try to reserve "physical" memory
if (!used.atomic_op([=](u32& used) -> bool
{
if (used > this->size)
{
throw EXCEPTION("Unexpected memory amount used (0x%x)", used);
}
if (used + size > this->size)
{
return false;
}
used += size;
return true;
}))
{
return false;
}
// map memory pages
_page_map(addr, size, page_readable | page_writable);
// add entry
m_map[addr] = size;
return true;
}
block_t::~block_t()
{
std::lock_guard<reservation_mutex_t> lock(g_reservation_mutex);
// deallocate all memory
for (auto& entry : m_map)
{
_page_unmap(entry.first, entry.second);
}
}
u32 block_t::alloc(u32 size, u32 align)
{
std::lock_guard<std::mutex> lock(m_mutex);
// align to minimal page size
size = ::align(size, 4096);
// check alignment (it's page allocation, so passing small values there is just silly)
if (align < 4096 || align != (0x80000000u >> cntlz32(align)))
{
throw EXCEPTION("Invalid alignment (size=0x%x, align=0x%x)", size, align);
}
// return if size is invalid
if (!size || size > this->size)
{
return 0;
}
// search for an appropriate place (unoptimized)
for (u32 addr = ::align(this->addr, align); addr < this->addr + this->size - 1; addr += align)
{
if (try_alloc(addr, size))
{
return addr;
}
if (used + size > this->size)
{
return 0;
}
}
return 0;
}
u32 block_t::falloc(u32 addr, u32 size)
{
std::lock_guard<std::mutex> lock(m_mutex);
// align to minimal page size
size = ::align(size, 4096);
// return if addr or size is invalid
if (!size || size > this->size || addr < this->addr || addr + size - 1 >= this->addr + this->size - 1)
{
return 0;
}
if (!try_alloc(addr, size))
{
return 0;
}
return addr;
}
bool block_t::dealloc(u32 addr)
{
std::lock_guard<std::mutex> lock(m_mutex);
const auto found = m_map.find(addr);
if (found != m_map.end())
{
const u32 size = found->second;
// remove entry
m_map.erase(found);
// return "physical" memory
used -= size;
// unmap memory pages
std::lock_guard<reservation_mutex_t>{ g_reservation_mutex }, _page_unmap(addr, size);
return true;
}
return false;
}
std::shared_ptr<block_t> map(u32 addr, u32 size, u64 flags)
{
std::lock_guard<reservation_mutex_t> lock(g_reservation_mutex);
if (!size || (size | addr) % 4096)
{
throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size);
}
for (auto& block : g_locations)
{
if (block->addr >= addr && block->addr <= addr + size - 1)
{
return nullptr;
}
if (addr >= block->addr && addr <= block->addr + block->size - 1)
{
return nullptr;
}
}
for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++)
{
if (g_pages[i])
{
throw EXCEPTION("Unexpected pages allocated (current_addr=0x%x)", i * 4096);
}
}
auto block = std::make_shared<block_t>(addr, size, flags);
g_locations.emplace_back(block);
return block;
}
std::shared_ptr<block_t> unmap(u32 addr)
{
std::lock_guard<reservation_mutex_t> lock(g_reservation_mutex);
for (auto it = g_locations.begin(); it != g_locations.end(); it++)
{
if (*it && (*it)->addr == addr)
{
auto block = std::move(*it);
g_locations.erase(it);
return block;
}
}
return nullptr;
}
std::shared_ptr<block_t> get(memory_location_t location, u32 addr)
{
std::lock_guard<reservation_mutex_t> lock(g_reservation_mutex);
if (location != any)
{
// return selected location
if (location < g_locations.size())
{
return g_locations[location];
}
return nullptr;
}
// search location by address
for (auto& block : g_locations)
{
if (addr >= block->addr && addr <= block->addr + block->size - 1)
{
return block;
}
}
return nullptr;
}
namespace ps3
{
void init()
{
g_locations =
{
std::make_shared<block_t>(0x00010000, 0x1FFF0000), // main
std::make_shared<block_t>(0x20000000, 0x10000000), // user
std::make_shared<block_t>(0xC0000000, 0x10000000), // video
std::make_shared<block_t>(0xD0000000, 0x10000000), // stack
std::make_shared<block_t>(0xE0000000, 0x20000000), // SPU reserved
};
vm::start();
}
}
namespace psv
{
void init()
{
g_locations =
{
std::make_shared<block_t>(0x81000000, 0x10000000), // RAM
std::make_shared<block_t>(0x91000000, 0x2F000000), // user
std::make_shared<block_t>(0xC0000000, 0x10000000), // video (arbitrarily)
std::make_shared<block_t>(0xD0000000, 0x10000000), // stack (arbitrarily)
};
vm::start();
}
}
namespace psp
{
void init()
{
g_locations =
{
std::make_shared<block_t>(0x08000000, 0x02000000), // RAM
std::make_shared<block_t>(0x08800000, 0x01800000), // user
std::make_shared<block_t>(0x04000000, 0x00200000), // VRAM
nullptr, // stack
std::make_shared<block_t>(0x00010000, 0x00004000), // scratchpad
std::make_shared<block_t>(0x88000000, 0x00800000), // kernel
};
vm::start();
}
}
void close()
{
g_locations.clear();
}
u32 stack_push(u32 size, u32 align_v)
{
if (auto cpu = get_current_cpu_thread()) switch (cpu->get_type())
{
case CPU_THREAD_PPU:
{
PPUThread& context = static_cast<PPUThread&>(*cpu);
const u32 old_pos = VM_CAST(context.GPR[1]);
context.GPR[1] -= align(size + 4, 8); // room minimal possible size
context.GPR[1] &= ~(align_v - 1); // fix stack alignment
if (context.GPR[1] < context.stack_addr)
{
throw EXCEPTION("Stack overflow (size=0x%x, align=0x%x, SP=0x%llx, stack=*0x%x)", size, align_v, old_pos, context.stack_addr);
}
else
{
const u32 addr = static_cast<u32>(context.GPR[1]);
vm::ps3::_ref<nse_t<u32>>(addr + size) = old_pos;
return addr;
}
}
case CPU_THREAD_SPU:
case CPU_THREAD_RAW_SPU:
{
SPUThread& context = static_cast<SPUThread&>(*cpu);
const u32 old_pos = context.gpr[1]._u32[3];
context.gpr[1]._u32[3] -= align(size + 4, 16);
context.gpr[1]._u32[3] &= ~(align_v - 1);
if (context.gpr[1]._u32[3] >= 0x40000) // extremely rough
{
throw EXCEPTION("Stack overflow (size=0x%x, align=0x%x, SP=LS:0x%05x)", size, align_v, old_pos);
}
else
{
const u32 addr = context.gpr[1]._u32[3] + context.offset;
vm::ps3::_ref<nse_t<u32>>(addr + size) = old_pos;
return addr;
}
}
case CPU_THREAD_ARMv7:
{
ARMv7Context& context = static_cast<ARMv7Thread&>(*cpu);
const u32 old_pos = context.SP;
context.SP -= align(size + 4, 4); // room minimal possible size
context.SP &= ~(align_v - 1); // fix stack alignment
if (context.SP < context.stack_addr)
{
throw EXCEPTION("Stack overflow (size=0x%x, align=0x%x, SP=0x%x, stack=*0x%x)", size, align_v, context.SP, context.stack_addr);
}
else
{
vm::psv::_ref<nse_t<u32>>(context.SP + size) = old_pos;
return context.SP;
}
}
default:
{
throw EXCEPTION("Invalid thread type (%d)", cpu->get_type());
}
}
throw EXCEPTION("Invalid thread");
}
void stack_pop(u32 addr, u32 size)
{
if (auto cpu = get_current_cpu_thread()) switch (cpu->get_type())
{
case CPU_THREAD_PPU:
{
PPUThread& context = static_cast<PPUThread&>(*cpu);
if (context.GPR[1] != addr)
{
throw EXCEPTION("Stack inconsistency (addr=0x%x, SP=0x%llx, size=0x%x)", addr, context.GPR[1], size);
}
context.GPR[1] = vm::ps3::_ref<nse_t<u32>>(context.GPR[1] + size);
return;
}
case CPU_THREAD_SPU:
case CPU_THREAD_RAW_SPU:
{
SPUThread& context = static_cast<SPUThread&>(*cpu);
if (context.gpr[1]._u32[3] + context.offset != addr)
{
throw EXCEPTION("Stack inconsistency (addr=0x%x, SP=LS:0x%05x, size=0x%x)", addr, context.gpr[1]._u32[3], size);
}
context.gpr[1]._u32[3] = vm::ps3::_ref<nse_t<u32>>(context.gpr[1]._u32[3] + context.offset + size);
return;
}
case CPU_THREAD_ARMv7:
{
ARMv7Context& context = static_cast<ARMv7Thread&>(*cpu);
if (context.SP != addr)
{
throw EXCEPTION("Stack inconsistency (addr=0x%x, SP=0x%x, size=0x%x)", addr, context.SP, size);
}
context.SP = vm::psv::_ref<nse_t<u32>>(context.SP + size);
return;
}
default:
{
throw EXCEPTION("Invalid thread type (%d)", cpu->get_type());
}
}
throw EXCEPTION("Invalid thread");
}
}