#include "stdafx.h" #include "Memory.h" #include "Emu/System.h" #include "Utilities/Thread.h" #include "Emu/CPU/CPUThread.h" #include "Emu/Cell/PPUThread.h" #include "Emu/Cell/SPUThread.h" #include "Emu/ARMv7/ARMv7Thread.h" #ifdef _WIN32 #include #else #include #include #include #include #include #include /* OS X uses MAP_ANON instead of MAP_ANONYMOUS */ #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif #endif namespace vm { template struct mapped_ptr_deleter { void operator ()(void* ptr) { #ifdef _WIN32 ::UnmapViewOfFile(ptr); #else ::munmap(ptr, Size); #endif } }; using mapped_ptr_t = std::unique_ptr>; std::array initialize() { #ifdef _WIN32 const HANDLE memory_handle = ::CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_READWRITE | SEC_RESERVE, 0x1, 0x0, NULL); if (memory_handle == NULL) { MessageBoxA(0, fmt::format("CreateFileMapping() failed (0x%x).", GetLastError()).c_str(), "vm::initialize()", MB_ICONERROR); std::abort(); } mapped_ptr_t base_addr(static_cast(::MapViewOfFile(memory_handle, FILE_MAP_WRITE, 0, 0, 0x100000000))); mapped_ptr_t priv_addr(static_cast(::MapViewOfFile(memory_handle, FILE_MAP_WRITE, 0, 0, 0x100000000))); ::CloseHandle(memory_handle); #else const int memory_handle = ::shm_open("/rpcs3_vm", O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR); if (memory_handle == -1) { std::printf("shm_open('/rpcs3_vm') failed (%d).\n", errno); std::abort(); } if (::ftruncate(memory_handle, 0x100000000) == -1) { std::printf("ftruncate(memory_handle) failed (%d).\n", errno); ::shm_unlink("/rpcs3_vm"); std::abort(); } mapped_ptr_t base_addr(static_cast(::mmap(nullptr, 0x100000000, PROT_NONE, MAP_SHARED, memory_handle, 0))); mapped_ptr_t priv_addr(static_cast(::mmap(nullptr, 0x100000000, PROT_NONE, MAP_SHARED, memory_handle, 0))); ::shm_unlink("/rpcs3_vm"); #endif std::printf("vm::g_base_addr = %p\nvm::g_priv_addr = %p\n", base_addr.get(), priv_addr.get()); return{ std::move(base_addr), std::move(priv_addr) }; } const auto g_addr_set = vm::initialize(); u8* const g_base_addr = g_addr_set[0].get(); u8* const g_priv_addr = g_addr_set[1].get(); std::array, 0x100000000ull / 4096> g_pages{}; // information about every page std::vector> g_locations; // memory locations //using reservation_mutex_t = std::mutex; class reservation_mutex_t { std::atomic m_lock{ false }; std::thread::id m_owner{}; std::condition_variable m_cv; std::mutex m_mutex; public: bool do_notify = false; never_inline void lock() { std::unique_lock lock(m_mutex, std::defer_lock); while (m_lock.exchange(true) == true) { if (m_owner == std::this_thread::get_id()) { throw EXCEPTION("Deadlock"); } if (!lock) { lock.lock(); continue; } m_cv.wait_for(lock, std::chrono::milliseconds(1)); } m_owner = std::this_thread::get_id(); do_notify = true; } never_inline void unlock() { if (m_owner != std::this_thread::get_id()) { throw EXCEPTION("Mutex not owned"); } m_owner = {}; if (m_lock.exchange(false) == false) { throw EXCEPTION("Lost lock"); } if (do_notify) { std::lock_guard lock(m_mutex); m_cv.notify_one(); } } }; const thread_ctrl* volatile g_reservation_owner = nullptr; u32 g_reservation_addr = 0; u32 g_reservation_size = 0; thread_local bool g_tls_did_break_reservation = false; reservation_mutex_t g_reservation_mutex; std::array g_waiter_list; std::size_t g_waiter_max = 0; // min unused position std::size_t g_waiter_nil = 0; // min search position std::mutex g_waiter_list_mutex; waiter_t* _add_waiter(named_thread_t& thread, u32 addr, u32 size) { std::lock_guard lock(g_waiter_list_mutex); const u64 align = 0x80000000ull >> cntlz32(size); if (!size || !addr || size > 4096 || size != align || addr & (align - 1)) { throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size); } thread.mutex.lock(); // look for empty position for (; g_waiter_nil < g_waiter_max; g_waiter_nil++) { waiter_t& waiter = g_waiter_list[g_waiter_nil]; if (!waiter.thread) { // store next position for further addition g_waiter_nil++; return waiter.reset(addr, size, thread); } } if (g_waiter_max >= g_waiter_list.size()) { throw EXCEPTION("Waiter list limit broken (%lld)", g_waiter_max); } waiter_t& waiter = g_waiter_list[g_waiter_max++]; g_waiter_nil = g_waiter_max; return waiter.reset(addr, size, thread); } void _remove_waiter(waiter_t* waiter) { std::lock_guard lock(g_waiter_list_mutex); // mark as deleted waiter->thread = nullptr; // amortize adding new element g_waiter_nil = std::min(g_waiter_nil, waiter - g_waiter_list.data()); // amortize polling while (g_waiter_max && !g_waiter_list[g_waiter_max - 1].thread) { g_waiter_max--; } } bool waiter_t::try_notify() { std::lock_guard lock(thread->mutex); try { // test predicate if (!pred || !pred()) { return false; } // clear predicate pred = nullptr; } catch (...) { // capture any exception possibly thrown by predicate pred = [exception = std::current_exception()] { // new predicate will throw the captured exception from the original thread std::rethrow_exception(exception); // dummy return value, remove when std::rethrow_exception gains [[noreturn]] attribute in MSVC return true; }; } // set addr and mask to invalid values to prevent further polling addr = 0; mask = ~0; // signal thread thread->cv.notify_one(); return true; } waiter_lock_t::waiter_lock_t(named_thread_t& thread, u32 addr, u32 size) : m_waiter(_add_waiter(thread, addr, size)) , m_lock(thread.mutex, std::adopt_lock) // must be locked in _add_waiter { } void waiter_lock_t::wait() { // if another thread successfully called pred(), it must be set to null while (m_waiter->pred) { // if pred() called by another thread threw an exception, it'll be rethrown if (m_waiter->pred()) { return; } CHECK_EMU_STATUS; m_waiter->thread->cv.wait(m_lock); } } waiter_lock_t::~waiter_lock_t() { // reset some data to avoid excessive signaling m_waiter->addr = 0; m_waiter->mask = ~0; m_waiter->pred = nullptr; // unlock thread's mutex to avoid deadlock with g_waiter_list_mutex m_lock.unlock(); _remove_waiter(m_waiter); } void _notify_at(u32 addr, u32 size) { // skip notification if no waiters available if (_mm_mfence(), !g_waiter_max) return; std::lock_guard lock(g_waiter_list_mutex); const u32 mask = ~(size - 1); for (std::size_t i = 0; i < g_waiter_max; i++) { waiter_t& waiter = g_waiter_list[i]; // check address range overlapping using masks generated from size (power of 2) if (waiter.thread && ((waiter.addr ^ addr) & (mask & waiter.mask)) == 0) { waiter.try_notify(); } } } void notify_at(u32 addr, u32 size) { const u64 align = 0x80000000ull >> cntlz32(size); if (!size || !addr || size > 4096 || size != align || addr & (align - 1)) { throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size); } _notify_at(addr, size); } bool notify_all() { std::unique_lock lock(g_waiter_list_mutex); std::size_t waiters = 0; std::size_t signaled = 0; for (std::size_t i = 0; i < g_waiter_max; i++) { waiter_t& waiter = g_waiter_list[i]; if (waiter.thread && waiter.addr) { waiters++; if (waiter.try_notify()) { signaled++; } } } // return true if waiter list is empty or all available waiters were signaled return waiters == signaled; } void start() { // start notification thread thread_ctrl::spawn(PURE_EXPR("vm::start thread"s), []() { while (!Emu.IsStopped()) { // poll waiters periodically (TODO) while (!notify_all() && !Emu.IsPaused()) { std::this_thread::yield(); } std::this_thread::sleep_for(std::chrono::milliseconds(1)); } }); } void _reservation_set(u32 addr, bool no_access = false) { #ifdef _WIN32 DWORD old; if (!::VirtualProtect(vm::base(addr & ~0xfff), 4096, no_access ? PAGE_NOACCESS : PAGE_READONLY, &old)) #else if (::mprotect(vm::base(addr & ~0xfff), 4096, no_access ? PROT_NONE : PROT_READ)) #endif { throw EXCEPTION("System failure (addr=0x%x)", addr); } } bool _reservation_break(u32 addr) { if (g_reservation_addr >> 12 == addr >> 12) { #ifdef _WIN32 DWORD old; if (!::VirtualProtect(vm::base(addr & ~0xfff), 4096, PAGE_READWRITE, &old)) #else if (::mprotect(vm::base(addr & ~0xfff), 4096, PROT_READ | PROT_WRITE)) #endif { throw EXCEPTION("System failure (addr=0x%x)", addr); } g_reservation_addr = 0; g_reservation_size = 0; g_reservation_owner = nullptr; return true; } return false; } void reservation_break(u32 addr) { std::unique_lock lock(g_reservation_mutex); const u32 raddr = g_reservation_addr; const u32 rsize = g_reservation_size; if ((g_tls_did_break_reservation = _reservation_break(addr))) { lock.unlock(), _notify_at(raddr, rsize); } } void reservation_acquire(void* data, u32 addr, u32 size) { std::lock_guard lock(g_reservation_mutex); const u64 align = 0x80000000ull >> cntlz32(size); if (!size || !addr || size > 4096 || size != align || addr & (align - 1)) { throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size); } const u8 flags = g_pages[addr >> 12]; if (!(flags & page_writable) || !(flags & page_allocated) || (flags & page_no_reservations)) { throw EXCEPTION("Invalid page flags (addr=0x%x, size=0x%x, flags=0x%x)", addr, size, flags); } // break the reservation g_tls_did_break_reservation = g_reservation_owner && _reservation_break(g_reservation_addr); // change memory protection to read-only _reservation_set(addr); // may not be necessary _mm_mfence(); // set additional information g_reservation_addr = addr; g_reservation_size = size; g_reservation_owner = thread_ctrl::get_current(); // copy data std::memcpy(data, vm::base(addr), size); } bool reservation_update(u32 addr, const void* data, u32 size) { std::unique_lock lock(g_reservation_mutex); const u64 align = 0x80000000ull >> cntlz32(size); if (!size || !addr || size > 4096 || size != align || addr & (align - 1)) { throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size); } if (g_reservation_owner != thread_ctrl::get_current() || g_reservation_addr != addr || g_reservation_size != size) { // atomic update failed return false; } // change memory protection to no access _reservation_set(addr, true); // update memory using privileged access std::memcpy(vm::base_priv(addr), data, size); // free the reservation and restore memory protection _reservation_break(addr); // notify waiter lock.unlock(), _notify_at(addr, size); // atomic update succeeded return true; } bool reservation_query(u32 addr, u32 size, bool is_writing, std::function callback) { std::unique_lock lock(g_reservation_mutex); if (!check_addr(addr)) { return false; } // check if current reservation and address may overlap if (g_reservation_addr >> 12 == addr >> 12 && is_writing) { const bool result = callback(); if (result && size && addr + size - 1 >= g_reservation_addr && g_reservation_addr + g_reservation_size - 1 >= addr) { const u32 raddr = g_reservation_addr; const u32 rsize = g_reservation_size; // break the reservation if overlap if ((g_tls_did_break_reservation = _reservation_break(addr))) { lock.unlock(), _notify_at(raddr, rsize); } } return result; } return true; } bool reservation_test(const thread_ctrl* current) { const auto owner = g_reservation_owner; return owner && owner == current; } void reservation_free() { if (reservation_test()) { std::lock_guard lock(g_reservation_mutex); if (g_reservation_owner && g_reservation_owner == thread_ctrl::get_current()) { g_tls_did_break_reservation = _reservation_break(g_reservation_addr); } } } void reservation_op(u32 addr, u32 size, std::function proc) { std::unique_lock lock(g_reservation_mutex); const u64 align = 0x80000000ull >> cntlz32(size); if (!size || !addr || size > 4096 || size != align || addr & (align - 1)) { throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size); } g_tls_did_break_reservation = false; // check and possibly break previous reservation if (g_reservation_owner != thread_ctrl::get_current() || g_reservation_addr != addr || g_reservation_size != size) { if (g_reservation_owner) { _reservation_break(g_reservation_addr); } g_tls_did_break_reservation = true; } // change memory protection to no access _reservation_set(addr, true); // set additional information g_reservation_addr = addr; g_reservation_size = size; g_reservation_owner = thread_ctrl::get_current(); // may not be necessary _mm_mfence(); // do the operation proc(); // remove the reservation _reservation_break(addr); // notify waiter lock.unlock(), _notify_at(addr, size); } void _page_map(u32 addr, u32 size, u8 flags) { if (!size || (size | addr) % 4096 || flags & page_allocated) { throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size); } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (g_pages[i]) { throw EXCEPTION("Memory already mapped (addr=0x%x, size=0x%x, flags=0x%x, current_addr=0x%x)", addr, size, flags, i * 4096); } } void* real_addr = vm::base(addr); void* priv_addr = vm::base_priv(addr); #ifdef _WIN32 auto protection = flags & page_writable ? PAGE_READWRITE : (flags & page_readable ? PAGE_READONLY : PAGE_NOACCESS); if (!::VirtualAlloc(priv_addr, size, MEM_COMMIT, PAGE_READWRITE) || !::VirtualAlloc(real_addr, size, MEM_COMMIT, protection)) #else auto protection = flags & page_writable ? PROT_WRITE | PROT_READ : (flags & page_readable ? PROT_READ : PROT_NONE); if (::mprotect(priv_addr, size, PROT_READ | PROT_WRITE) || ::mprotect(real_addr, size, protection)) #endif { throw EXCEPTION("System failure (addr=0x%x, size=0x%x, flags=0x%x)", addr, size, flags); } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (g_pages[i].exchange(flags | page_allocated)) { throw EXCEPTION("Concurrent access (addr=0x%x, size=0x%x, flags=0x%x, current_addr=0x%x)", addr, size, flags, i * 4096); } } std::memset(priv_addr, 0, size); // ??? } bool page_protect(u32 addr, u32 size, u8 flags_test, u8 flags_set, u8 flags_clear) { std::lock_guard lock(g_reservation_mutex); if (!size || (size | addr) % 4096) { throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size); } const u8 flags_inv = flags_set & flags_clear; flags_test |= page_allocated; for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if ((g_pages[i] & flags_test) != (flags_test | page_allocated)) { return false; } } if (!flags_inv && !flags_set && !flags_clear) { return true; } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { _reservation_break(i * 4096); const u8 f1 = g_pages[i]._or(flags_set & ~flags_inv) & (page_writable | page_readable); g_pages[i]._and_not(flags_clear & ~flags_inv); const u8 f2 = (g_pages[i] ^= flags_inv) & (page_writable | page_readable); if (f1 != f2) { void* real_addr = vm::base(i * 4096); #ifdef _WIN32 DWORD old; auto protection = f2 & page_writable ? PAGE_READWRITE : (f2 & page_readable ? PAGE_READONLY : PAGE_NOACCESS); if (!::VirtualProtect(real_addr, 4096, protection, &old)) #else auto protection = f2 & page_writable ? PROT_WRITE | PROT_READ : (f2 & page_readable ? PROT_READ : PROT_NONE); if (::mprotect(real_addr, 4096, protection)) #endif { throw EXCEPTION("System failure (addr=0x%x, size=0x%x, flags_test=0x%x, flags_set=0x%x, flags_clear=0x%x)", addr, size, flags_test, flags_set, flags_clear); } } } return true; } void _page_unmap(u32 addr, u32 size) { if (!size || (size | addr) % 4096) { throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size); } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if ((g_pages[i] & page_allocated) == 0) { throw EXCEPTION("Memory not mapped (addr=0x%x, size=0x%x, current_addr=0x%x)", addr, size, i * 4096); } } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { _reservation_break(i * 4096); if (!(g_pages[i].exchange(0) & page_allocated)) { throw EXCEPTION("Concurrent access (addr=0x%x, size=0x%x, current_addr=0x%x)", addr, size, i * 4096); } } void* real_addr = vm::base(addr); void* priv_addr = vm::base_priv(addr); #ifdef _WIN32 DWORD old; if (!::VirtualProtect(real_addr, size, PAGE_NOACCESS, &old) || !::VirtualProtect(priv_addr, size, PAGE_NOACCESS, &old)) #else if (::mprotect(real_addr, size, PROT_NONE) || ::mprotect(priv_addr, size, PROT_NONE)) #endif { throw EXCEPTION("System failure (addr=0x%x, size=0x%x)", addr, size); } } bool check_addr(u32 addr, u32 size) { if (addr + (size - 1) < addr) { return false; } for (u32 i = addr / 4096; i <= (addr + size - 1) / 4096; i++) { if ((g_pages[i] & page_allocated) == 0) { return false; } } return true; } u32 alloc(u32 size, memory_location_t location, u32 align) { const auto block = get(location); if (!block) { throw EXCEPTION("Invalid memory location (%d)", location); } return block->alloc(size, align); } u32 falloc(u32 addr, u32 size, memory_location_t location) { const auto block = get(location, addr); if (!block) { throw EXCEPTION("Invalid memory location (%d, addr=0x%x)", location, addr); } return block->falloc(addr, size); } bool dealloc(u32 addr, memory_location_t location) { const auto block = get(location, addr); if (!block) { throw EXCEPTION("Invalid memory location (%d, addr=0x%x)", location, addr); } return block->dealloc(addr); } void dealloc_verbose_nothrow(u32 addr, memory_location_t location) noexcept { const auto block = get(location, addr); if (!block) { LOG_ERROR(MEMORY, "vm::dealloc(): invalid memory location (%d, addr=0x%x)\n", location, addr); return; } if (!block->dealloc(addr)) { LOG_ERROR(MEMORY, "vm::dealloc(): deallocation failed (addr=0x%x)\n", addr); return; } } bool block_t::try_alloc(u32 addr, u32 size) { // check if memory area is already mapped for (u32 i = addr / 4096; i <= (addr + size - 1) / 4096; i++) { if (g_pages[i]) { return false; } } // try to reserve "physical" memory if (!used.atomic_op([=](u32& used) -> bool { if (used > this->size) { throw EXCEPTION("Unexpected memory amount used (0x%x)", used); } if (used + size > this->size) { return false; } used += size; return true; })) { return false; } // map memory pages _page_map(addr, size, page_readable | page_writable); // add entry m_map[addr] = size; return true; } block_t::~block_t() { std::lock_guard lock(g_reservation_mutex); // deallocate all memory for (auto& entry : m_map) { _page_unmap(entry.first, entry.second); } } u32 block_t::alloc(u32 size, u32 align) { std::lock_guard lock(m_mutex); // align to minimal page size size = ::align(size, 4096); // check alignment (it's page allocation, so passing small values there is just silly) if (align < 4096 || align != (0x80000000u >> cntlz32(align))) { throw EXCEPTION("Invalid alignment (size=0x%x, align=0x%x)", size, align); } // return if size is invalid if (!size || size > this->size) { return 0; } // search for an appropriate place (unoptimized) for (u32 addr = ::align(this->addr, align); addr < this->addr + this->size - 1; addr += align) { if (try_alloc(addr, size)) { return addr; } if (used + size > this->size) { return 0; } } return 0; } u32 block_t::falloc(u32 addr, u32 size) { std::lock_guard lock(m_mutex); // align to minimal page size size = ::align(size, 4096); // return if addr or size is invalid if (!size || size > this->size || addr < this->addr || addr + size - 1 >= this->addr + this->size - 1) { return 0; } if (!try_alloc(addr, size)) { return 0; } return addr; } bool block_t::dealloc(u32 addr) { std::lock_guard lock(m_mutex); const auto found = m_map.find(addr); if (found != m_map.end()) { const u32 size = found->second; // remove entry m_map.erase(found); // return "physical" memory used -= size; // unmap memory pages std::lock_guard{ g_reservation_mutex }, _page_unmap(addr, size); return true; } return false; } std::shared_ptr map(u32 addr, u32 size, u64 flags) { std::lock_guard lock(g_reservation_mutex); if (!size || (size | addr) % 4096) { throw EXCEPTION("Invalid arguments (addr=0x%x, size=0x%x)", addr, size); } for (auto& block : g_locations) { if (block->addr >= addr && block->addr <= addr + size - 1) { return nullptr; } if (addr >= block->addr && addr <= block->addr + block->size - 1) { return nullptr; } } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (g_pages[i]) { throw EXCEPTION("Unexpected pages allocated (current_addr=0x%x)", i * 4096); } } auto block = std::make_shared(addr, size, flags); g_locations.emplace_back(block); return block; } std::shared_ptr unmap(u32 addr) { std::lock_guard lock(g_reservation_mutex); for (auto it = g_locations.begin(); it != g_locations.end(); it++) { if (*it && (*it)->addr == addr) { auto block = std::move(*it); g_locations.erase(it); return block; } } return nullptr; } std::shared_ptr get(memory_location_t location, u32 addr) { std::lock_guard lock(g_reservation_mutex); if (location != any) { // return selected location if (location < g_locations.size()) { return g_locations[location]; } return nullptr; } // search location by address for (auto& block : g_locations) { if (addr >= block->addr && addr <= block->addr + block->size - 1) { return block; } } return nullptr; } namespace ps3 { void init() { g_locations = { std::make_shared(0x00010000, 0x1FFF0000), // main std::make_shared(0x20000000, 0x10000000), // user std::make_shared(0xC0000000, 0x10000000), // video std::make_shared(0xD0000000, 0x10000000), // stack std::make_shared(0xE0000000, 0x20000000), // SPU reserved }; vm::start(); } } namespace psv { void init() { g_locations = { std::make_shared(0x81000000, 0x10000000), // RAM std::make_shared(0x91000000, 0x2F000000), // user std::make_shared(0xC0000000, 0x10000000), // video (arbitrarily) std::make_shared(0xD0000000, 0x10000000), // stack (arbitrarily) }; vm::start(); } } namespace psp { void init() { g_locations = { std::make_shared(0x08000000, 0x02000000), // RAM std::make_shared(0x08800000, 0x01800000), // user std::make_shared(0x04000000, 0x00200000), // VRAM nullptr, // stack std::make_shared(0x00010000, 0x00004000), // scratchpad std::make_shared(0x88000000, 0x00800000), // kernel }; vm::start(); } } void close() { g_locations.clear(); } u32 stack_push(u32 size, u32 align_v) { if (auto cpu = get_current_cpu_thread()) switch (cpu->get_type()) { case CPU_THREAD_PPU: { PPUThread& context = static_cast(*cpu); const u32 old_pos = VM_CAST(context.GPR[1]); context.GPR[1] -= align(size + 4, 8); // room minimal possible size context.GPR[1] &= ~(align_v - 1); // fix stack alignment if (context.GPR[1] < context.stack_addr) { throw EXCEPTION("Stack overflow (size=0x%x, align=0x%x, SP=0x%llx, stack=*0x%x)", size, align_v, old_pos, context.stack_addr); } else { const u32 addr = static_cast(context.GPR[1]); vm::ps3::_ref>(addr + size) = old_pos; return addr; } } case CPU_THREAD_SPU: case CPU_THREAD_RAW_SPU: { SPUThread& context = static_cast(*cpu); const u32 old_pos = context.gpr[1]._u32[3]; context.gpr[1]._u32[3] -= align(size + 4, 16); context.gpr[1]._u32[3] &= ~(align_v - 1); if (context.gpr[1]._u32[3] >= 0x40000) // extremely rough { throw EXCEPTION("Stack overflow (size=0x%x, align=0x%x, SP=LS:0x%05x)", size, align_v, old_pos); } else { const u32 addr = context.gpr[1]._u32[3] + context.offset; vm::ps3::_ref>(addr + size) = old_pos; return addr; } } case CPU_THREAD_ARMv7: { ARMv7Context& context = static_cast(*cpu); const u32 old_pos = context.SP; context.SP -= align(size + 4, 4); // room minimal possible size context.SP &= ~(align_v - 1); // fix stack alignment if (context.SP < context.stack_addr) { throw EXCEPTION("Stack overflow (size=0x%x, align=0x%x, SP=0x%x, stack=*0x%x)", size, align_v, context.SP, context.stack_addr); } else { vm::psv::_ref>(context.SP + size) = old_pos; return context.SP; } } default: { throw EXCEPTION("Invalid thread type (%d)", cpu->get_type()); } } throw EXCEPTION("Invalid thread"); } void stack_pop(u32 addr, u32 size) { if (auto cpu = get_current_cpu_thread()) switch (cpu->get_type()) { case CPU_THREAD_PPU: { PPUThread& context = static_cast(*cpu); if (context.GPR[1] != addr) { throw EXCEPTION("Stack inconsistency (addr=0x%x, SP=0x%llx, size=0x%x)", addr, context.GPR[1], size); } context.GPR[1] = vm::ps3::_ref>(context.GPR[1] + size); return; } case CPU_THREAD_SPU: case CPU_THREAD_RAW_SPU: { SPUThread& context = static_cast(*cpu); if (context.gpr[1]._u32[3] + context.offset != addr) { throw EXCEPTION("Stack inconsistency (addr=0x%x, SP=LS:0x%05x, size=0x%x)", addr, context.gpr[1]._u32[3], size); } context.gpr[1]._u32[3] = vm::ps3::_ref>(context.gpr[1]._u32[3] + context.offset + size); return; } case CPU_THREAD_ARMv7: { ARMv7Context& context = static_cast(*cpu); if (context.SP != addr) { throw EXCEPTION("Stack inconsistency (addr=0x%x, SP=0x%x, size=0x%x)", addr, context.SP, size); } context.SP = vm::psv::_ref>(context.SP + size); return; } default: { throw EXCEPTION("Invalid thread type (%d)", cpu->get_type()); } } throw EXCEPTION("Invalid thread"); } }