rpcs3/rpcs3/Emu/Cell/SPUThread.cpp
Nekotekina ef6f9f6ded be_t constructor implemented, make() eliminated
be_t enums are forbidden, le_t improved, some operators cleaned.
2015-07-10 04:31:07 +03:00

1212 lines
24 KiB
C++

#include "stdafx.h"
#include "rpcs3/Ini.h"
#include "Utilities/Log.h"
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/IdManager.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h"
#include "Emu/SysCalls/ErrorCodes.h"
#include "Emu/SysCalls/lv2/sys_spu.h"
#include "Emu/SysCalls/lv2/sys_event_flag.h"
#include "Emu/SysCalls/lv2/sys_event.h"
#include "Emu/SysCalls/lv2/sys_time.h"
#include "Emu/Cell/SPUDisAsm.h"
#include "Emu/Cell/SPUThread.h"
#include "Emu/Cell/SPUDecoder.h"
#include "Emu/Cell/SPUInterpreter.h"
#include "Emu/Cell/SPUInterpreter2.h"
#include "Emu/Cell/SPURecompiler.h"
#include <cfenv>
const g_spu_imm_table_t g_spu_imm;
class spu_inter_func_list_t
{
std::array<spu_inter_func_t, 2048> funcs = {};
std::mutex m_mutex;
public:
void initialize()
{
std::lock_guard<std::mutex> lock(m_mutex);
if (funcs[0]) return; // check if already initialized
auto inter = new SPUInterpreter2;
SPUDecoder dec(*inter);
for (u32 i = 0; i < funcs.size(); i++)
{
inter->func = spu_interpreter::DEFAULT;
dec.Decode(i << 21);
funcs[i] = inter->func;
}
}
force_inline spu_inter_func_t operator [] (u32 opcode) const
{
return funcs[opcode >> 21];
}
}
g_spu_inter_func_list;
SPUThread::SPUThread(CPUThreadType type) : CPUThread(type)
{
assert(type == CPU_THREAD_SPU || type == CPU_THREAD_RAW_SPU);
Reset();
}
SPUThread::~SPUThread()
{
}
void SPUThread::Task()
{
std::fesetround(FE_TOWARDZERO);
if (m_custom_task)
{
return m_custom_task(*this);
}
if (m_dec)
{
return CPUThread::Task();
}
while (true)
{
// read opcode
const spu_opcode_t opcode = { vm::read32(PC + offset) };
// get interpreter function
const auto func = g_spu_inter_func_list[opcode.opcode];
if (m_events)
{
// process events
if (Emu.IsStopped())
{
return;
}
if (m_events & CPU_EVENT_STOP && (IsStopped() || IsPaused()))
{
m_events &= ~CPU_EVENT_STOP;
return;
}
}
// call interpreter function
func(*this, opcode);
// next instruction
//PC += 4;
NextPc(4);
}
}
void SPUThread::DoReset()
{
InitRegs();
}
void SPUThread::InitRegs()
{
memset(GPR, 0, sizeof(GPR));
FPSCR.Reset();
ch_mfc_args = {};
mfc_queue.clear();
ch_tag_mask = 0;
ch_tag_stat = {};
ch_stall_stat = {};
ch_atomic_stat = {};
ch_in_mbox.clear();
ch_out_mbox = {};
ch_out_intr_mbox = {};
snr_config = 0;
ch_snr1 = {};
ch_snr2 = {};
ch_event_mask = 0;
ch_event_stat = {};
ch_dec_start_timestamp = get_time(); // ???
ch_dec_value = 0;
run_ctrl = {};
status = {};
npc = {};
int0.clear();
int2.clear();
GPR[1]._u32[3] = 0x3FFF0; // initial stack frame pointer
}
void SPUThread::InitStack()
{
m_stack_size = 0x2000; // this value is wrong
m_stack_addr = offset + 0x40000 - m_stack_size; // stack is the part of SPU Local Storage
}
void SPUThread::CloseStack()
{
// nothing to do here
}
void SPUThread::DoRun()
{
m_dec = nullptr;
switch (auto mode = Ini.SPUDecoderMode.GetValue())
{
case 0: // original interpreter
{
m_dec = new SPUDecoder(*new SPUInterpreter(*this));
break;
}
case 1: // alternative interpreter
{
g_spu_inter_func_list.initialize(); // initialize helper table
break;
}
case 2:
{
m_dec = new SPURecompilerCore(*this);
break;
}
default:
{
LOG_ERROR(SPU, "Invalid SPU decoder mode: %d", mode);
Emu.Pause();
}
}
}
void SPUThread::DoResume()
{
}
void SPUThread::DoPause()
{
}
void SPUThread::DoStop()
{
delete m_dec;
m_dec = nullptr;
}
void SPUThread::DoClose()
{
}
void SPUThread::FastCall(u32 ls_addr)
{
// can't be called from another thread (because it doesn't make sense)
write32(0x0, 2);
auto old_PC = PC;
auto old_LR = GPR[0]._u32[3];
auto old_stack = GPR[1]._u32[3]; // only saved and restored (may be wrong)
auto old_task = decltype(m_custom_task)();
m_status = Running;
PC = ls_addr;
GPR[0]._u32[3] = 0x0;
m_custom_task.swap(old_task);
SPUThread::Task();
PC = old_PC;
GPR[0]._u32[3] = old_LR;
GPR[1]._u32[3] = old_stack;
m_custom_task.swap(old_task);
}
void SPUThread::FastStop()
{
m_status = Stopped;
m_events |= CPU_EVENT_STOP;
}
void SPUThread::FastRun()
{
m_status = Running;
Exec();
}
void SPUThread::do_dma_transfer(u32 cmd, spu_mfc_arg_t args)
{
if (cmd & (MFC_BARRIER_MASK | MFC_FENCE_MASK))
{
_mm_mfence();
}
u32 eal = vm::cast(args.ea, "ea");
if (eal >= SYS_SPU_THREAD_BASE_LOW && m_type == CPU_THREAD_SPU) // SPU Thread Group MMIO (LS and SNR)
{
const u32 index = (eal - SYS_SPU_THREAD_BASE_LOW) / SYS_SPU_THREAD_OFFSET; // thread number in group
const u32 offset = (eal - SYS_SPU_THREAD_BASE_LOW) % SYS_SPU_THREAD_OFFSET; // LS offset or MMIO register
const auto group = tg.lock();
if (group && index < group->num && group->threads[index])
{
auto& spu = static_cast<SPUThread&>(*group->threads[index]);
if (offset + args.size - 1 < 0x40000) // LS access
{
eal = spu.offset + offset; // redirect access
}
else if ((cmd & MFC_PUT_CMD) && args.size == 4 && (offset == SYS_SPU_THREAD_SNR1 || offset == SYS_SPU_THREAD_SNR2))
{
spu.write_snr(SYS_SPU_THREAD_SNR2 == offset, read32(args.lsa));
return;
}
else
{
LOG_ERROR(SPU, "do_dma_transfer(cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x): invalid MMIO offset", cmd, args.lsa, args.ea, args.tag, args.size);
throw __FUNCTION__;
}
}
else
{
LOG_ERROR(SPU, "do_dma_transfer(cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x): invalid thread type", cmd, args.lsa, args.ea, args.tag, args.size);
throw __FUNCTION__;
}
}
switch (cmd & ~(MFC_BARRIER_MASK | MFC_FENCE_MASK))
{
case MFC_PUT_CMD:
case MFC_PUTR_CMD:
{
memcpy(vm::get_ptr(eal), vm::get_ptr(offset + args.lsa), args.size);
return;
}
case MFC_GET_CMD:
{
memcpy(vm::get_ptr(offset + args.lsa), vm::get_ptr(eal), args.size);
return;
}
}
LOG_ERROR(SPU, "do_dma_transfer(cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x): invalid cmd (%s)", cmd, args.lsa, args.ea, args.tag, args.size, get_mfc_cmd_name(cmd));
throw __FUNCTION__;
}
void SPUThread::do_dma_list_cmd(u32 cmd, spu_mfc_arg_t args)
{
if (!(cmd & MFC_LIST_MASK))
{
LOG_ERROR(SPU, "do_dma_list_cmd(cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x): invalid cmd (%s)", cmd, args.lsa, args.ea, args.tag, args.size, get_mfc_cmd_name(cmd));
throw __FUNCTION__;
}
const u32 list_addr = args.ea & 0x3ffff;
const u32 list_size = args.size / 8;
args.lsa &= 0x3fff0;
struct list_element
{
be_t<u16> sb; // Stall-and-Notify bit (0x8000)
be_t<u16> ts; // List Transfer Size
be_t<u32> ea; // External Address Low
};
for (u32 i = 0; i < list_size; i++)
{
auto rec = vm::ptr<list_element>::make(offset + list_addr + i * 8);
const u32 size = rec->ts;
const u32 addr = rec->ea;
if (size)
{
spu_mfc_arg_t transfer;
transfer.ea = addr;
transfer.lsa = args.lsa | (addr & 0xf);
transfer.tag = args.tag;
transfer.size = size;
do_dma_transfer(cmd & ~MFC_LIST_MASK, transfer);
args.lsa += std::max<u32>(size, 16);
}
if (rec->sb & 0x8000)
{
ch_stall_stat.push_bit_or(1 << args.tag);
spu_mfc_arg_t stalled;
stalled.ea = (args.ea & ~0xffffffff) | (list_addr + (i + 1) * 8);
stalled.lsa = args.lsa;
stalled.tag = args.tag;
stalled.size = (list_size - i - 1) * 8;
mfc_queue.emplace_back(cmd, stalled);
return;
}
}
}
void SPUThread::process_mfc_cmd(u32 cmd)
{
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(SPU, "DMA %s: cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x", get_mfc_cmd_name(cmd), cmd, ch_mfc_args.lsa, ch_mfc_args.ea, ch_mfc_args.tag, ch_mfc_args.size);
}
switch (cmd)
{
case MFC_PUT_CMD:
case MFC_PUTB_CMD:
case MFC_PUTF_CMD:
case MFC_PUTR_CMD:
case MFC_PUTRB_CMD:
case MFC_PUTRF_CMD:
case MFC_GET_CMD:
case MFC_GETB_CMD:
case MFC_GETF_CMD:
{
do_dma_transfer(cmd, ch_mfc_args);
return;
}
case MFC_PUTL_CMD:
case MFC_PUTLB_CMD:
case MFC_PUTLF_CMD:
case MFC_PUTRL_CMD:
case MFC_PUTRLB_CMD:
case MFC_PUTRLF_CMD:
case MFC_GETL_CMD:
case MFC_GETLB_CMD:
case MFC_GETLF_CMD:
{
do_dma_list_cmd(cmd, ch_mfc_args);
return;
}
case MFC_GETLLAR_CMD: // acquire reservation
{
if (ch_mfc_args.size != 128)
{
break;
}
vm::reservation_acquire(vm::get_ptr(offset + ch_mfc_args.lsa), vm::cast(ch_mfc_args.ea), 128, [this]()
{
ch_event_stat |= SPU_EVENT_LR;
Notify();
});
ch_atomic_stat.push_uncond(MFC_GETLLAR_SUCCESS);
return;
}
case MFC_PUTLLC_CMD: // store conditionally
{
if (ch_mfc_args.size != 128)
{
break;
}
if (vm::reservation_update(vm::cast(ch_mfc_args.ea), vm::get_ptr(offset + ch_mfc_args.lsa), 128))
{
ch_atomic_stat.push_uncond(MFC_PUTLLC_SUCCESS);
}
else
{
ch_atomic_stat.push_uncond(MFC_PUTLLC_FAILURE);
}
return;
}
case MFC_PUTLLUC_CMD: // store unconditionally
case MFC_PUTQLLUC_CMD:
{
if (ch_mfc_args.size != 128)
{
break;
}
vm::reservation_op(vm::cast(ch_mfc_args.ea), 128, [this]()
{
memcpy(vm::priv_ptr(vm::cast(ch_mfc_args.ea)), vm::get_ptr(offset + ch_mfc_args.lsa), 128);
});
if (cmd == MFC_PUTLLUC_CMD)
{
ch_atomic_stat.push_uncond(MFC_PUTLLUC_SUCCESS);
}
else
{
// tag may be used here
}
return;
}
}
LOG_ERROR(SPU, "Unknown DMA %s: cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x", get_mfc_cmd_name(cmd), cmd, ch_mfc_args.lsa, ch_mfc_args.ea, ch_mfc_args.tag, ch_mfc_args.size);
throw __FUNCTION__;
}
u32 SPUThread::get_ch_count(u32 ch)
{
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(SPU, "get_ch_count(ch=%d [%s])", ch, ch < 128 ? spu_ch_name[ch] : "???");
}
switch (ch)
{
//case MFC_Cmd: return 16;
//case SPU_WrSRR0: return 1; break;
//case SPU_RdSRR0: return 1; break;
case SPU_WrOutMbox: return ch_out_mbox.get_count() ^ 1; break;
case SPU_WrOutIntrMbox: return ch_out_intr_mbox.get_count() ^ 1; break;
case SPU_RdInMbox: return ch_in_mbox.get_count(); break;
case MFC_RdTagStat: return ch_tag_stat.get_count(); break;
case MFC_RdListStallStat: return ch_stall_stat.get_count(); break;
case MFC_WrTagUpdate: return ch_tag_stat.get_count(); break; // hack
case SPU_RdSigNotify1: return ch_snr1.get_count(); break;
case SPU_RdSigNotify2: return ch_snr2.get_count(); break;
case MFC_RdAtomicStat: return ch_atomic_stat.get_count(); break;
case SPU_RdEventStat: return ch_event_stat.read_relaxed() & ch_event_mask ? 1 : 0; break;
}
LOG_ERROR(SPU, "get_ch_count(ch=%d [%s]): unknown/illegal channel", ch, ch < 128 ? spu_ch_name[ch] : "???");
throw __FUNCTION__;
}
u32 SPUThread::get_ch_value(u32 ch)
{
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(SPU, "get_ch_value(ch=%d [%s])", ch, ch < 128 ? spu_ch_name[ch] : "???");
}
switch (ch)
{
//case SPU_RdSRR0:
// value = SRR0;
// break;
case SPU_RdInMbox:
{
u32 result, count;
while (!ch_in_mbox.pop(result, count) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
if (count + 1 == 4 /* SPU_IN_MBOX_THRESHOLD */) // TODO: check this
{
int2.set(SPU_INT2_STAT_SPU_MAILBOX_THRESHOLD_INT);
}
return result;
}
case MFC_RdTagStat:
{
u32 result;
while (!ch_tag_stat.pop(result) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
return result;
}
case MFC_RdTagMask:
{
return ch_tag_mask;
}
case SPU_RdSigNotify1:
{
u32 result;
while (!ch_snr1.pop(result) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
return result;
}
case SPU_RdSigNotify2:
{
u32 result;
while (!ch_snr2.pop(result) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
return result;
}
case MFC_RdAtomicStat:
{
u32 result;
while (!ch_atomic_stat.pop(result) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
return result;
}
case MFC_RdListStallStat:
{
u32 result;
while (!ch_stall_stat.pop(result) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
return result;
}
case SPU_RdDec:
{
return ch_dec_value - (u32)(get_time() - ch_dec_start_timestamp);
}
case SPU_RdEventMask:
{
return ch_event_mask;
}
case SPU_RdEventStat:
{
u32 result;
while (!(result = ch_event_stat.read_relaxed() & ch_event_mask) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
return result;
}
case SPU_RdMachStat:
{
return 1; // hack (not isolated, interrupts enabled)
}
}
LOG_ERROR(SPU, "get_ch_value(ch=%d [%s]): unknown/illegal channel", ch, ch < 128 ? spu_ch_name[ch] : "???");
throw __FUNCTION__;
}
void SPUThread::set_ch_value(u32 ch, u32 value)
{
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(SPU, "set_ch_value(ch=%d [%s], value=0x%x)", ch, ch < 128 ? spu_ch_name[ch] : "???", value);
}
switch (ch)
{
//case SPU_WrSRR0:
// SRR0 = value & 0x3FFFC; //LSLR & ~3
// break;
case SPU_WrOutIntrMbox:
{
if (m_type == CPU_THREAD_RAW_SPU)
{
while (!ch_out_intr_mbox.push(value) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
int2.set(SPU_INT2_STAT_MAILBOX_INT);
return;
}
else
{
const u8 code = value >> 24;
if (code < 64)
{
/* ===== sys_spu_thread_send_event (used by spu_printf) ===== */
u8 spup = code & 63;
u32 data;
if (!ch_out_mbox.pop(data))
{
LOG_ERROR(SPU, "sys_spu_thread_send_event(value=0x%x, spup=%d): Out_MBox is empty", value, spup);
throw __FUNCTION__;
}
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(SPU, "sys_spu_thread_send_event(spup=%d, data0=0x%x, data1=0x%x)", spup, value & 0x00ffffff, data);
}
LV2_LOCK;
const auto queue = this->spup[spup].lock();
if (!queue)
{
LOG_WARNING(SPU, "sys_spu_thread_send_event(spup=%d, data0=0x%x, data1=0x%x): event queue not connected", spup, (value & 0x00ffffff), data);
return ch_in_mbox.push_uncond(CELL_ENOTCONN); // TODO: check error passing
}
if (queue->events.size() >= queue->size)
{
return ch_in_mbox.push_uncond(CELL_EBUSY);
}
queue->push(lv2_lock, SYS_SPU_THREAD_EVENT_USER_KEY, GetId(), ((u64)spup << 32) | (value & 0x00ffffff), data);
return ch_in_mbox.push_uncond(CELL_OK);
}
else if (code < 128)
{
/* ===== sys_spu_thread_throw_event ===== */
const u8 spup = code & 63;
u32 data;
if (!ch_out_mbox.pop(data))
{
LOG_ERROR(SPU, "sys_spu_thread_throw_event(value=0x%x, spup=%d): Out_MBox is empty", value, spup);
throw __FUNCTION__;
}
if (Ini.HLELogging.GetValue())
{
LOG_WARNING(SPU, "sys_spu_thread_throw_event(spup=%d, data0=0x%x, data1=0x%x)", spup, value & 0x00ffffff, data);
}
LV2_LOCK;
const auto queue = this->spup[spup].lock();
if (!queue)
{
LOG_WARNING(SPU, "sys_spu_thread_throw_event(spup=%d, data0=0x%x, data1=0x%x): event queue not connected", spup, (value & 0x00ffffff), data);
return;
}
// TODO: check passing spup value
if (queue->events.size() >= queue->size)
{
LOG_WARNING(SPU, "sys_spu_thread_throw_event(spup=%d, data0=0x%x, data1=0x%x) failed (queue is full)", spup, (value & 0x00ffffff), data);
return;
}
queue->push(lv2_lock, SYS_SPU_THREAD_EVENT_USER_KEY, GetId(), ((u64)spup << 32) | (value & 0x00ffffff), data);
return;
}
else if (code == 128)
{
/* ===== sys_event_flag_set_bit ===== */
u32 flag = value & 0xffffff;
u32 data;
if (!ch_out_mbox.pop(data))
{
LOG_ERROR(SPU, "sys_event_flag_set_bit(value=0x%x (flag=%d)): Out_MBox is empty", value, flag);
throw __FUNCTION__;
}
if (flag > 63)
{
LOG_ERROR(SPU, "sys_event_flag_set_bit(id=%d, value=0x%x): flag > 63", data, value, flag);
throw __FUNCTION__;
}
if (Ini.HLELogging.GetValue())
{
LOG_WARNING(SPU, "sys_event_flag_set_bit(id=%d, value=0x%x (flag=%d))", data, value, flag);
}
LV2_LOCK;
const auto ef = Emu.GetIdManager().get<lv2_event_flag_t>(data);
if (!ef)
{
return ch_in_mbox.push_uncond(CELL_ESRCH);
}
while (ef->cancelled)
{
ef->cv.wait_for(lv2_lock, std::chrono::milliseconds(1));
}
ef->flags |= 1ull << flag;
if (ef->waiters)
{
ef->cv.notify_all();
}
return ch_in_mbox.push_uncond(CELL_OK);
}
else if (code == 192)
{
/* ===== sys_event_flag_set_bit_impatient ===== */
u32 flag = value & 0xffffff;
u32 data;
if (!ch_out_mbox.pop(data))
{
LOG_ERROR(SPU, "sys_event_flag_set_bit_impatient(value=0x%x (flag=%d)): Out_MBox is empty", value, flag);
throw __FUNCTION__;
}
if (flag > 63)
{
LOG_ERROR(SPU, "sys_event_flag_set_bit_impatient(id=%d, value=0x%x): flag > 63", data, value, flag);
throw __FUNCTION__;
}
if (Ini.HLELogging.GetValue())
{
LOG_WARNING(SPU, "sys_event_flag_set_bit_impatient(id=%d, value=0x%x (flag=%d))", data, value, flag);
}
LV2_LOCK;
const auto ef = Emu.GetIdManager().get<lv2_event_flag_t>(data);
if (!ef)
{
return;
}
while (ef->cancelled)
{
ef->cv.wait_for(lv2_lock, std::chrono::milliseconds(1));
}
ef->flags |= 1ull << flag;
if (ef->waiters)
{
ef->cv.notify_all();
}
return;
}
else
{
if (ch_out_mbox.get_count())
{
LOG_ERROR(SPU, "SPU_WrOutIntrMbox: unknown data (value=0x%x); Out_MBox = 0x%x", value, ch_out_mbox.get_value());
}
else
{
LOG_ERROR(SPU, "SPU_WrOutIntrMbox: unknown data (value=0x%x)", value);
}
throw __FUNCTION__;
}
}
}
case SPU_WrOutMbox:
{
while (!ch_out_mbox.push(value) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
return;
}
case MFC_WrTagMask:
{
ch_tag_mask = value;
return;
}
case MFC_WrTagUpdate:
{
ch_tag_stat.push_uncond(ch_tag_mask); // hack
return;
}
case MFC_LSA:
{
if (value >= 0x40000)
{
break;
}
ch_mfc_args.lsa = value;
return;
}
case MFC_EAH:
{
ch_mfc_args.eah = value;
return;
}
case MFC_EAL:
{
ch_mfc_args.eal = value;
return;
}
case MFC_Size:
{
if (value > 16 * 1024)
{
break;
}
ch_mfc_args.size = (u16)value;
return;
}
case MFC_TagID:
{
if (value >= 32)
{
break;
}
ch_mfc_args.tag = (u16)value;
return;
}
case MFC_Cmd:
{
process_mfc_cmd(value);
ch_mfc_args = {}; // clear non-persistent data
return;
}
case MFC_WrListStallAck:
{
if (value >= 32)
{
break;
}
size_t processed = 0;
for (size_t i = 0; i < mfc_queue.size(); i++)
{
if (mfc_queue[i].second.tag == value)
{
do_dma_list_cmd(mfc_queue[i].first, mfc_queue[i].second);
mfc_queue[i].second.tag = 0xdead;
processed++;
}
}
while (processed)
{
for (size_t i = 0; i < mfc_queue.size(); i++)
{
if (mfc_queue[i].second.tag == 0xdead)
{
mfc_queue.erase(mfc_queue.begin() + i);
processed--;
break;
}
}
}
return;
}
case SPU_WrDec:
{
ch_dec_start_timestamp = get_time();
ch_dec_value = value;
return;
}
case SPU_WrEventMask:
{
if (value & ~(SPU_EVENT_IMPLEMENTED))
{
break;
}
ch_event_mask = value;
return;
}
case SPU_WrEventAck:
{
ch_event_stat &= ~value;
return;
}
}
LOG_ERROR(SPU, "set_ch_value(ch=%d [%s], value=0x%x): unknown/illegal channel", ch, ch < 128 ? spu_ch_name[ch] : "???", value);
throw __FUNCTION__;
}
void SPUThread::stop_and_signal(u32 code)
{
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(SPU, "stop_and_signal(code=0x%x)", code);
}
if (m_type == CPU_THREAD_RAW_SPU)
{
status.atomic_op([code](u32& status)
{
status = (status & 0xffff) | (code << 16);
status |= SPU_STATUS_STOPPED_BY_STOP;
status &= ~SPU_STATUS_RUNNING;
});
FastStop();
int2.set(SPU_INT2_STAT_SPU_STOP_AND_SIGNAL_INT);
return;
}
switch (code)
{
case 0x001:
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
return;
}
case 0x002:
{
FastStop();
return;
}
case 0x003:
{
auto iter = m_addr_to_hle_function_map.find(PC);
assert(iter != m_addr_to_hle_function_map.end());
auto return_to_caller = iter->second(*this);
if (return_to_caller)
{
SetBranch(GPR[0]._u32[3] & 0x3fffc);
}
return;
}
case 0x110:
{
/* ===== sys_spu_thread_receive_event ===== */
u32 spuq = 0;
if (!ch_out_mbox.pop(spuq))
{
LOG_ERROR(SPU, "sys_spu_thread_receive_event(): cannot read Out_MBox");
throw __FUNCTION__;
}
if (ch_in_mbox.get_count())
{
LOG_ERROR(SPU, "sys_spu_thread_receive_event(spuq=0x%x): In_MBox is not empty", spuq);
return ch_in_mbox.push_uncond(CELL_EBUSY);
}
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(SPU, "sys_spu_thread_receive_event(spuq=0x%x)", spuq);
}
LV2_LOCK;
std::shared_ptr<lv2_event_queue_t> queue;
for (auto& v : this->spuq)
{
if (spuq == v.first)
{
queue = v.second.lock();
if (queue)
{
break;
}
}
}
if (!queue)
{
return ch_in_mbox.push_uncond(CELL_EINVAL); // TODO: check error value
}
// protocol is ignored in current implementation
queue->waiters++;
while (queue->events.empty())
{
if (queue->cancelled)
{
return ch_in_mbox.push_uncond(CELL_ECANCELED);
}
if (Emu.IsStopped())
{
LOG_WARNING(SPU, "sys_spu_thread_receive_event(spuq=0x%x) aborted", spuq);
return;
}
queue->cv.wait_for(lv2_lock, std::chrono::milliseconds(1));
}
auto& event = queue->events.front();
ch_in_mbox.push_uncond(CELL_OK);
ch_in_mbox.push_uncond((u32)event.data1);
ch_in_mbox.push_uncond((u32)event.data2);
ch_in_mbox.push_uncond((u32)event.data3);
queue->events.pop_front();
queue->waiters--;
if (queue->events.size())
{
queue->cv.notify_one();
}
return;
}
case 0x101:
{
/* ===== sys_spu_thread_group_exit ===== */
u32 value;
if (!ch_out_mbox.pop(value))
{
LOG_ERROR(SPU, "sys_spu_thread_group_exit(): cannot read Out_MBox");
throw __FUNCTION__;
}
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(SPU, "sys_spu_thread_group_exit(status=0x%x)", value);
}
LV2_LOCK;
const auto group = tg.lock();
if (!group)
{
LOG_ERROR(SPU, "sys_spu_thread_group_exit(status=0x%x): invalid group", value);
throw __FUNCTION__;
}
for (auto t : group->threads)
{
if (t)
{
auto& spu = static_cast<SPUThread&>(*t);
spu.FastStop();
}
}
group->state = SPU_THREAD_GROUP_STATUS_INITIALIZED;
group->exit_status = value;
group->join_state |= SPU_TGJSF_GROUP_EXIT;
group->join_cv.notify_one();
return;
}
case 0x102:
{
/* ===== sys_spu_thread_exit ===== */
if (!ch_out_mbox.get_count())
{
LOG_ERROR(SPU, "sys_spu_thread_exit(): Out_MBox is empty");
throw __FUNCTION__;
}
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(SPU, "sys_spu_thread_exit(status=0x%x)", ch_out_mbox.get_value());
}
LV2_LOCK;
status |= SPU_STATUS_STOPPED_BY_STOP;
FastStop();
return;
}
}
if (!ch_out_mbox.get_count())
{
LOG_ERROR(SPU, "Unknown STOP code: 0x%x", code);
}
else
{
LOG_ERROR(SPU, "Unknown STOP code: 0x%x; Out_MBox=0x%x", code, ch_out_mbox.get_value());
}
throw __FUNCTION__;
}
void SPUThread::halt()
{
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(SPU, "halt()");
}
if (m_type == CPU_THREAD_RAW_SPU)
{
status.atomic_op([](u32& status)
{
status |= SPU_STATUS_STOPPED_BY_HALT;
status &= ~SPU_STATUS_RUNNING;
});
FastStop();
int2.set(SPU_INT2_STAT_SPU_HALT_OR_STEP_INT);
return;
}
status |= SPU_STATUS_STOPPED_BY_HALT;
throw "HALT";
}
spu_thread::spu_thread(u32 entry, const std::string& name, u32 stack_size, u32 prio)
{
thread = Emu.GetCPU().AddThread(CPU_THREAD_SPU);
thread->SetName(name);
thread->SetEntry(entry);
thread->SetStackSize(stack_size ? stack_size : Emu.GetPrimaryStackSize());
thread->SetPrio(prio ? prio : Emu.GetPrimaryPrio());
}