rpcs3/rpcs3/Emu/Cell/lv2/sys_mutex.cpp
2022-07-04 16:02:17 +03:00

286 lines
4.8 KiB
C++

#include "stdafx.h"
#include "sys_mutex.h"
#include "Emu/IdManager.h"
#include "Emu/IPC.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
LOG_CHANNEL(sys_mutex);
lv2_mutex::lv2_mutex(utils::serial& ar)
: protocol(ar)
, recursive(ar)
, adaptive(ar)
, key(ar)
, name(ar)
{
ar(lock_count, owner);
}
std::shared_ptr<void> lv2_mutex::load(utils::serial& ar)
{
auto mtx = std::make_shared<lv2_mutex>(ar);
return lv2_obj::load(mtx->key, mtx);
}
void lv2_mutex::save(utils::serial& ar)
{
ar(protocol, recursive, adaptive, key, name, lock_count, owner & -2);
}
error_code sys_mutex_create(ppu_thread& ppu, vm::ptr<u32> mutex_id, vm::ptr<sys_mutex_attribute_t> attr)
{
ppu.state += cpu_flag::wait;
sys_mutex.warning("sys_mutex_create(mutex_id=*0x%x, attr=*0x%x)", mutex_id, attr);
if (!mutex_id || !attr)
{
return CELL_EFAULT;
}
const auto _attr = *attr;
switch (_attr.protocol)
{
case SYS_SYNC_FIFO: break;
case SYS_SYNC_PRIORITY: break;
case SYS_SYNC_PRIORITY_INHERIT:
sys_mutex.warning("sys_mutex_create(): SYS_SYNC_PRIORITY_INHERIT");
break;
default:
{
sys_mutex.error("sys_mutex_create(): unknown protocol (0x%x)", _attr.protocol);
return CELL_EINVAL;
}
}
switch (_attr.recursive)
{
case SYS_SYNC_RECURSIVE: break;
case SYS_SYNC_NOT_RECURSIVE: break;
default:
{
sys_mutex.error("sys_mutex_create(): unknown recursive (0x%x)", _attr.recursive);
return CELL_EINVAL;
}
}
if (_attr.adaptive != SYS_SYNC_NOT_ADAPTIVE)
{
sys_mutex.todo("sys_mutex_create(): unexpected adaptive (0x%x)", _attr.adaptive);
}
if (auto error = lv2_obj::create<lv2_mutex>(_attr.pshared, _attr.ipc_key, _attr.flags, [&]()
{
return std::make_shared<lv2_mutex>(
_attr.protocol,
_attr.recursive,
_attr.adaptive,
_attr.ipc_key,
_attr.name_u64);
}))
{
return error;
}
*mutex_id = idm::last_id();
return CELL_OK;
}
error_code sys_mutex_destroy(ppu_thread& ppu, u32 mutex_id)
{
ppu.state += cpu_flag::wait;
sys_mutex.warning("sys_mutex_destroy(mutex_id=0x%x)", mutex_id);
const auto mutex = idm::withdraw<lv2_obj, lv2_mutex>(mutex_id, [](lv2_mutex& mutex) -> CellError
{
std::lock_guard lock(mutex.mutex);
if (mutex.owner || mutex.lock_count)
{
return CELL_EBUSY;
}
if (mutex.cond_count)
{
return CELL_EPERM;
}
lv2_obj::on_id_destroy(mutex, mutex.key);
return {};
});
if (!mutex)
{
return CELL_ESRCH;
}
if (mutex.ret)
{
return mutex.ret;
}
return CELL_OK;
}
error_code sys_mutex_lock(ppu_thread& ppu, u32 mutex_id, u64 timeout)
{
ppu.state += cpu_flag::wait;
sys_mutex.trace("sys_mutex_lock(mutex_id=0x%x, timeout=0x%llx)", mutex_id, timeout);
const auto mutex = idm::get<lv2_obj, lv2_mutex>(mutex_id, [&](lv2_mutex& mutex)
{
CellError result = mutex.try_lock(ppu.id);
if (result == CELL_EBUSY)
{
std::lock_guard lock(mutex.mutex);
if (mutex.try_own(ppu, ppu.id))
{
result = {};
}
else
{
mutex.sleep(ppu, timeout);
}
}
return result;
});
if (!mutex)
{
return CELL_ESRCH;
}
if (mutex.ret)
{
if (mutex.ret != CELL_EBUSY)
{
return mutex.ret;
}
}
else
{
return CELL_OK;
}
ppu.gpr[3] = CELL_OK;
while (auto state = ppu.state.fetch_sub(cpu_flag::signal))
{
if (state & cpu_flag::signal)
{
break;
}
if (is_stopped(state))
{
std::lock_guard lock(mutex->mutex);
if (std::find(mutex->sq.begin(), mutex->sq.end(), &ppu) == mutex->sq.end())
{
break;
}
ppu.state += cpu_flag::again;
return {};
}
if (timeout)
{
if (lv2_obj::wait_timeout(timeout, &ppu))
{
// Wait for rescheduling
if (ppu.check_state())
{
continue;
}
std::lock_guard lock(mutex->mutex);
if (!mutex->unqueue(mutex->sq, &ppu))
{
break;
}
ppu.gpr[3] = CELL_ETIMEDOUT;
break;
}
}
else
{
thread_ctrl::wait_on(ppu.state, state);
}
}
return not_an_error(ppu.gpr[3]);
}
error_code sys_mutex_trylock(ppu_thread& ppu, u32 mutex_id)
{
ppu.state += cpu_flag::wait;
sys_mutex.trace("sys_mutex_trylock(mutex_id=0x%x)", mutex_id);
const auto mutex = idm::check<lv2_obj, lv2_mutex>(mutex_id, [&](lv2_mutex& mutex)
{
return mutex.try_lock(ppu.id);
});
if (!mutex)
{
return CELL_ESRCH;
}
if (mutex.ret)
{
if (mutex.ret == CELL_EBUSY)
{
return not_an_error(CELL_EBUSY);
}
return mutex.ret;
}
return CELL_OK;
}
error_code sys_mutex_unlock(ppu_thread& ppu, u32 mutex_id)
{
ppu.state += cpu_flag::wait;
sys_mutex.trace("sys_mutex_unlock(mutex_id=0x%x)", mutex_id);
const auto mutex = idm::check<lv2_obj, lv2_mutex>(mutex_id, [&](lv2_mutex& mutex)
{
return mutex.try_unlock(ppu.id);
});
if (!mutex)
{
return CELL_ESRCH;
}
if (mutex.ret == CELL_EBUSY)
{
std::lock_guard lock(mutex->mutex);
if (auto cpu = mutex->reown<ppu_thread>())
{
mutex->awake(cpu);
}
}
else if (mutex.ret)
{
return mutex.ret;
}
return CELL_OK;
}