rpcs3/rpcs3/util/atomic.cpp
Nekotekina 5bd17a44c9 Add fallback implementation for waitable atomics
May improve perf on OSX/BSD
2019-08-02 18:37:23 +03:00

341 lines
7 KiB
C++

#include "atomic.hpp"
#include "Utilities/sync.h"
#include <map>
#include <mutex>
#include <condition_variable>
// Should be at least 65536, currently 2097152.
static constexpr std::uintptr_t s_hashtable_size = 1u << 21;
// TODO: it's probably better to implement more effective futex emulation for OSX/BSD here.
static atomic_t<s64> s_hashtable[s_hashtable_size];
// Max number of waiters (16383)
static constexpr s64 s_waiter_mask = 0x3fff;
// Implementation detail (remaining bits out of 32)
static constexpr s64 s_signal_mask = 0xffffffff & ~s_waiter_mask;
static inline bool ptr_cmp(const void* data, std::size_t size, u64 old_value)
{
switch (size)
{
case 1: return reinterpret_cast<const atomic_t<u8>*>(data)->load() == old_value;
case 2: return reinterpret_cast<const atomic_t<u16>*>(data)->load() == old_value;
case 4: return reinterpret_cast<const atomic_t<u32>*>(data)->load() == old_value;
case 8: return reinterpret_cast<const atomic_t<u64>*>(data)->load() == old_value;
}
return false;
}
// Fallback implementation
namespace
{
struct waiter
{
std::condition_variable cond;
void* const tls_ptr;
explicit waiter(void* tls_ptr)
: tls_ptr(tls_ptr)
{
}
};
struct waiter_map
{
std::mutex mutex;
std::multimap<const void*, waiter> list;
};
// Thread's unique node to insert without allocation
thread_local std::multimap<const void*, waiter>::node_type s_tls_waiter = []()
{
// Initialize node from a dummy container (there is no separate node constructor)
std::multimap<const void*, waiter> dummy;
return dummy.extract(dummy.emplace(nullptr, &s_tls_waiter));
}();
waiter_map& get_fallback_map(const void* ptr)
{
static waiter_map s_waiter_maps[4096];
return s_waiter_maps[std::hash<const void*>()(ptr) % std::size(s_waiter_maps)];
}
void fallback_wait(const void* data, std::size_t size, u64 old_value)
{
auto& wmap = get_fallback_map(data);
// Update node key
s_tls_waiter.key() = data;
if (std::unique_lock lock(wmap.mutex); ptr_cmp(data, size, old_value))
{
// Add node to the waiter list
std::condition_variable& cond = wmap.list.insert(std::move(s_tls_waiter))->second.cond;
// Wait until the node is returned to its TLS location
while (!s_tls_waiter)
{
cond.wait(lock);
}
}
}
void fallback_notify(waiter_map& wmap, std::multimap<const void*, waiter>::iterator found)
{
// Return notified node to its TLS location
const auto ptls = static_cast<std::multimap<const void*, waiter>::node_type*>(found->second.tls_ptr);
*ptls = wmap.list.extract(found);
ptls->mapped().cond.notify_one();
}
void fallback_notify_one(const void* data)
{
auto& wmap = get_fallback_map(data);
std::lock_guard lock(wmap.mutex);
if (auto found = wmap.list.find(data); found != wmap.list.end())
{
fallback_notify(wmap, found);
}
}
void fallback_notify_all(const void* data)
{
auto& wmap = get_fallback_map(data);
std::lock_guard lock(wmap.mutex);
for (auto it = wmap.list.lower_bound(data); it != wmap.list.end() && it->first == data;)
{
fallback_notify(wmap, it++);
}
}
}
#if !defined(_WIN32) && !defined(__linux__)
void atomic_storage_futex::wait(const void* data, std::size_t size, u64 old_value)
{
fallback_wait(data, size, old_value);
}
void atomic_storage_futex::notify_one(const void* data)
{
fallback_notify_one(data);
}
void atomic_storage_futex::notify_all(const void* data)
{
fallback_notify_all(data);
}
#else
void atomic_storage_futex::wait(const void* data, std::size_t size, u64 old_value)
{
#ifdef _WIN32
if (OptWaitOnAddress)
{
OptWaitOnAddress(const_cast<volatile void*>(data), &old_value, size, INFINITE);
return;
}
#endif
const std::intptr_t iptr = reinterpret_cast<std::intptr_t>(data);
atomic_t<s64>& entry = s_hashtable[iptr % s_hashtable_size];
u32 new_value = 0;
const auto [_, ok] = entry.fetch_op([&](s64& value)
{
if ((value & s_waiter_mask) == s_waiter_mask || (value & s_signal_mask) == s_signal_mask)
{
// Return immediately on waiter overflow or signal overflow
return false;
}
if (!value || (value >> 32) == (iptr >> 16))
{
// Store 32 highest bits of signed 48-bit pointer
value |= (iptr >> 16) * 0x1'0000'0000;
}
else
{
// Zero highest bits (collision)
value &= 0xffffffff;
}
new_value = static_cast<u32>(value += 1);
return true;
});
if (!ok)
{
return;
}
if (ptr_cmp(data, size, old_value))
{
#ifdef _WIN32
NtWaitForKeyedEvent(nullptr, &entry, false, nullptr);
return;
#else
futex(reinterpret_cast<char*>(&entry) + 4 * IS_BE_MACHINE, FUTEX_WAIT_PRIVATE, new_value, nullptr);
#endif
}
while (true)
{
// Try to decrement
const auto [prev, ok] = entry.fetch_op([&](s64& value)
{
if (value & s_waiter_mask)
{
value -= 1;
if ((value & s_waiter_mask) == 0)
{
// Reset on last waiter
value = 0;
}
return true;
}
return false;
});
if (ok)
{
break;
}
#ifdef _WIN32
static LARGE_INTEGER instant{};
if (!NtWaitForKeyedEvent(nullptr, &entry, false, &instant))
{
break;
}
#else
// Unreachable
std::terminate();
#endif
}
}
void atomic_storage_futex::notify_one(const void* data)
{
#ifdef _WIN32
if (OptWaitOnAddress)
{
OptWakeByAddressSingle(const_cast<void*>(data));
return;
}
#endif
const std::intptr_t iptr = reinterpret_cast<std::intptr_t>(data);
atomic_t<s64>& entry = s_hashtable[iptr % s_hashtable_size];
const auto [prev, ok] = entry.fetch_op([&](s64& value)
{
if (value & s_waiter_mask && (value >> 32) == (iptr >> 16))
{
#ifdef _WIN32
// Try to decrement if no collision
value -= 1;
if ((value & s_waiter_mask) == 0)
{
// Reset on last waiter
value = 0;
}
#else
if ((value & s_signal_mask) == s_signal_mask)
{
// Signal overflow, do nothing
return false;
}
value += s_signal_mask & -s_signal_mask;
#endif
return true;
}
return false;
});
if (ok)
{
#ifdef _WIN32
NtReleaseKeyedEvent(nullptr, &entry, false, nullptr);
return;
#else
futex(reinterpret_cast<char*>(&entry) + 4 * IS_BE_MACHINE, FUTEX_WAKE_PRIVATE, 1);
return;
#endif
}
if (prev)
{
// Collision, notify everything
notify_all(data);
}
}
void atomic_storage_futex::notify_all(const void* data)
{
#ifdef _WIN32
if (OptWaitOnAddress)
{
OptWakeByAddressAll(const_cast<void*>(data));
return;
}
#endif
const std::intptr_t iptr = reinterpret_cast<std::intptr_t>(data);
atomic_t<s64>& entry = s_hashtable[iptr % s_hashtable_size];
// Consume everything
#ifdef _WIN32
for (s64 count = entry.exchange(0) & s_waiter_mask; count; count--)
{
NtReleaseKeyedEvent(nullptr, &entry, false, nullptr);
}
#else
const auto [_, ok] = entry.fetch_op([&](s64& value)
{
if (value & s_waiter_mask)
{
if ((value & s_signal_mask) == s_signal_mask)
{
// Signal overflow, do nothing
return false;
}
value += s_signal_mask & -s_signal_mask;
return true;
}
return false;
});
if (ok)
{
futex(reinterpret_cast<char*>(&entry) + 4 * IS_BE_MACHINE, FUTEX_WAKE_PRIVATE, 0x7fffffff);
}
#endif
}
#endif