rpcs3/rpcs3/Emu/RSX/Common/BufferUtils.cpp
Vincent Lejeune f483c3b9ca Revert "Merge pull request #1245 from DHrpcs3/master"
This reverts commit 5feba39ff7, reversing
changes made to ebf28f8da0.
2015-10-09 20:04:20 +02:00

246 lines
No EOL
6.9 KiB
C++

#include "stdafx.h"
#include "BufferUtils.h"
#define MIN2(x, y) ((x) < (y)) ? (x) : (y)
#define MAX2(x, y) ((x) > (y)) ? (x) : (y)
inline
bool overlaps(const std::pair<size_t, size_t> &range1, const std::pair<size_t, size_t> &range2)
{
return !(range1.second < range2.first || range2.second < range1.first);
}
std::vector<VertexBufferFormat> FormatVertexData(const RSXVertexData *m_vertex_data, size_t *vertex_data_size, size_t base_offset)
{
std::vector<VertexBufferFormat> Result;
for (size_t i = 0; i < 32; ++i)
{
const RSXVertexData &vertexData = m_vertex_data[i];
if (!vertexData.IsEnabled()) continue;
size_t elementCount = ((vertexData.addr) ? vertex_data_size[i] : m_vertex_data[i].data.size()) / (vertexData.size * vertexData.GetTypeSize());
// If there is a single element, stride is 0, use the size of element instead
size_t stride = vertexData.stride;
size_t elementSize = vertexData.GetTypeSize();
size_t start = vertexData.addr + base_offset;
size_t end = start + elementSize * vertexData.size + (elementCount - 1) * stride - 1;
std::pair<size_t, size_t> range = std::make_pair(start, end);
assert(start < end);
bool isMerged = false;
for (VertexBufferFormat &vbf : Result)
{
if (overlaps(vbf.range, range) && vbf.stride == stride)
{
// Extend buffer if necessary
vbf.range.first = MIN2(vbf.range.first, range.first);
vbf.range.second = MAX2(vbf.range.second, range.second);
vbf.elementCount = MAX2(vbf.elementCount, elementCount);
vbf.attributeId.push_back(i);
isMerged = true;
break;
}
}
if (isMerged)
continue;
VertexBufferFormat newRange = { range, std::vector<size_t>{ i }, elementCount, stride };
Result.emplace_back(newRange);
}
return Result;
}
void uploadVertexData(const VertexBufferFormat &vbf, const RSXVertexData *vertexData, size_t baseOffset, void* bufferMap)
{
for (int vertex = 0; vertex < vbf.elementCount; vertex++)
{
for (size_t attributeId : vbf.attributeId)
{
if (!vertexData[attributeId].addr)
{
memcpy(bufferMap, vertexData[attributeId].data.data(), vertexData[attributeId].data.size());
continue;
}
size_t offset = (size_t)vertexData[attributeId].addr + baseOffset - vbf.range.first;
size_t tsize = vertexData[attributeId].GetTypeSize();
size_t size = vertexData[attributeId].size;
auto src = vm::get_ptr<const u8>(vertexData[attributeId].addr + (u32)baseOffset + (u32)vbf.stride * vertex);
char* dst = (char*)bufferMap + offset + vbf.stride * vertex;
switch (tsize)
{
case 1:
{
memcpy(dst, src, size);
break;
}
case 2:
{
const u16* c_src = (const u16*)src;
u16* c_dst = (u16*)dst;
for (u32 j = 0; j < size; ++j) *c_dst++ = _byteswap_ushort(*c_src++);
break;
}
case 4:
{
const u32* c_src = (const u32*)src;
u32* c_dst = (u32*)dst;
for (u32 j = 0; j < size; ++j) *c_dst++ = _byteswap_ulong(*c_src++);
break;
}
}
}
}
}
template<typename IndexType, typename DstType, typename SrcType>
void expandIndexedTriangleFan(DstType *dst, const SrcType *src, size_t indexCount)
{
IndexType *typedDst = reinterpret_cast<IndexType *>(dst);
const IndexType *typedSrc = reinterpret_cast<const IndexType *>(src);
for (unsigned i = 0; i < indexCount - 2; i++)
{
typedDst[3 * i] = typedSrc[0];
typedDst[3 * i + 1] = typedSrc[i + 2 - 1];
typedDst[3 * i + 2] = typedSrc[i + 2];
}
}
template<typename IndexType, typename DstType, typename SrcType>
void expandIndexedQuads(DstType *dst, const SrcType *src, size_t indexCount)
{
IndexType *typedDst = reinterpret_cast<IndexType *>(dst);
const IndexType *typedSrc = reinterpret_cast<const IndexType *>(src);
for (unsigned i = 0; i < indexCount / 4; i++)
{
// First triangle
typedDst[6 * i] = typedSrc[4 * i];
typedDst[6 * i + 1] = typedSrc[4 * i + 1];
typedDst[6 * i + 2] = typedSrc[4 * i + 2];
// Second triangle
typedDst[6 * i + 3] = typedSrc[4 * i + 2];
typedDst[6 * i + 4] = typedSrc[4 * i + 3];
typedDst[6 * i + 5] = typedSrc[4 * i];
}
}
// Only handle quads and triangle fan now
bool isNativePrimitiveMode(unsigned m_draw_mode)
{
switch (m_draw_mode)
{
default:
case CELL_GCM_PRIMITIVE_POINTS:
case CELL_GCM_PRIMITIVE_LINES:
case CELL_GCM_PRIMITIVE_LINE_LOOP:
case CELL_GCM_PRIMITIVE_LINE_STRIP:
case CELL_GCM_PRIMITIVE_TRIANGLES:
case CELL_GCM_PRIMITIVE_TRIANGLE_STRIP:
case CELL_GCM_PRIMITIVE_QUAD_STRIP:
case CELL_GCM_PRIMITIVE_POLYGON:
return true;
case CELL_GCM_PRIMITIVE_TRIANGLE_FAN:
case CELL_GCM_PRIMITIVE_QUADS:
return false;
}
}
size_t getIndexCount(unsigned m_draw_mode, unsigned initial_index_count)
{
// Index count
if (isNativePrimitiveMode(m_draw_mode))
return initial_index_count;
switch (m_draw_mode)
{
case CELL_GCM_PRIMITIVE_TRIANGLE_FAN:
return (initial_index_count - 2) * 3;
case CELL_GCM_PRIMITIVE_QUADS:
return (6 * initial_index_count) / 4;
default:
return 0;
}
}
void uploadIndexData(unsigned m_draw_mode, unsigned index_type, void* indexBuffer, void* bufferMap, unsigned element_count)
{
if (indexBuffer != nullptr)
{
switch (m_draw_mode)
{
case CELL_GCM_PRIMITIVE_POINTS:
case CELL_GCM_PRIMITIVE_LINES:
case CELL_GCM_PRIMITIVE_LINE_LOOP:
case CELL_GCM_PRIMITIVE_LINE_STRIP:
case CELL_GCM_PRIMITIVE_TRIANGLES:
case CELL_GCM_PRIMITIVE_TRIANGLE_STRIP:
case CELL_GCM_PRIMITIVE_QUAD_STRIP:
case CELL_GCM_PRIMITIVE_POLYGON:
{
size_t indexSize = (index_type == CELL_GCM_DRAW_INDEX_ARRAY_TYPE_32) ? 4 : 2;
memcpy(bufferMap, indexBuffer, indexSize * element_count);
return;
}
case CELL_GCM_PRIMITIVE_TRIANGLE_FAN:
switch (index_type)
{
case CELL_GCM_DRAW_INDEX_ARRAY_TYPE_32:
expandIndexedTriangleFan<unsigned int>(bufferMap, indexBuffer, element_count);
return;
case CELL_GCM_DRAW_INDEX_ARRAY_TYPE_16:
expandIndexedTriangleFan<unsigned short>(bufferMap, indexBuffer, element_count);
return;
default:
abort();
return;
}
case CELL_GCM_PRIMITIVE_QUADS:
switch (index_type)
{
case CELL_GCM_DRAW_INDEX_ARRAY_TYPE_32:
expandIndexedQuads<unsigned int>(bufferMap, indexBuffer, element_count);
return;
case CELL_GCM_DRAW_INDEX_ARRAY_TYPE_16:
expandIndexedQuads<unsigned short>(bufferMap, indexBuffer, element_count);
return;
default:
abort();
return;
}
}
}
else
{
unsigned short *typedDst = static_cast<unsigned short *>(bufferMap);
switch (m_draw_mode)
{
case CELL_GCM_PRIMITIVE_TRIANGLE_FAN:
for (unsigned i = 0; i < (element_count - 2); i++)
{
typedDst[3 * i] = 0;
typedDst[3 * i + 1] = i + 2 - 1;
typedDst[3 * i + 2] = i + 2;
}
return;
case CELL_GCM_PRIMITIVE_QUADS:
for (unsigned i = 0; i < element_count / 4; i++)
{
// First triangle
typedDst[6 * i] = 4 * i;
typedDst[6 * i + 1] = 4 * i + 1;
typedDst[6 * i + 2] = 4 * i + 2;
// Second triangle
typedDst[6 * i + 3] = 4 * i + 2;
typedDst[6 * i + 4] = 4 * i + 3;
typedDst[6 * i + 5] = 4 * i;
}
return;
}
}
}