rpcs3/rpcs3/Emu/Cell/Modules/cellGem.cpp
2022-07-04 16:02:17 +03:00

1938 lines
49 KiB
C++

#include "stdafx.h"
#include "cellGem.h"
#include "cellCamera.h"
#include "Emu/Cell/lv2/sys_event.h"
#include "Emu/Cell/PPUModule.h"
#include "Emu/Cell/timers.hpp"
#include "Emu/Io/MouseHandler.h"
#include "Emu/system_config.h"
#include "Emu/System.h"
#include "Emu/IdManager.h"
#include "Input/pad_thread.h"
#include <cmath> // for fmod
LOG_CHANNEL(cellGem);
template <>
void fmt_class_string<CellGemError>::format(std::string& out, u64 arg)
{
format_enum(out, arg, [](auto error)
{
switch (error)
{
STR_CASE(CELL_GEM_ERROR_RESOURCE_ALLOCATION_FAILED);
STR_CASE(CELL_GEM_ERROR_ALREADY_INITIALIZED);
STR_CASE(CELL_GEM_ERROR_UNINITIALIZED);
STR_CASE(CELL_GEM_ERROR_INVALID_PARAMETER);
STR_CASE(CELL_GEM_ERROR_INVALID_ALIGNMENT);
STR_CASE(CELL_GEM_ERROR_UPDATE_NOT_FINISHED);
STR_CASE(CELL_GEM_ERROR_UPDATE_NOT_STARTED);
STR_CASE(CELL_GEM_ERROR_CONVERT_NOT_FINISHED);
STR_CASE(CELL_GEM_ERROR_CONVERT_NOT_STARTED);
STR_CASE(CELL_GEM_ERROR_WRITE_NOT_FINISHED);
STR_CASE(CELL_GEM_ERROR_NOT_A_HUE);
}
return unknown;
});
}
template <>
void fmt_class_string<CellGemStatus>::format(std::string& out, u64 arg)
{
format_enum(out, arg, [](auto error)
{
switch (error)
{
STR_CASE(CELL_GEM_NOT_CONNECTED);
STR_CASE(CELL_GEM_SPHERE_NOT_CALIBRATED);
STR_CASE(CELL_GEM_SPHERE_CALIBRATING);
STR_CASE(CELL_GEM_COMPUTING_AVAILABLE_COLORS);
STR_CASE(CELL_GEM_HUE_NOT_SET);
STR_CASE(CELL_GEM_NO_VIDEO);
STR_CASE(CELL_GEM_TIME_OUT_OF_RANGE);
STR_CASE(CELL_GEM_NOT_CALIBRATED);
STR_CASE(CELL_GEM_NO_EXTERNAL_PORT_DEVICE);
}
return unknown;
});
}
template <>
void fmt_class_string<CellGemVideoConvertFormatEnum>::format(std::string& out, u64 arg)
{
format_enum(out, arg, [](auto format)
{
switch (format)
{
STR_CASE(CELL_GEM_NO_VIDEO_OUTPUT);
STR_CASE(CELL_GEM_RGBA_640x480);
STR_CASE(CELL_GEM_YUV_640x480);
STR_CASE(CELL_GEM_YUV422_640x480);
STR_CASE(CELL_GEM_YUV411_640x480);
STR_CASE(CELL_GEM_RGBA_320x240);
STR_CASE(CELL_GEM_BAYER_RESTORED);
STR_CASE(CELL_GEM_BAYER_RESTORED_RGGB);
STR_CASE(CELL_GEM_BAYER_RESTORED_RASTERIZED);
}
return unknown;
});
}
// **********************
// * HLE helper structs *
// **********************
struct gem_config_data
{
public:
void operator()();
static constexpr auto thread_name = "Gem Thread"sv;
atomic_t<u8> state = 0;
struct gem_color
{
float r, g, b;
gem_color() : r(0.0f), g(0.0f), b(0.0f) {}
gem_color(float r_, float g_, float b_)
{
r = std::clamp(r_, 0.0f, 1.0f);
g = std::clamp(g_, 0.0f, 1.0f);
b = std::clamp(b_, 0.0f, 1.0f);
}
};
struct gem_controller
{
u32 status = CELL_GEM_STATUS_DISCONNECTED; // Connection status (CELL_GEM_STATUS_DISCONNECTED or CELL_GEM_STATUS_READY)
u32 ext_status = CELL_GEM_NO_EXTERNAL_PORT_DEVICE; // External port connection status
u32 ext_id = 0; // External device ID (type). For example SHARP_SHOOTER_DEVICE_ID
u32 port = 0; // Assigned port
bool enabled_magnetometer = false; // Whether the magnetometer is enabled (probably used for additional rotational precision)
bool calibrated_magnetometer = false; // Whether the magnetometer is calibrated
bool enabled_filtering = false; // Whether filtering is enabled
bool enabled_tracking = false; // Whether tracking is enabled
bool enabled_LED = false; // Whether the LED is enabled
bool hue_set = false; // Whether the hue was set
u8 rumble = 0; // Rumble intensity
gem_color sphere_rgb = {}; // RGB color of the sphere LED
u32 hue = 0; // Tracking hue of the motion controller
f32 distance{1500.0f}; // Distance from the camera in mm
f32 radius{10.0f}; // Radius of the sphere in camera pixels
bool is_calibrating{false}; // Whether or not we are currently calibrating
u64 calibration_start_us{0}; // The start timestamp of the calibration in microseconds
static constexpr u64 calibration_time_us = 500000; // The calibration supposedly takes 0.5 seconds (500000 microseconds)
ENABLE_BITWISE_SERIALIZATION;
};
CellGemAttribute attribute = {};
CellGemVideoConvertAttribute vc_attribute = {};
s32 video_data_out_size = -1;
std::vector<u8> video_data_in;
u64 status_flags = 0;
bool enable_pitch_correction = false;
u32 inertial_counter = 0;
std::array<gem_controller, CELL_GEM_MAX_NUM> controllers;
u32 connected_controllers = 0;
atomic_t<bool> video_conversion_in_progress{false};
atomic_t<bool> update_started{false};
u32 camera_frame{};
u32 memory_ptr{};
shared_mutex mtx;
u64 start_timestamp = 0;
// helper functions
bool is_controller_ready(u32 gem_num) const
{
return controllers[gem_num].status == CELL_GEM_STATUS_READY;
}
bool is_controller_calibrating(u32 gem_num)
{
gem_controller& gem = controllers[gem_num];
if (gem.is_calibrating)
{
if ((get_guest_system_time() - gem.calibration_start_us) >= gem_controller::calibration_time_us)
{
gem.is_calibrating = false;
gem.calibration_start_us = 0;
gem.calibrated_magnetometer = true;
gem.enabled_tracking = true;
gem.hue = 1;
status_flags = CELL_GEM_FLAG_CALIBRATION_SUCCEEDED | CELL_GEM_FLAG_CALIBRATION_OCCURRED;
}
}
return gem.is_calibrating;
}
void reset_controller(u32 gem_num)
{
switch (g_cfg.io.move)
{
case move_handler::fake:
case move_handler::mouse:
{
connected_controllers = 1;
break;
}
case move_handler::null:
default:
break;
}
// Assign status and port number
if (gem_num < connected_controllers)
{
controllers[gem_num] = {};
controllers[gem_num].status = CELL_GEM_STATUS_READY;
controllers[gem_num].port = 7u - gem_num;
}
}
gem_config_data() = default;
SAVESTATE_INIT_POS(15);
void save(utils::serial& ar)
{
ar(state);
if (!state)
{
return;
}
USING_SERIALIZATION_VERSION_COND(ar.is_writing(), cellGem);
ar(attribute, vc_attribute, status_flags, enable_pitch_correction, inertial_counter, controllers
, connected_controllers, update_started, camera_frame, memory_ptr, start_timestamp);
}
gem_config_data(utils::serial& ar)
{
save(ar);
}
};
static inline int32_t cellGemGetVideoConvertSize(s32 output_format)
{
switch (output_format)
{
case CELL_GEM_RGBA_320x240: // RGBA output; 320*240*4-byte output buffer required
return 320 * 240 * 4;
case CELL_GEM_RGBA_640x480: // RGBA output; 640*480*4-byte output buffer required
return 640 * 480 * 4;
case CELL_GEM_YUV_640x480: // YUV output; 640*480+640*480+640*480-byte output buffer required (contiguous)
return 640 * 480 + 640 * 480 + 640 * 480;
case CELL_GEM_YUV422_640x480: // YUV output; 640*480+320*480+320*480-byte output buffer required (contiguous)
return 640 * 480 + 320 * 480 + 320 * 480;
case CELL_GEM_YUV411_640x480: // YUV411 output; 640*480+320*240+320*240-byte output buffer required (contiguous)
return 640 * 480 + 320 * 240 + 320 * 240;
case CELL_GEM_BAYER_RESTORED: // Bayer pattern output, 640x480, gamma and white balance applied, output buffer required
case CELL_GEM_BAYER_RESTORED_RGGB: // Restored Bayer output, 2x2 pixels rearranged into 320x240 RG1G2B
case CELL_GEM_BAYER_RESTORED_RASTERIZED: // Restored Bayer output, R,G1,G2,B rearranged into 4 contiguous 320x240 1-channel rasters
return 640 * 480;
case CELL_GEM_NO_VIDEO_OUTPUT: // Disable video output
return 0;
default:
return -1;
}
}
void gem_config_data::operator()()
{
cellGem.notice("Starting thread");
while (thread_ctrl::state() != thread_state::aborting && !Emu.IsStopped())
{
while (!video_conversion_in_progress && thread_ctrl::state() != thread_state::aborting && !Emu.IsStopped())
{
thread_ctrl::wait_for(1000);
}
if (thread_ctrl::state() == thread_state::aborting || Emu.IsStopped())
{
return;
}
CellGemVideoConvertAttribute vc;
{
std::scoped_lock lock(mtx);
vc = vc_attribute;
}
if (g_cfg.io.camera != camera_handler::qt)
{
video_conversion_in_progress = false;
continue;
}
const auto& shared_data = g_fxo->get<gem_camera_shared>();
if (vc.output_format != CELL_GEM_NO_VIDEO_OUTPUT && !vc_attribute.video_data_out)
{
video_conversion_in_progress = false;
continue;
}
extern u32 get_buffer_size_by_format(s32, s32, s32);
const u32 required_in_size = get_buffer_size_by_format(static_cast<s32>(shared_data.format), shared_data.width, shared_data.height);
const s32 required_out_size = cellGemGetVideoConvertSize(vc.output_format);
if (video_data_in.size() != required_in_size)
{
cellGem.error("convert: in_size mismatch: required=%d, actual=%d", required_in_size, video_data_in.size());
video_conversion_in_progress = false;
continue;
}
if (required_out_size < 0 || video_data_out_size != required_out_size)
{
cellGem.error("convert: out_size unknown: required=%d, format %d", required_out_size, vc.output_format);
video_conversion_in_progress = false;
continue;
}
if (required_out_size == 0)
{
video_conversion_in_progress = false;
continue;
}
switch (vc.output_format)
{
case CELL_GEM_RGBA_640x480: // RGBA output; 640*480*4-byte output buffer required
{
if (shared_data.format == CELL_CAMERA_RAW8)
{
constexpr u32 in_pitch = 640;
constexpr u32 out_pitch = 640 * 4;
for (u32 y = 0; y < 480 - 1; y += 2)
{
for (u32 x = 0; x < 640 - 1; x += 2)
{
const u32 in_offset = 1 * (y * 640 + x);
const u32 out_offset = 4 * (y * 640 + x);
const u8 b = video_data_in[in_offset + 0];
const u8 g0 = video_data_in[in_offset + 1];
const u8 g1 = video_data_in[in_offset + in_pitch + 0];
const u8 r = video_data_in[in_offset + in_pitch + 1];
// Top-Left
vc_attribute.video_data_out[out_offset + 0] = r; // R
vc_attribute.video_data_out[out_offset + 1] = g0; // G
vc_attribute.video_data_out[out_offset + 2] = b; // B
vc_attribute.video_data_out[out_offset + 3] = 255; // A
// Top-Right Pixel
vc_attribute.video_data_out[out_offset + 4] = r; // R
vc_attribute.video_data_out[out_offset + 5] = g0; // G
vc_attribute.video_data_out[out_offset + 6] = b; // B
vc_attribute.video_data_out[out_offset + 7] = 255; // A
// Bottom-Left Pixel
vc_attribute.video_data_out[out_offset + out_pitch + 0] = r; // R
vc_attribute.video_data_out[out_offset + out_pitch + 1] = g1; // G
vc_attribute.video_data_out[out_offset + out_pitch + 2] = b; // B
vc_attribute.video_data_out[out_offset + out_pitch + 3] = 255; // A
// Bottom-Right Pixel
vc_attribute.video_data_out[out_offset + out_pitch + 4] = r; // R
vc_attribute.video_data_out[out_offset + out_pitch + 5] = g1; // G
vc_attribute.video_data_out[out_offset + out_pitch + 6] = b; // B
vc_attribute.video_data_out[out_offset + out_pitch + 7] = 255; // A
}
}
}
else
{
cellGem.error("Unimplemented: Converting %s to %s", shared_data.format.load(), vc.output_format);
std::memcpy(vc_attribute.video_data_out.get_ptr(), video_data_in.data(), std::min<usz>(required_in_size, required_out_size));
}
break;
}
case CELL_GEM_BAYER_RESTORED: // Bayer pattern output, 640x480, gamma and white balance applied, output buffer required
{
if (shared_data.format == CELL_CAMERA_RAW8)
{
std::memcpy(vc_attribute.video_data_out.get_ptr(), video_data_in.data(), std::min<usz>(required_in_size, required_out_size));
}
else
{
cellGem.error("Unimplemented: Converting %s to %s", shared_data.format.load(), vc.output_format);
}
break;
}
case CELL_GEM_RGBA_320x240: // RGBA output; 320*240*4-byte output buffer required
case CELL_GEM_YUV_640x480: // YUV output; 640*480+640*480+640*480-byte output buffer required (contiguous)
case CELL_GEM_YUV422_640x480: // YUV output; 640*480+320*480+320*480-byte output buffer required (contiguous)
case CELL_GEM_YUV411_640x480: // YUV411 output; 640*480+320*240+320*240-byte output buffer required (contiguous)
case CELL_GEM_BAYER_RESTORED_RGGB: // Restored Bayer output, 2x2 pixels rearranged into 320x240 RG1G2B
case CELL_GEM_BAYER_RESTORED_RASTERIZED: // Restored Bayer output, R,G1,G2,B rearranged into 4 contiguous 320x240 1-channel rasters
{
cellGem.error("Unimplemented: Converting %s to %s", shared_data.format.load(), vc.output_format);
break;
}
case CELL_GEM_NO_VIDEO_OUTPUT: // Disable video output
{
cellGem.trace("Ignoring frame conversion for CELL_GEM_NO_VIDEO_OUTPUT");
break;
}
default:
{
cellGem.error("Trying to convert %s to %s", shared_data.format.load(), vc.output_format);
break;
}
}
cellGem.notice("Converted video frame of format %s to %s", shared_data.format.load(), vc.output_format.get());
video_conversion_in_progress = false;
}
}
using gem_config = named_thread<gem_config_data>;
/**
* \brief Verifies that a Move controller id is valid
* \param gem_num Move controler ID to verify
* \return True if the ID is valid, false otherwise
*/
static bool check_gem_num(const u32 gem_num)
{
return gem_num < CELL_GEM_MAX_NUM;
}
/**
* \brief Maps Move controller data (digital buttons, and analog Trigger data) to DS3 pad input.
* Unavoidably buttons conflict with DS3 mappings, which is problematic for some games.
* \param port_no DS3 port number to use
* \param digital_buttons Bitmask filled with CELL_GEM_CTRL_* values
* \param analog_t Analog value of Move's Trigger. Currently mapped to R2.
* \return true on success, false if port_no controller is invalid
*/
static bool ds3_input_to_pad(const u32 port_no, be_t<u16>& digital_buttons, be_t<u16>& analog_t)
{
std::lock_guard lock(pad::g_pad_mutex);
const auto handler = pad::get_current_handler();
auto& pad = handler->GetPads()[port_no];
if (!(pad->m_port_status & CELL_PAD_STATUS_CONNECTED))
return false;
for (Button& button : pad->m_buttons)
{
// here we check btns, and set pad accordingly
if (button.m_offset == CELL_PAD_BTN_OFFSET_DIGITAL2)
{
if (button.m_pressed) pad->m_digital_2 |= button.m_outKeyCode;
else pad->m_digital_2 &= ~button.m_outKeyCode;
switch (button.m_outKeyCode)
{
case CELL_PAD_CTRL_SQUARE:
pad->m_press_square = button.m_value;
break;
case CELL_PAD_CTRL_CROSS:
pad->m_press_cross = button.m_value;
break;
case CELL_PAD_CTRL_CIRCLE:
pad->m_press_circle = button.m_value;
break;
case CELL_PAD_CTRL_TRIANGLE:
pad->m_press_triangle = button.m_value;
break;
case CELL_PAD_CTRL_R1:
pad->m_press_R1 = button.m_value;
break;
case CELL_PAD_CTRL_L1:
pad->m_press_L1 = button.m_value;
break;
case CELL_PAD_CTRL_R2:
pad->m_press_R2 = button.m_value;
break;
case CELL_PAD_CTRL_L2:
pad->m_press_L2 = button.m_value;
break;
default: break;
}
}
}
digital_buttons = 0;
// map the Move key to R1 and the Trigger to R2
if (pad->m_press_R1)
digital_buttons |= CELL_GEM_CTRL_MOVE;
if (pad->m_press_R2)
digital_buttons |= CELL_GEM_CTRL_T;
if (pad->m_press_cross)
digital_buttons |= CELL_GEM_CTRL_CROSS;
if (pad->m_press_circle)
digital_buttons |= CELL_GEM_CTRL_CIRCLE;
if (pad->m_press_square)
digital_buttons |= CELL_GEM_CTRL_SQUARE;
if (pad->m_press_triangle)
digital_buttons |= CELL_GEM_CTRL_TRIANGLE;
if (pad->m_digital_1)
digital_buttons |= CELL_GEM_CTRL_SELECT;
if (pad->m_digital_2)
digital_buttons |= CELL_GEM_CTRL_START;
analog_t = pad->m_press_R2;
return true;
}
/**
* \brief Maps external Move controller data to DS3 input. (This can be input from any physical pad, not just the DS3)
* Implementation detail: CellGemExtPortData's digital/analog fields map the same way as
* libPad, so no translation is needed.
* \param port_no DS3 port number to use
* \param ext External data to modify
* \return true on success, false if port_no controller is invalid
*/
static bool ds3_input_to_ext(const u32 port_no, const gem_config::gem_controller& controller, CellGemExtPortData& ext)
{
std::lock_guard lock(pad::g_pad_mutex);
const auto handler = pad::get_current_handler();
auto& pad = handler->GetPads()[port_no];
if (!(pad->m_port_status & CELL_PAD_STATUS_CONNECTED))
return false;
ext.status = 0; // CELL_GEM_EXT_CONNECTED | CELL_GEM_EXT_EXT0 | CELL_GEM_EXT_EXT1
ext.analog_left_x = pad->m_analog_left_x; // HACK: these pad members are actually only set in cellPad
ext.analog_left_y = pad->m_analog_left_y;
ext.analog_right_x = pad->m_analog_right_x;
ext.analog_right_y = pad->m_analog_right_y;
ext.digital1 = pad->m_digital_1;
ext.digital2 = pad->m_digital_2;
if (controller.ext_id == SHARP_SHOOTER_DEVICE_ID)
{
// TODO set custom[0] bits as follows:
// 1xxxxxxx: RL reload button is pressed.
// x1xxxxxx: T button trigger is pressed.
// xxxxx001: Firing mode selector is in position 1.
// xxxxx010: Firing mode selector is in position 2.
// xxxxx100: Firing mode selector is in position 3.
}
return true;
}
/**
* \brief Maps Move controller data (digital buttons, and analog Trigger data) to mouse input.
* Move Button: Mouse1
* Trigger: Mouse2
* \param mouse_no Mouse index number to use
* \param digital_buttons Bitmask filled with CELL_GEM_CTRL_* values
* \param analog_t Analog value of Move's Trigger.
* \return true on success, false if mouse_no is invalid
*/
static bool mouse_input_to_pad(const u32 mouse_no, be_t<u16>& digital_buttons, be_t<u16>& analog_t)
{
auto& handler = g_fxo->get<MouseHandlerBase>();
std::scoped_lock lock(handler.mutex);
if (mouse_no >= handler.GetMice().size())
{
return false;
}
const auto& mouse_data = handler.GetMice().at(0);
const auto is_pressed = [&mouse_data](MouseButtonCodes button) -> bool { return !!(mouse_data.buttons & button); };
digital_buttons = 0;
if (is_pressed(CELL_MOUSE_BUTTON_1))
digital_buttons |= CELL_GEM_CTRL_T;
if (is_pressed(CELL_MOUSE_BUTTON_2))
digital_buttons |= CELL_GEM_CTRL_MOVE;
if (is_pressed(CELL_MOUSE_BUTTON_3))
digital_buttons |= CELL_GEM_CTRL_CROSS;
if (is_pressed(CELL_MOUSE_BUTTON_4))
digital_buttons |= CELL_GEM_CTRL_CIRCLE;
if (is_pressed(CELL_MOUSE_BUTTON_5))
digital_buttons |= CELL_GEM_CTRL_SQUARE;
if (is_pressed(CELL_MOUSE_BUTTON_6) || (is_pressed(CELL_MOUSE_BUTTON_1) && is_pressed(CELL_MOUSE_BUTTON_2)))
digital_buttons |= CELL_GEM_CTRL_SELECT;
if (is_pressed(CELL_MOUSE_BUTTON_7) || (is_pressed(CELL_MOUSE_BUTTON_1) && is_pressed(CELL_MOUSE_BUTTON_3)))
digital_buttons |= CELL_GEM_CTRL_START;
if (is_pressed(CELL_MOUSE_BUTTON_8) || (is_pressed(CELL_MOUSE_BUTTON_2) && is_pressed(CELL_MOUSE_BUTTON_3)))
digital_buttons |= CELL_GEM_CTRL_TRIANGLE;
analog_t = (mouse_data.buttons & CELL_MOUSE_BUTTON_1) ? 0xFFFF : 0;
return true;
}
static bool mouse_pos_to_gem_image_state(const u32 mouse_no, const gem_config::gem_controller& controller, vm::ptr<CellGemImageState>& gem_image_state)
{
auto& handler = g_fxo->get<MouseHandlerBase>();
std::scoped_lock lock(handler.mutex);
if (!gem_image_state || mouse_no >= handler.GetMice().size())
{
return false;
}
const auto& mouse = handler.GetMice().at(0);
const auto& shared_data = g_fxo->get<gem_camera_shared>();
s32 mouse_width = mouse.x_max;
if (mouse_width <= 0) mouse_width = shared_data.width;
s32 mouse_height = mouse.y_max;
if (mouse_height <= 0) mouse_height = shared_data.height;
const f32 scaling_width = mouse_width / static_cast<f32>(shared_data.width);
const f32 scaling_height = mouse_height / static_cast<f32>(shared_data.height);
const f32 mmPerPixel = CELL_GEM_SPHERE_RADIUS_MM / controller.radius;
// Image coordinates in pixels
const f32 image_x = static_cast<f32>(mouse.x_pos) / scaling_width;
const f32 image_y = static_cast<f32>(mouse.y_pos) / scaling_height;
// Centered image coordinates in pixels
const f32 centered_x = image_x - (shared_data.width / 2.f);
const f32 centered_y = (shared_data.height / 2.f) - image_y; // Image coordinates increase downwards, so we have to invert this
// Camera coordinates in mm (centered, so it's the same as world coordinates)
const f32 camera_x = centered_x * mmPerPixel;
const f32 camera_y = centered_y * mmPerPixel;
// Image coordinates in pixels
gem_image_state->u = image_x;
gem_image_state->v = image_y;
// Projected camera coordinates in mm
gem_image_state->projectionx = camera_x / controller.distance;
gem_image_state->projectiony = camera_y / controller.distance;
return true;
}
static bool mouse_pos_to_gem_state(const u32 mouse_no, const gem_config::gem_controller& controller, vm::ptr<CellGemState>& gem_state)
{
auto& handler = g_fxo->get<MouseHandlerBase>();
std::scoped_lock lock(handler.mutex);
if (!gem_state || mouse_no >= handler.GetMice().size())
{
return false;
}
const auto& mouse = handler.GetMice().at(0);
const auto& shared_data = g_fxo->get<gem_camera_shared>();
s32 mouse_width = mouse.x_max;
if (mouse_width <= 0) mouse_width = shared_data.width;
s32 mouse_height = mouse.y_max;
if (mouse_height <= 0) mouse_height = shared_data.height;
const f32 scaling_width = mouse_width / static_cast<f32>(shared_data.width);
const f32 scaling_height = mouse_height / static_cast<f32>(shared_data.height);
const f32 mmPerPixel = CELL_GEM_SPHERE_RADIUS_MM / controller.radius;
// Image coordinates in pixels
const f32 image_x = static_cast<f32>(mouse.x_pos) / scaling_width;
const f32 image_y = static_cast<f32>(mouse.y_pos) / scaling_height;
// Centered image coordinates in pixels
const f32 centered_x = image_x - (shared_data.width / 2.f);
const f32 centered_y = (shared_data.height / 2.f) - image_y; // Image coordinates increase downwards, so we have to invert this
// Camera coordinates in mm (centered, so it's the same as world coordinates)
const f32 camera_x = centered_x * mmPerPixel;
const f32 camera_y = centered_y * mmPerPixel;
// World coordinates in mm
gem_state->pos[0] = camera_x;
gem_state->pos[1] = camera_y;
gem_state->pos[2] = static_cast<f32>(controller.distance);
gem_state->pos[3] = 0.f;
gem_state->quat[0] = 320.f - image_x;
gem_state->quat[1] = (mouse.y_pos / scaling_width) - 180.f;
gem_state->quat[2] = 1200.f;
// TODO: calculate handle position based on our world coordinate and the angles
gem_state->handle_pos[0] = camera_x;
gem_state->handle_pos[1] = camera_y;
gem_state->handle_pos[2] = static_cast<f32>(controller.distance + 10);
gem_state->handle_pos[3] = 0.f;
return true;
}
// *********************
// * cellGem functions *
// *********************
error_code cellGemCalibrate(u32 gem_num)
{
cellGem.todo("cellGemCalibrate(gem_num=%d)", gem_num);
auto& gem = g_fxo->get<gem_config>();
std::scoped_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num))
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
if (gem.is_controller_calibrating(gem_num))
{
return CELL_EBUSY;
}
if (g_cfg.io.move == move_handler::fake || g_cfg.io.move == move_handler::mouse)
{
gem.controllers[gem_num].is_calibrating = true;
gem.controllers[gem_num].calibration_start_us = get_guest_system_time();
}
return CELL_OK;
}
error_code cellGemClearStatusFlags(u32 gem_num, u64 mask)
{
cellGem.todo("cellGemClearStatusFlags(gem_num=%d, mask=0x%x)", gem_num, mask);
auto& gem = g_fxo->get<gem_config>();
std::scoped_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num))
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
gem.status_flags &= ~mask;
return CELL_OK;
}
error_code cellGemConvertVideoFinish()
{
cellGem.warning("cellGemConvertVideoFinish()");
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!gem.video_conversion_in_progress)
{
return CELL_GEM_ERROR_CONVERT_NOT_STARTED;
}
while (gem.video_conversion_in_progress && !Emu.IsStopped())
{
thread_ctrl::wait_for(100);
}
return CELL_OK;
}
error_code cellGemConvertVideoStart(vm::cptr<void> video_frame)
{
cellGem.warning("cellGemConvertVideoStart(video_frame=*0x%x)", video_frame);
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!video_frame)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
if (!video_frame.aligned(128))
{
return CELL_GEM_ERROR_INVALID_ALIGNMENT;
}
if (gem.video_conversion_in_progress)
{
return CELL_GEM_ERROR_CONVERT_NOT_FINISHED;
}
const auto& shared_data = g_fxo->get<gem_camera_shared>();
gem.video_data_in.resize(shared_data.size);
std::memcpy(gem.video_data_in.data(), video_frame.get_ptr(), gem.video_data_in.size());
gem.video_conversion_in_progress = true;
return CELL_OK;
}
error_code cellGemEnableCameraPitchAngleCorrection(u32 enable_flag)
{
cellGem.todo("cellGemEnableCameraPitchAngleCorrection(enable_flag=%d)", enable_flag);
auto& gem = g_fxo->get<gem_config>();
std::scoped_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
gem.enable_pitch_correction = !!enable_flag;
return CELL_OK;
}
error_code cellGemEnableMagnetometer(u32 gem_num, u32 enable)
{
cellGem.todo("cellGemEnableMagnetometer(gem_num=%d, enable=0x%x)", gem_num, enable);
auto& gem = g_fxo->get<gem_config>();
std::scoped_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num))
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
if (!gem.is_controller_ready(gem_num))
{
return CELL_GEM_NOT_CONNECTED;
}
// NOTE: RE doesn't show this check but it is mentioned in the docs, so I'll leave it here for now.
//if (!gem.controllers[gem_num].calibrated_magnetometer)
//{
// return CELL_GEM_NOT_CALIBRATED;
//}
gem.controllers[gem_num].enabled_magnetometer = !!enable;
return CELL_OK;
}
error_code cellGemEnableMagnetometer2()
{
UNIMPLEMENTED_FUNC(cellGem);
return CELL_OK;
}
error_code cellGemEnd(ppu_thread& ppu)
{
cellGem.warning("cellGemEnd()");
auto& gem = g_fxo->get<gem_config>();
std::scoped_lock lock(gem.mtx);
if (gem.state.compare_and_swap_test(1, 0))
{
if (u32 addr = std::exchange(gem.memory_ptr, 0))
{
sys_memory_free(ppu, addr);
}
return CELL_OK;
}
return CELL_GEM_ERROR_UNINITIALIZED;
}
error_code cellGemFilterState(u32 gem_num, u32 enable)
{
cellGem.warning("cellGemFilterState(gem_num=%d, enable=%d)", gem_num, enable);
auto& gem = g_fxo->get<gem_config>();
std::scoped_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num))
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
gem.controllers[gem_num].enabled_filtering = !!enable;
return CELL_OK;
}
error_code cellGemForceRGB(u32 gem_num, float r, float g, float b)
{
cellGem.todo("cellGemForceRGB(gem_num=%d, r=%f, g=%f, b=%f)", gem_num, r, g, b);
auto& gem = g_fxo->get<gem_config>();
std::scoped_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num))
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
// TODO: Adjust brightness
//if (const f32 sum = r + g + b; sum > 2.f)
//{
// color = color * (2.f / sum)
//}
gem.controllers[gem_num].sphere_rgb = gem_config::gem_color(r, g, b);
gem.controllers[gem_num].enabled_tracking = false;
return CELL_OK;
}
error_code cellGemGetAccelerometerPositionInDevice(u32 gem_num, vm::ptr<f32> pos)
{
cellGem.todo("cellGemGetAccelerometerPositionInDevice(gem_num=%d, pos=*0x%x)", gem_num, pos);
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num) || !pos)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
// TODO
return CELL_OK;
}
error_code cellGemGetAllTrackableHues(vm::ptr<u8> hues)
{
cellGem.todo("cellGemGetAllTrackableHues(hues=*0x%x)");
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!hues)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
for (u32 i = 0; i < 360; i++)
{
hues[i] = true;
}
return CELL_OK;
}
error_code cellGemGetCameraState(vm::ptr<CellGemCameraState> camera_state)
{
cellGem.todo("cellGemGetCameraState(camera_state=0x%x)", camera_state);
[[maybe_unused]] auto& gem = g_fxo->get<gem_config>();
if (!camera_state)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
// TODO: use correct camera settings
camera_state->exposure = 0;
camera_state->exposure_time = 1.0f / 60.0f;
camera_state->gain = 1.0;
camera_state->pitch_angle = 0.0;
camera_state->pitch_angle_estimate = 0.0;
return CELL_OK;
}
error_code cellGemGetEnvironmentLightingColor(vm::ptr<f32> r, vm::ptr<f32> g, vm::ptr<f32> b)
{
cellGem.todo("cellGemGetEnvironmentLightingColor(r=*0x%x, g=*0x%x, b=*0x%x)", r, g, b);
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!r || !g || !b)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
// default to 128
*r = 128;
*g = 128;
*b = 128;
// NOTE: RE doesn't show this check but it is mentioned in the docs, so I'll leave it here for now.
//if (!gem.controllers[gem_num].calibrated_magnetometer)
//{
// return CELL_GEM_ERROR_LIGHTING_NOT_CALIBRATED; // This error doesn't really seem to be a real thing.
//}
return CELL_OK;
}
error_code cellGemGetHuePixels(vm::cptr<void> camera_frame, u32 hue, vm::ptr<u8> pixels)
{
cellGem.todo("cellGemGetHuePixels(camera_frame=*0x%x, hue=%d, pixels=*0x%x)", camera_frame, hue, pixels);
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!camera_frame || !pixels || hue > 359)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
// TODO
return CELL_OK;
}
error_code cellGemGetImageState(u32 gem_num, vm::ptr<CellGemImageState> gem_image_state)
{
cellGem.warning("cellGemGetImageState(gem_num=%d, image_state=&0x%x)", gem_num, gem_image_state);
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num) || !gem_image_state)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
if (g_cfg.io.move == move_handler::fake || g_cfg.io.move == move_handler::mouse)
{
auto& shared_data = g_fxo->get<gem_camera_shared>();
gem_image_state->frame_timestamp = shared_data.frame_timestamp.load();
gem_image_state->timestamp = gem_image_state->frame_timestamp + 10;
gem_image_state->r = gem.controllers[gem_num].radius; // Radius in camera pixels
gem_image_state->distance = gem.controllers[gem_num].distance; // 1.5 meters away from camera
gem_image_state->visible = gem.is_controller_ready(gem_num);
gem_image_state->r_valid = true;
if (g_cfg.io.move == move_handler::fake)
{
gem_image_state->u = 0;
gem_image_state->v = 0;
gem_image_state->projectionx = 1;
gem_image_state->projectiony = 1;
}
else if (g_cfg.io.move == move_handler::mouse)
{
mouse_pos_to_gem_image_state(gem_num, gem.controllers[gem_num], gem_image_state);
}
}
return CELL_OK;
}
error_code cellGemGetInertialState(u32 gem_num, u32 state_flag, u64 timestamp, vm::ptr<CellGemInertialState> inertial_state)
{
cellGem.warning("cellGemGetInertialState(gem_num=%d, state_flag=%d, timestamp=0x%x, inertial_state=0x%x)", gem_num, state_flag, timestamp, inertial_state);
auto& gem = g_fxo->get<gem_config>();
std::scoped_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num) || !inertial_state || !gem.is_controller_ready(gem_num))
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
if (false) // TODO
{
return CELL_GEM_TIME_OUT_OF_RANGE;
}
if (g_cfg.io.move == move_handler::fake || g_cfg.io.move == move_handler::mouse)
{
ds3_input_to_ext(gem_num, gem.controllers[gem_num], inertial_state->ext);
inertial_state->timestamp = (get_guest_system_time() - gem.start_timestamp);
inertial_state->counter = gem.inertial_counter++;
inertial_state->accelerometer[0] = 10; // Current gravity in m/s²
if (g_cfg.io.move == move_handler::fake)
{
ds3_input_to_pad(gem_num, inertial_state->pad.digitalbuttons, inertial_state->pad.analog_T);
}
else if (g_cfg.io.move == move_handler::mouse)
{
mouse_input_to_pad(gem_num, inertial_state->pad.digitalbuttons, inertial_state->pad.analog_T);
}
}
return CELL_OK;
}
error_code cellGemGetInfo(vm::ptr<CellGemInfo> info)
{
cellGem.warning("cellGemGetInfo(info=*0x%x)", info);
auto& gem = g_fxo->get<gem_config>();
reader_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!info)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
// TODO: Support connecting PlayStation Move controllers
info->max_connect = gem.attribute.max_connect;
info->now_connect = gem.connected_controllers;
for (int i = 0; i < CELL_GEM_MAX_NUM; i++)
{
info->status[i] = gem.controllers[i].status;
info->port[i] = gem.controllers[i].port;
}
return CELL_OK;
}
u32 GemGetMemorySize(s32 max_connect)
{
return max_connect <= 2 ? 0x120000 : 0x140000;
}
error_code cellGemGetMemorySize(s32 max_connect)
{
cellGem.warning("cellGemGetMemorySize(max_connect=%d)", max_connect);
if (max_connect > CELL_GEM_MAX_NUM || max_connect <= 0)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
return not_an_error(GemGetMemorySize(max_connect));
}
error_code cellGemGetRGB(u32 gem_num, vm::ptr<float> r, vm::ptr<float> g, vm::ptr<float> b)
{
cellGem.todo("cellGemGetRGB(gem_num=%d, r=*0x%x, g=*0x%x, b=*0x%x)", gem_num, r, g, b);
auto& gem = g_fxo->get<gem_config>();
reader_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num) || !r || !g || !b)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
auto& sphere_color = gem.controllers[gem_num].sphere_rgb;
*r = sphere_color.r;
*g = sphere_color.g;
*b = sphere_color.b;
return CELL_OK;
}
error_code cellGemGetRumble(u32 gem_num, vm::ptr<u8> rumble)
{
cellGem.todo("cellGemGetRumble(gem_num=%d, rumble=*0x%x)", gem_num, rumble);
auto& gem = g_fxo->get<gem_config>();
reader_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num) || !rumble)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
*rumble = gem.controllers[gem_num].rumble;
return CELL_OK;
}
error_code cellGemGetState(u32 gem_num, u32 flag, u64 time_parameter, vm::ptr<CellGemState> gem_state)
{
cellGem.warning("cellGemGetState(gem_num=%d, flag=0x%x, time=0x%llx, gem_state=*0x%x)", gem_num, flag, time_parameter, gem_state);
auto& gem = g_fxo->get<gem_config>();
reader_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num) || flag > CELL_GEM_STATE_FLAG_TIMESTAMP || !gem_state)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
if (!gem.is_controller_ready(gem_num))
{
return CELL_GEM_NOT_CONNECTED;
}
// TODO: Get the gem state at the specified time
//if (flag == CELL_GEM_STATE_FLAG_CURRENT_TIME)
//{
// // now + time_parameter (time_parameter in microseconds). Positive values actually allow predictions for the future state.
//}
//else if (flag == CELL_GEM_STATE_FLAG_LATEST_IMAGE_TIME)
//{
// // When the sphere was registered during the last camera frame (time_parameter may also have an impact)
//}
//else // CELL_GEM_STATE_FLAG_TIMESTAMP
//{
// // As specified by time_parameter.
//}
if (false) // TODO: check if there is data for the specified time_parameter and flag
{
return CELL_GEM_TIME_OUT_OF_RANGE;
}
if (g_cfg.io.move == move_handler::fake || g_cfg.io.move == move_handler::mouse)
{
ds3_input_to_ext(gem_num, gem.controllers[gem_num], gem_state->ext);
u32 tracking_flags = CELL_GEM_TRACKING_FLAG_VISIBLE;
if (gem.controllers[gem_num].enabled_tracking)
tracking_flags |= CELL_GEM_TRACKING_FLAG_POSITION_TRACKED;
*gem_state = {};
gem_state->tracking_flags = tracking_flags;
gem_state->timestamp = (get_guest_system_time() - gem.start_timestamp);
gem_state->camera_pitch_angle = 0.f;
gem_state->quat[3] = 1.f;
if (g_cfg.io.move == move_handler::fake)
{
ds3_input_to_pad(gem_num, gem_state->pad.digitalbuttons, gem_state->pad.analog_T);
}
else if (g_cfg.io.move == move_handler::mouse)
{
mouse_input_to_pad(gem_num, gem_state->pad.digitalbuttons, gem_state->pad.analog_T);
mouse_pos_to_gem_state(gem_num, gem.controllers[gem_num], gem_state);
}
}
if (false) // TODO: check if we are computing colors
{
return CELL_GEM_COMPUTING_AVAILABLE_COLORS;
}
if (gem.is_controller_calibrating(gem_num))
{
return CELL_GEM_SPHERE_CALIBRATING;
}
if (!gem.controllers[gem_num].calibrated_magnetometer)
{
return CELL_GEM_SPHERE_NOT_CALIBRATED;
}
if (!gem.controllers[gem_num].hue_set)
{
return CELL_GEM_HUE_NOT_SET;
}
return CELL_OK;
}
error_code cellGemGetStatusFlags(u32 gem_num, vm::ptr<u64> flags)
{
cellGem.todo("cellGemGetStatusFlags(gem_num=%d, flags=*0x%x)", gem_num, flags);
auto& gem = g_fxo->get<gem_config>();
reader_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num) || !flags)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
*flags = gem.status_flags;
return CELL_OK;
}
error_code cellGemGetTrackerHue(u32 gem_num, vm::ptr<u32> hue)
{
cellGem.warning("cellGemGetTrackerHue(gem_num=%d, hue=*0x%x)", gem_num, hue);
auto& gem = g_fxo->get<gem_config>();
reader_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num) || !hue)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
if (!gem.controllers[gem_num].enabled_tracking || gem.controllers[gem_num].hue > 359)
{
return { CELL_GEM_ERROR_NOT_A_HUE, gem.controllers[gem_num].hue };
}
*hue = gem.controllers[gem_num].hue;
return CELL_OK;
}
error_code cellGemHSVtoRGB(f32 h, f32 s, f32 v, vm::ptr<f32> r, vm::ptr<f32> g, vm::ptr<f32> b)
{
cellGem.warning("cellGemHSVtoRGB(h=%f, s=%f, v=%f, r=*0x%x, g=*0x%x, b=*0x%x)", h, s, v, r, g, b);
if (s < 0.0f || s > 1.0f || v < 0.0f || v > 1.0f || !r || !g || !b)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
h = std::clamp(h, 0.0f, 360.0f);
const f32 c = v * s;
const f32 x = c * (1.0f - fabs(fmod(h / 60.0f, 2.0f) - 1.0f));
const f32 m = v - c;
f32 r_tmp{0.0};
f32 g_tmp{0.0};
f32 b_tmp{0.0};
if (h < 60.0f)
{
r_tmp = c;
g_tmp = x;
}
else if (h < 120.0f)
{
r_tmp = x;
g_tmp = c;
}
else if (h < 180.0f)
{
g_tmp = c;
b_tmp = x;
}
else if (h < 240.0f)
{
g_tmp = x;
b_tmp = c;
}
else if (h < 300.0f)
{
r_tmp = x;
b_tmp = c;
}
else
{
r_tmp = c;
b_tmp = x;
}
*r = (r_tmp + m) * 255.0f;
*g = (g_tmp + m) * 255.0f;
*b = (b_tmp + m) * 255.0f;
return CELL_OK;
}
error_code cellGemInit(ppu_thread& ppu, vm::cptr<CellGemAttribute> attribute)
{
cellGem.warning("cellGemInit(attribute=*0x%x)", attribute);
auto& gem = g_fxo->get<gem_config>();
if (!attribute || !attribute->spurs_addr || !attribute->max_connect || attribute->max_connect > CELL_GEM_MAX_NUM)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
std::scoped_lock lock(gem.mtx);
if (!gem.state.compare_and_swap_test(0, 1))
{
return CELL_GEM_ERROR_ALREADY_INITIALIZED;
}
if (!attribute->memory_ptr)
{
vm::var<u32> addr(0);
// Decrease memory stats
if (sys_memory_allocate(ppu, GemGetMemorySize(attribute->max_connect), SYS_MEMORY_PAGE_SIZE_64K, +addr) != CELL_OK)
{
return CELL_GEM_ERROR_RESOURCE_ALLOCATION_FAILED;
}
gem.memory_ptr = *addr;
}
else
{
gem.memory_ptr = 0;
}
gem.update_started = false;
gem.camera_frame = 0;
gem.status_flags = 0;
gem.attribute = *attribute;
if (g_cfg.io.move == move_handler::mouse)
{
// init mouse handler
auto& handler = g_fxo->get<MouseHandlerBase>();
handler.Init(std::min<u32>(attribute->max_connect, CELL_GEM_MAX_NUM));
}
for (int gem_num = 0; gem_num < CELL_GEM_MAX_NUM; gem_num++)
{
gem.reset_controller(gem_num);
}
// TODO: is this correct?
gem.start_timestamp = get_guest_system_time();
return CELL_OK;
}
error_code cellGemInvalidateCalibration(s32 gem_num)
{
cellGem.todo("cellGemInvalidateCalibration(gem_num=%d)", gem_num);
auto& gem = g_fxo->get<gem_config>();
std::scoped_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num))
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
if (g_cfg.io.move == move_handler::fake || g_cfg.io.move == move_handler::mouse)
{
gem.controllers[gem_num].calibrated_magnetometer = false;
// TODO: does this really stop an ongoing calibration ?
gem.controllers[gem_num].is_calibrating = false;
gem.controllers[gem_num].calibration_start_us = 0;
// TODO: gem.status_flags (probably not changed)
}
return CELL_OK;
}
s32 cellGemIsTrackableHue(u32 hue)
{
cellGem.todo("cellGemIsTrackableHue(hue=%d)", hue);
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (hue > 359)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
return 1;
}
error_code cellGemPrepareCamera(s32 max_exposure, f32 image_quality)
{
cellGem.todo("cellGemPrepareCamera(max_exposure=%d, image_quality=%f)", max_exposure, image_quality);
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (false) // TODO: Check if the camera is currently being prepared.
{
return CELL_EBUSY;
}
max_exposure = std::clamp(max_exposure, static_cast<s32>(CELL_GEM_MIN_CAMERA_EXPOSURE), static_cast<s32>(CELL_GEM_MAX_CAMERA_EXPOSURE));
image_quality = std::clamp(image_quality, 0.0f, 1.0f);
// TODO: prepare camera
return CELL_OK;
}
error_code cellGemPrepareVideoConvert(vm::cptr<CellGemVideoConvertAttribute> vc_attribute)
{
cellGem.warning("cellGemPrepareVideoConvert(vc_attribute=*0x%x)", vc_attribute);
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!vc_attribute)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
const CellGemVideoConvertAttribute vc = *vc_attribute;
if (vc.version != CELL_GEM_VERSION)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
if (vc.output_format != CELL_GEM_NO_VIDEO_OUTPUT)
{
if (!vc.video_data_out)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
}
if ((vc.conversion_flags & CELL_GEM_COMBINE_PREVIOUS_INPUT_FRAME) && !vc.buffer_memory)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
if (!vc.video_data_out.aligned(128) || !vc.buffer_memory.aligned(16))
{
return CELL_GEM_ERROR_INVALID_ALIGNMENT;
}
gem.vc_attribute = vc;
const s32 buffer_size = cellGemGetVideoConvertSize(vc.output_format);
gem.video_data_out_size = buffer_size;
return CELL_OK;
}
error_code cellGemReadExternalPortDeviceInfo(u32 gem_num, vm::ptr<u32> ext_id, vm::ptr<u8[CELL_GEM_EXTERNAL_PORT_DEVICE_INFO_SIZE]> ext_info)
{
cellGem.todo("cellGemReadExternalPortDeviceInfo(gem_num=%d, ext_id=*0x%x, ext_info=%s)", gem_num, ext_id, ext_info);
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num) || !ext_id)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
if (!gem.is_controller_ready(gem_num))
{
return CELL_GEM_NOT_CONNECTED;
}
if (!(gem.controllers[gem_num].ext_status & CELL_GEM_EXT_CONNECTED))
{
return CELL_GEM_NO_EXTERNAL_PORT_DEVICE;
}
*ext_id = gem.controllers[gem_num].ext_id;
return CELL_OK;
}
error_code cellGemReset(u32 gem_num)
{
cellGem.todo("cellGemReset(gem_num=%d)", gem_num);
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num))
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
gem.reset_controller(gem_num);
// TODO: is this correct?
gem.start_timestamp = get_guest_system_time();
return CELL_OK;
}
error_code cellGemSetRumble(u32 gem_num, u8 rumble)
{
cellGem.warning("cellGemSetRumble(gem_num=%d, rumble=0x%x)", gem_num, rumble);
auto& gem = g_fxo->get<gem_config>();
std::scoped_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num))
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
gem.controllers[gem_num].rumble = rumble;
return CELL_OK;
}
error_code cellGemSetYaw(u32 gem_num, vm::ptr<f32> z_direction)
{
cellGem.todo("cellGemSetYaw(gem_num=%d, z_direction=*0x%x)", gem_num, z_direction);
auto& gem = g_fxo->get<gem_config>();
std::scoped_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!z_direction || !check_gem_num(gem_num))
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
// TODO
return CELL_OK;
}
error_code cellGemTrackHues(vm::cptr<u32> req_hues, vm::ptr<u32> res_hues)
{
cellGem.todo("cellGemTrackHues(req_hues=*0x%x, res_hues=*0x%x)", req_hues, res_hues);
auto& gem = g_fxo->get<gem_config>();
std::scoped_lock lock(gem.mtx);
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!req_hues)
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
for (u32 i = 0; i < CELL_GEM_MAX_NUM; i++)
{
if (req_hues[i] == CELL_GEM_DONT_CARE_HUE)
{
gem.controllers[i].enabled_tracking = true;
gem.controllers[i].enabled_LED = true;
switch (i)
{
default:
case 0:
gem.controllers[i].hue = 240; // blue
break;
case 1:
gem.controllers[i].hue = 0; // red
break;
case 2:
gem.controllers[i].hue = 120; // green
break;
case 3:
gem.controllers[i].hue = 300; // purple
break;
}
if (res_hues)
{
res_hues[i] = gem.controllers[i].hue;
}
}
else if (req_hues[i] == CELL_GEM_DONT_TRACK_HUE)
{
gem.controllers[i].enabled_tracking = false;
gem.controllers[i].enabled_LED = false;
if (res_hues)
{
res_hues[i] = CELL_GEM_DONT_TRACK_HUE;
}
}
else
{
if (req_hues[i] > 359)
{
cellGem.warning("cellGemTrackHues: req_hues[%d]=%d -> this can lead to unexpected behavior", i, req_hues[i]);
}
gem.controllers[i].enabled_tracking = true;
gem.controllers[i].enabled_LED = true;
gem.controllers[i].hue = req_hues[i];
if (res_hues)
{
res_hues[i] = gem.controllers[i].hue;
}
}
gem.controllers[i].hue_set = true;
}
return CELL_OK;
}
error_code cellGemUpdateFinish()
{
cellGem.warning("cellGemUpdateFinish()");
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
std::scoped_lock lock(gem.mtx);
if (!gem.update_started.exchange(false))
{
return CELL_GEM_ERROR_UPDATE_NOT_STARTED;
}
if (!gem.camera_frame)
{
return not_an_error(CELL_GEM_NO_VIDEO);
}
return CELL_OK;
}
error_code cellGemUpdateStart(vm::cptr<void> camera_frame, u64 timestamp)
{
cellGem.warning("cellGemUpdateStart(camera_frame=*0x%x, timestamp=%d)", camera_frame, timestamp);
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
std::scoped_lock lock(gem.mtx);
// Update is starting even when camera_frame is null
if (gem.update_started.exchange(true))
{
return CELL_GEM_ERROR_UPDATE_NOT_FINISHED;
}
if (!camera_frame.aligned(128))
{
return CELL_GEM_ERROR_INVALID_ALIGNMENT;
}
gem.camera_frame = camera_frame.addr();
if (!camera_frame)
{
return not_an_error(CELL_GEM_NO_VIDEO);
}
return CELL_OK;
}
error_code cellGemWriteExternalPort(u32 gem_num, vm::ptr<u8[CELL_GEM_EXTERNAL_PORT_OUTPUT_SIZE]> data)
{
cellGem.todo("cellGemWriteExternalPort(gem_num=%d, data=%s)", gem_num, data);
auto& gem = g_fxo->get<gem_config>();
if (!gem.state)
{
return CELL_GEM_ERROR_UNINITIALIZED;
}
if (!check_gem_num(gem_num))
{
return CELL_GEM_ERROR_INVALID_PARAMETER;
}
if (!gem.is_controller_ready(gem_num))
{
return CELL_GEM_NOT_CONNECTED;
}
if (false) // TODO: check if this is still writing to the external port
{
return CELL_GEM_ERROR_WRITE_NOT_FINISHED;
}
return CELL_OK;
}
DECLARE(ppu_module_manager::cellGem)("libgem", []()
{
REG_FUNC(libgem, cellGemCalibrate);
REG_FUNC(libgem, cellGemClearStatusFlags);
REG_FUNC(libgem, cellGemConvertVideoFinish);
REG_FUNC(libgem, cellGemConvertVideoStart);
REG_FUNC(libgem, cellGemEnableCameraPitchAngleCorrection);
REG_FUNC(libgem, cellGemEnableMagnetometer);
REG_FUNC(libgem, cellGemEnableMagnetometer2);
REG_FUNC(libgem, cellGemEnd);
REG_FUNC(libgem, cellGemFilterState);
REG_FUNC(libgem, cellGemForceRGB);
REG_FUNC(libgem, cellGemGetAccelerometerPositionInDevice);
REG_FUNC(libgem, cellGemGetAllTrackableHues);
REG_FUNC(libgem, cellGemGetCameraState);
REG_FUNC(libgem, cellGemGetEnvironmentLightingColor);
REG_FUNC(libgem, cellGemGetHuePixels);
REG_FUNC(libgem, cellGemGetImageState);
REG_FUNC(libgem, cellGemGetInertialState);
REG_FUNC(libgem, cellGemGetInfo);
REG_FUNC(libgem, cellGemGetMemorySize);
REG_FUNC(libgem, cellGemGetRGB);
REG_FUNC(libgem, cellGemGetRumble);
REG_FUNC(libgem, cellGemGetState);
REG_FUNC(libgem, cellGemGetStatusFlags);
REG_FUNC(libgem, cellGemGetTrackerHue);
REG_FUNC(libgem, cellGemHSVtoRGB);
REG_FUNC(libgem, cellGemInit);
REG_FUNC(libgem, cellGemInvalidateCalibration);
REG_FUNC(libgem, cellGemIsTrackableHue);
REG_FUNC(libgem, cellGemPrepareCamera);
REG_FUNC(libgem, cellGemPrepareVideoConvert);
REG_FUNC(libgem, cellGemReadExternalPortDeviceInfo);
REG_FUNC(libgem, cellGemReset);
REG_FUNC(libgem, cellGemSetRumble);
REG_FUNC(libgem, cellGemSetYaw);
REG_FUNC(libgem, cellGemTrackHues);
REG_FUNC(libgem, cellGemUpdateFinish);
REG_FUNC(libgem, cellGemUpdateStart);
REG_FUNC(libgem, cellGemWriteExternalPort);
});