rpcs3/rpcs3/Emu/Memory/Memory.h
2014-08-10 07:10:44 +08:00

1244 lines
26 KiB
C++

#pragma once
#ifndef _WIN32
#include <sys/mman.h>
#endif
#include "MemoryBlock.h"
#include "Emu/SysCalls/Callback.h"
#include <vector>
/* OS X uses MAP_ANON instead of MAP_ANONYMOUS */
#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif
using std::nullptr_t;
#define safe_delete(x) do {delete (x);(x)=nullptr;} while(0)
#define safe_free(x) do {free(x);(x)=nullptr;} while(0)
enum MemoryType
{
Memory_PS3,
Memory_PSV,
Memory_PSP,
};
enum : u64
{
RAW_SPU_OFFSET = 0x0000000000100000,
RAW_SPU_BASE_ADDR = 0x00000000E0000000,
RAW_SPU_LS_OFFSET = 0x0000000000000000,
RAW_SPU_PROB_OFFSET = 0x0000000000040000,
};
class MemoryBase
{
void* m_base_addr;
std::vector<MemoryBlock*> MemoryBlocks;
u32 m_pages[0x100000000 / 4096]; // information about every page
std::recursive_mutex m_mutex;
public:
MemoryBlock* UserMemory;
DynamicMemoryBlock MainMem;
DynamicMemoryBlock PRXMem;
DynamicMemoryBlock RSXCMDMem;
DynamicMemoryBlock MmaperMem;
DynamicMemoryBlock RSXFBMem;
DynamicMemoryBlock StackMem;
MemoryBlock* RawSPUMem[(0x100000000 - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET];
VirtualMemoryBlock RSXIOMem;
struct Wrapper32LE
{
private:
void* m_base_addr;
public:
Wrapper32LE() : m_base_addr(nullptr) {}
void Write8(const u32 addr, const u8 data) { *(u8*)((u8*)m_base_addr + addr) = data; }
void Write16(const u32 addr, const u16 data) { *(u16*)((u8*)m_base_addr + addr) = data; }
void Write32(const u32 addr, const u32 data) { *(u32*)((u8*)m_base_addr + addr) = data; }
void Write64(const u32 addr, const u64 data) { *(u64*)((u8*)m_base_addr + addr) = data; }
void Write128(const u32 addr, const u128 data) { *(u128*)((u8*)m_base_addr + addr) = data; }
u8 Read8(const u32 addr) { return *(u8*)((u8*)m_base_addr + addr); }
u16 Read16(const u32 addr) { return *(u16*)((u8*)m_base_addr + addr); }
u32 Read32(const u32 addr) { return *(u32*)((u8*)m_base_addr + addr); }
u64 Read64(const u32 addr) { return *(u64*)((u8*)m_base_addr + addr); }
u128 Read128(const u32 addr) { return *(u128*)((u8*)m_base_addr + addr); }
void Init(void* real_addr) { m_base_addr = real_addr; }
};
struct : Wrapper32LE
{
DynamicMemoryBlockLE RAM;
DynamicMemoryBlockLE Userspace;
} PSV;
struct : Wrapper32LE
{
DynamicMemoryBlockLE Scratchpad;
DynamicMemoryBlockLE VRAM;
DynamicMemoryBlockLE RAM;
DynamicMemoryBlockLE Kernel;
DynamicMemoryBlockLE Userspace;
} PSP;
bool m_inited;
MemoryBase()
{
m_inited = false;
}
~MemoryBase()
{
Close();
}
void* GetBaseAddr() const
{
return m_base_addr;
}
noinline void InvalidAddress(const char* func, const u64 addr)
{
LOG_ERROR(MEMORY, "%s(): invalid address (0x%llx)", func, addr);
}
void RegisterPages(u64 addr, u32 size)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
//LOG_NOTICE(MEMORY, "RegisterPages(addr=0x%llx, size=0x%x)", addr, size);
for (u64 i = addr / 4096; i < (addr + size) / 4096; i++)
{
if (i >= sizeof(m_pages) / sizeof(m_pages[0]))
{
InvalidAddress(__FUNCTION__, i * 4096);
break;
}
if (m_pages[i])
{
LOG_ERROR(MEMORY, "Page already registered (addr=0x%llx)", i * 4096);
}
m_pages[i] = 1; // TODO: define page parameters
}
}
void UnregisterPages(u64 addr, u32 size)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
//LOG_NOTICE(MEMORY, "UnregisterPages(addr=0x%llx, size=0x%x)", addr, size);
for (u64 i = addr / 4096; i < (addr + size) / 4096; i++)
{
if (i >= sizeof(m_pages) / sizeof(m_pages[0]))
{
InvalidAddress(__FUNCTION__, i * 4096);
break;
}
if (!m_pages[i])
{
LOG_ERROR(MEMORY, "Page not registered (addr=0x%llx)", i * 4096);
}
m_pages[i] = 0; // TODO: define page parameters
}
}
static __forceinline u16 Reverse16(const u16 val)
{
return _byteswap_ushort(val);
}
static __forceinline u32 Reverse32(const u32 val)
{
return _byteswap_ulong(val);
}
static __forceinline u64 Reverse64(const u64 val)
{
return _byteswap_uint64(val);
}
static __forceinline u128 Reverse128(const u128 val)
{
u128 ret;
ret.lo = _byteswap_uint64(val.hi);
ret.hi = _byteswap_uint64(val.lo);
return ret;
}
template<int size> static __forceinline u64 ReverseData(u64 val);
template<typename T> static __forceinline T Reverse(T val)
{
return (T)ReverseData<sizeof(T)>(val);
};
template<typename T> u8* GetMemFromAddr(const T addr)
{
if ((u32)addr == addr)
{
return (u8*)GetBaseAddr() + addr;
}
else
{
InvalidAddress(__FUNCTION__, addr);
return (u8*)GetBaseAddr();
}
}
template<typename T> void* VirtualToRealAddr(const T vaddr)
{
return GetMemFromAddr<T>(vaddr);
}
u32 RealToVirtualAddr(const void* addr)
{
const u64 res = (u64)addr - (u64)GetBaseAddr();
if (res < 0x100000000)
{
return res;
}
else
{
return 0;
}
}
u32 InitRawSPU(MemoryBlock* raw_spu)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
u32 index;
for (index = 0; index < sizeof(RawSPUMem) / sizeof(RawSPUMem[0]); index++)
{
if (!RawSPUMem[index])
{
RawSPUMem[index] = raw_spu;
break;
}
}
MemoryBlocks.push_back(raw_spu->SetRange(RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * index, RAW_SPU_PROB_OFFSET));
return index;
}
void CloseRawSPU(MemoryBlock* raw_spu, const u32 num)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
for (int i = 0; i < MemoryBlocks.size(); ++i)
{
if (MemoryBlocks[i] == raw_spu)
{
MemoryBlocks.erase(MemoryBlocks.begin() + i);
break;
}
}
if (num < sizeof(RawSPUMem) / sizeof(RawSPUMem[0])) RawSPUMem[num] = nullptr;
}
void Init(MemoryType type)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if(m_inited) return;
m_inited = true;
memset(m_pages, 0, sizeof(m_pages));
memset(RawSPUMem, 0, sizeof(RawSPUMem));
#ifdef _WIN32
m_base_addr = VirtualAlloc(nullptr, 0x100000000, MEM_RESERVE, PAGE_NOACCESS);
if (!m_base_addr)
#else
m_base_addr = ::mmap(nullptr, 0x100000000, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
if (m_base_addr == (void*)-1)
#endif
{
m_base_addr = nullptr;
LOG_ERROR(MEMORY, "Initializing memory failed");
assert(0);
return;
}
else
{
LOG_NOTICE(MEMORY, "Initializing memory: m_base_addr = 0x%llx", (u64)m_base_addr);
}
switch(type)
{
case Memory_PS3:
MemoryBlocks.push_back(MainMem.SetRange(0x00010000, 0x2FFF0000));
MemoryBlocks.push_back(UserMemory = PRXMem.SetRange(0x30000000, 0x10000000));
MemoryBlocks.push_back(RSXCMDMem.SetRange(0x40000000, 0x10000000));
MemoryBlocks.push_back(MmaperMem.SetRange(0xB0000000, 0x10000000));
MemoryBlocks.push_back(RSXFBMem.SetRange(0xC0000000, 0x10000000));
MemoryBlocks.push_back(StackMem.SetRange(0xD0000000, 0x10000000));
break;
case Memory_PSV:
MemoryBlocks.push_back(PSV.RAM.SetRange(0x81000000, 0x10000000));
MemoryBlocks.push_back(UserMemory = PSV.Userspace.SetRange(0x91000000, 0x10000000));
PSV.Init(GetBaseAddr());
break;
case Memory_PSP:
MemoryBlocks.push_back(PSP.Scratchpad.SetRange(0x00010000, 0x00004000));
MemoryBlocks.push_back(PSP.VRAM.SetRange(0x04000000, 0x00200000));
MemoryBlocks.push_back(PSP.RAM.SetRange(0x08000000, 0x02000000));
MemoryBlocks.push_back(PSP.Kernel.SetRange(0x88000000, 0x00800000));
MemoryBlocks.push_back(UserMemory = PSP.Userspace.SetRange(0x08800000, 0x01800000));
PSP.Init(GetBaseAddr());
break;
}
LOG_NOTICE(MEMORY, "Memory initialized.");
}
template<typename T> bool IsGoodAddr(const T addr)
{
if ((u32)addr != addr || !m_pages[addr / 4096]) // TODO: define page parameters
{
return false;
}
else
{
return true;
}
}
template<typename T> bool IsGoodAddr(const T addr, const u32 size)
{
if ((u32)addr != addr || (u64)addr + (u64)size > 0x100000000ull)
{
return false;
}
else
{
for (u32 i = addr / 4096; i <= (addr + size - 1) / 4096; i++)
{
if (!m_pages[i]) return false; // TODO: define page parameters
}
return true;
}
}
void Close()
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if(!m_inited) return;
m_inited = false;
LOG_NOTICE(MEMORY, "Closing memory...");
for (auto block : MemoryBlocks)
{
block->Delete();
}
RSXIOMem.Delete();
MemoryBlocks.clear();
#ifdef _WIN32
if (!VirtualFree(m_base_addr, 0, MEM_RELEASE))
{
LOG_ERROR(MEMORY, "VirtualFree(0x%llx) failed", (u64)m_base_addr);
}
#else
if (::munmap(m_base_addr, 0x100000000))
{
LOG_ERROR(MEMORY, "::munmap(0x%llx) failed", (u64)m_base_addr);
}
#endif
}
//MemoryBase
template<typename T> void Write8(T addr, const u8 data)
{
if ((u32)addr == addr)
{
*(u8*)((u8*)GetBaseAddr() + addr) = data;
}
else
{
InvalidAddress(__FUNCTION__, addr);
*(u8*)GetBaseAddr() = data;
}
}
template<typename T> void Write16(T addr, const u16 data)
{
if ((u32)addr == addr)
{
*(u16*)((u8*)GetBaseAddr() + addr) = re16(data);
}
else
{
InvalidAddress(__FUNCTION__, addr);
*(u16*)GetBaseAddr() = data;
}
}
noinline void WriteMMIO32(u32 addr, const u32 data)
{
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if (RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET] &&
RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET]->Write32(addr, data))
{
return;
}
}
*(u32*)((u8*)GetBaseAddr() + addr) = re32(data); // provoke error
}
template<typename T> void Write32(T addr, const u32 data)
{
if ((u32)addr == addr)
{
if (addr < RAW_SPU_BASE_ADDR || (addr % RAW_SPU_OFFSET) < RAW_SPU_PROB_OFFSET)
{
*(u32*)((u8*)GetBaseAddr() + addr) = re32(data);
}
else
{
WriteMMIO32(addr, data);
}
}
else
{
InvalidAddress(__FUNCTION__, addr);
*(u32*)GetBaseAddr() = data;
}
}
template<typename T> void Write64(T addr, const u64 data)
{
if ((u32)addr == addr)
{
*(u64*)((u8*)GetBaseAddr() + addr) = re64(data);
}
else
{
InvalidAddress(__FUNCTION__, addr);
*(u64*)GetBaseAddr() = data;
}
}
template<typename T> void Write128(T addr, const u128 data)
{
if ((u32)addr == addr)
{
*(u128*)((u8*)GetBaseAddr() + addr) = re128(data);
}
else
{
InvalidAddress(__FUNCTION__, addr);
*(u128*)GetBaseAddr() = data;
}
}
template<typename T> u8 Read8(T addr)
{
if ((u32)addr == addr)
{
return *(u8*)((u8*)GetBaseAddr() + addr);
}
else
{
InvalidAddress(__FUNCTION__, addr);
return *(u8*)GetBaseAddr();
}
}
template<typename T> u16 Read16(T addr)
{
if ((u32)addr == addr)
{
return re16(*(u16*)((u8*)GetBaseAddr() + addr));
}
else
{
InvalidAddress(__FUNCTION__, addr);
return *(u16*)GetBaseAddr();
}
}
noinline u32 ReadMMIO32(u32 addr)
{
u32 res;
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if (RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET] &&
RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET]->Read32(addr, &res))
{
return res;
}
}
res = re32(*(u32*)((u8*)GetBaseAddr() + addr)); // provoke error
return res;
}
template<typename T> u32 Read32(T addr)
{
if ((u32)addr == addr)
{
if (addr < RAW_SPU_BASE_ADDR || (addr % RAW_SPU_OFFSET) < RAW_SPU_PROB_OFFSET)
{
return re32(*(u32*)((u8*)GetBaseAddr() + addr));
}
else
{
return ReadMMIO32(addr);
}
}
else
{
InvalidAddress(__FUNCTION__, addr);
return *(u32*)GetBaseAddr();
}
}
template<typename T> u64 Read64(T addr)
{
if ((u32)addr == addr)
{
return re64(*(u64*)((u8*)GetBaseAddr() + addr));
}
else
{
InvalidAddress(__FUNCTION__, addr);
return *(u64*)GetBaseAddr();
}
}
template<typename T> u128 Read128(T addr)
{
if ((u32)addr == addr)
{
return re128(*(u128*)((u8*)GetBaseAddr() + addr));
}
else
{
InvalidAddress(__FUNCTION__, addr);
return *(u128*)GetBaseAddr();
}
}
void ReadLeft(u8* dst, const u64 addr, const u32 size)
{
for (u32 i = 0; i < size; ++i) dst[size - 1 - i] = Read8(addr + i);
}
void WriteLeft(const u64 addr, const u32 size, const u8* src)
{
for (u32 i = 0; i < size; ++i) Write8(addr + i, src[size - 1 - i]);
}
void ReadRight(u8* dst, const u64 addr, const u32 size)
{
for (u32 i = 0; i < size; ++i) dst[i] = Read8(addr + (size - 1 - i));
}
void WriteRight(const u64 addr, const u32 size, const u8* src)
{
for (u32 i = 0; i < size; ++i) Write8(addr + (size - 1 - i), src[i]);
}
template<typename T, typename Td> void WriteData(const T addr, const Td* data)
{
memcpy(GetMemFromAddr<T>(addr), data, sizeof(Td));
}
template<typename T, typename Td> void WriteData(const T addr, const Td data)
{
*(Td*)GetMemFromAddr<T>(addr) = data;
}
template<typename T> std::string ReadString(const T addr, const u64 len)
{
std::string ret((const char *)GetMemFromAddr<T>(addr), len);
return ret;
}
template<typename T> std::string ReadString(const T addr)
{
return std::string((const char*)GetMemFromAddr<T>(addr));
}
template<typename T> void WriteString(const T addr, const std::string& str)
{
strcpy((char*)GetMemFromAddr<T>(addr), str.c_str());
}
static u64 AlignAddr(const u64 addr, const u64 align)
{
return (addr + (align-1)) & ~(align-1);
}
u32 GetUserMemTotalSize()
{
return UserMemory->GetSize();
}
u32 GetUserMemAvailSize()
{
return UserMemory->GetSize() - UserMemory->GetUsedSize();
}
u64 Alloc(const u32 size, const u32 align)
{
return UserMemory->AllocAlign(size, align);
}
bool Free(const u64 addr)
{
return UserMemory->Free(addr);
}
bool Lock(const u64 addr, const u32 size)
{
return UserMemory->Lock(addr, size);
}
bool Unlock(const u64 addr, const u32 size)
{
return UserMemory->Unlock(addr, size);
}
bool Map(const u64 dst_addr, const u64 src_addr, const u32 size)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if(IsGoodAddr(dst_addr) || !IsGoodAddr(src_addr))
{
return false;
}
MemoryBlocks.push_back((new MemoryMirror())->SetRange(GetMemFromAddr(src_addr), dst_addr, size));
LOG_WARNING(MEMORY, "memory mapped 0x%llx to 0x%llx size=0x%x", src_addr, dst_addr, size);
return true;
}
bool Unmap(const u64 addr)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
bool result = false;
for(uint i=0; i<MemoryBlocks.size(); ++i)
{
if(MemoryBlocks[i]->IsMirror())
{
if(MemoryBlocks[i]->GetStartAddr() == addr)
{
delete MemoryBlocks[i];
MemoryBlocks.erase(MemoryBlocks.begin() + i);
return true;
}
}
}
return false;
}
template<typename T> u8* operator + (const T vaddr)
{
u8* ret = GetMemFromAddr<T>(vaddr);
return ret;
}
template<typename T> u8& operator[] (const T vaddr)
{
return *(*this + vaddr);
}
};
extern MemoryBase Memory;
template<typename T, typename AT = u32>
class mem_base_t
{
protected:
AT m_addr;
public:
mem_base_t(AT addr) : m_addr(addr)
{
}
__forceinline AT GetAddr() const { return m_addr; }
__forceinline void SetAddr(AT addr) { m_addr = addr; }
__forceinline bool IsGood() const
{
return Memory.IsGoodAddr(m_addr, sizeof(T));
}
__forceinline operator bool() const
{
return m_addr != 0;
}
__forceinline bool operator != (nullptr_t) const
{
return m_addr != 0;
}
__forceinline bool operator == (nullptr_t) const
{
return m_addr == 0;
}
bool operator == (const mem_base_t& right) const { return m_addr == right.m_addr; }
bool operator != (const mem_base_t& right) const { return m_addr != right.m_addr; }
bool operator > (const mem_base_t& right) const { return m_addr > right.m_addr; }
bool operator < (const mem_base_t& right) const { return m_addr < right.m_addr; }
bool operator >= (const mem_base_t& right) const { return m_addr >= right.m_addr; }
bool operator <= (const mem_base_t& right) const { return m_addr <= right.m_addr; }
bool operator == (T* right) const { return (T*)&Memory[m_addr] == right; }
bool operator != (T* right) const { return (T*)&Memory[m_addr] != right; }
bool operator > (T* right) const { return (T*)&Memory[m_addr] > right; }
bool operator < (T* right) const { return (T*)&Memory[m_addr] < right; }
bool operator >= (T* right) const { return (T*)&Memory[m_addr] >= right; }
bool operator <= (T* right) const { return (T*)&Memory[m_addr] <= right; }
};
template<typename T, int lvl = 1, typename AT = u32>
class mem_ptr_t : public mem_base_t<AT, AT>
{
public:
mem_ptr_t(AT addr) : mem_base_t<AT, AT>(addr)
{
}
template<typename NT> operator mem_ptr_t<NT, lvl, AT>&() { return (mem_ptr_t<NT, lvl, AT>&)*this; }
template<typename NT> operator const mem_ptr_t<NT, lvl, AT>&() const { return (const mem_ptr_t<NT, lvl, AT>&)*this; }
mem_ptr_t operator++ (int)
{
mem_ptr_t ret(this->m_addr);
this->m_addr += sizeof(AT);
return ret;
}
mem_ptr_t& operator++ ()
{
this->m_addr += sizeof(AT);
return *this;
}
mem_ptr_t operator-- (int)
{
mem_ptr_t ret(this->m_addr);
this->m_addr -= sizeof(AT);
return ret;
}
mem_ptr_t& operator-- ()
{
this->m_addr -= sizeof(AT);
return *this;
}
mem_ptr_t& operator += (uint count)
{
this->m_addr += count * sizeof(AT);
return *this;
}
mem_ptr_t& operator -= (uint count)
{
this->m_addr -= count * sizeof(AT);
return *this;
}
mem_ptr_t operator + (uint count) const
{
return this->m_addr + count * sizeof(AT);
}
mem_ptr_t operator - (uint count) const
{
return this->m_addr - count * sizeof(AT);
}
__forceinline mem_ptr_t<T, lvl - 1, AT>& operator *()
{
return (mem_ptr_t<T, lvl - 1, AT>&)Memory[this->m_addr];
}
__forceinline const mem_ptr_t<T, lvl - 1, AT>& operator *() const
{
return (const mem_ptr_t<T, lvl - 1, AT>&)Memory[this->m_addr];
}
__forceinline mem_ptr_t<T, lvl - 1, AT>& operator [](uint index)
{
return (mem_ptr_t<T, lvl - 1, AT>&)Memory[this->m_addr + sizeof(AT) * index];
}
__forceinline const mem_ptr_t<T, lvl - 1, AT>& operator [](uint index) const
{
return (const mem_ptr_t<T, lvl - 1, AT>&)Memory[this->m_addr + sizeof(AT) * index];
}
bool IsGood() const
{
return (*this)->IsGood() && mem_base_t<T, AT>::IsGood();
}
__forceinline bool IsGoodAddr() const
{
return mem_base_t<T, AT>::IsGood();
}
};
template<typename T, typename AT>
class mem_ptr_t<T, 1, AT> : public mem_base_t<T, AT>
{
public:
mem_ptr_t(AT addr) : mem_base_t<T, AT>(addr)
{
}
template<typename NT> operator mem_ptr_t<NT, 1, AT>&() { return (mem_ptr_t<NT, 1, AT>&)*this; }
template<typename NT> operator const mem_ptr_t<NT, 1, AT>&() const { return (const mem_ptr_t<NT, 1, AT>&)*this; }
__forceinline T* operator -> ()
{
return (T*)&Memory[this->m_addr];
}
__forceinline const T* operator -> () const
{
return (const T*)&Memory[this->m_addr];
}
mem_ptr_t operator++ (int)
{
mem_ptr_t ret(this->m_addr);
this->m_addr += sizeof(T);
return ret;
}
mem_ptr_t& operator++ ()
{
this->m_addr += sizeof(T);
return *this;
}
mem_ptr_t operator-- (int)
{
mem_ptr_t ret(this->m_addr);
this->m_addr -= sizeof(T);
return ret;
}
mem_ptr_t& operator-- ()
{
this->m_addr -= sizeof(T);
return *this;
}
mem_ptr_t& operator += (uint count)
{
this->m_addr += count * sizeof(T);
return *this;
}
mem_ptr_t& operator -= (uint count)
{
this->m_addr -= count * sizeof(T);
return *this;
}
mem_ptr_t operator + (uint count) const
{
return this->m_addr + count * sizeof(T);
}
mem_ptr_t operator - (uint count) const
{
return this->m_addr - count * sizeof(T);
}
__forceinline T& operator *()
{
return (T&)Memory[this->m_addr];
}
__forceinline const T& operator *() const
{
return (T&)Memory[this->m_addr];
}
__forceinline T& operator [](uint index)
{
return (T&)Memory[this->m_addr + sizeof(T) * index];
}
__forceinline const T& operator [](uint index) const
{
return (const T&)Memory[this->m_addr + sizeof(T) * index];
}
};
template<typename AT>
class mem_ptr_t<void, 1, AT> : public mem_base_t<u8, AT>
{
public:
mem_ptr_t(AT addr) : mem_base_t<u8, AT>(addr)
{
}
template<typename NT> operator mem_ptr_t<NT, 1, AT>&() { return (mem_ptr_t<NT, 1, AT>&)*this; }
template<typename NT> operator const mem_ptr_t<NT, 1, AT>&() const { return (const mem_ptr_t<NT, 1, AT>&)*this; }
};
template<typename T, int lvl = 1, typename AT = u32>
class mem_beptr_t : public mem_ptr_t<T, lvl, be_t<AT>> {};
template<typename T, typename AT = u32> class mem_t : public mem_base_t<T, AT>
{
public:
mem_t(AT addr) : mem_base_t<T, AT>(addr)
{
}
mem_t& operator = (T right)
{
(be_t<T>&)Memory[this->m_addr] = right;
return *this;
}
__forceinline T GetValue()
{
return (be_t<T>&)Memory[this->m_addr];
}
operator const T() const
{
return (be_t<T>&)Memory[this->m_addr];
}
mem_t& operator += (T right) { return *this = (*this) + right; }
mem_t& operator -= (T right) { return *this = (*this) - right; }
mem_t& operator *= (T right) { return *this = (*this) * right; }
mem_t& operator /= (T right) { return *this = (*this) / right; }
mem_t& operator %= (T right) { return *this = (*this) % right; }
mem_t& operator &= (T right) { return *this = (*this) & right; }
mem_t& operator |= (T right) { return *this = (*this) | right; }
mem_t& operator ^= (T right) { return *this = (*this) ^ right; }
mem_t& operator <<= (T right) { return *this = (*this) << right; }
mem_t& operator >>= (T right) { return *this = (*this) >> right; }
};
template<typename T, typename AT = u32> class mem_list_ptr_t : public mem_base_t<T, AT>
{
public:
mem_list_ptr_t(u32 addr) : mem_base_t<T>(addr)
{
}
void operator = (T right)
{
(be_t<T>&)Memory[this->m_addr] = right;
}
u32 operator += (T right)
{
*this = right;
this->m_addr += sizeof(T);
return this->m_addr;
}
u32 AppendRawBytes(const u8 *bytes, size_t count)
{
memmove(Memory + this->m_addr, bytes, count);
this->m_addr += count;
return this->m_addr;
}
u32 Skip(const u32 offset) { return this->m_addr += offset; }
operator be_t<T>*() { return GetPtr(); }
operator void*() { return GetPtr(); }
operator be_t<T>*() const { return GetPtr(); }
operator void*() const { return GetPtr(); }
const char* GetString() const
{
return (const char*)&Memory[this->m_addr];
}
be_t<T>* GetPtr()
{
return (be_t<T>*)&Memory[this->m_addr];
}
const be_t<T>* GetPtr() const
{
return (const be_t<T>*)&Memory[this->m_addr];
}
};
class mem_class_t
{
u32 m_addr;
public:
mem_class_t(u32 addr) : m_addr(addr)
{
}
template<typename T> u32 operator += (T right)
{
mem_t<T>& m((mem_t<T>&)*this);
m = right;
m_addr += sizeof(T);
return m_addr;
}
template<typename T> operator T()
{
mem_t<T>& m((mem_t<T>&)*this);
const T ret = m;
m_addr += sizeof(T);
return ret;
}
u64 GetAddr() const { return m_addr; }
void SetAddr(const u64 addr) { m_addr = addr; }
};
template<typename T>
struct _func_arg
{
__forceinline static u64 get_value(const T& arg)
{
return arg;
}
};
template<typename T>
struct _func_arg<mem_base_t<T, u32>>
{
__forceinline static u64 get_value(const mem_base_t<T, u32> arg)
{
return arg.GetAddr();
}
};
template<typename T, int lvl> struct _func_arg<mem_ptr_t<T, lvl, u32>> : public _func_arg<mem_base_t<T, u32>> {};
template<int lvl> struct _func_arg<mem_ptr_t<void, lvl, u32>> : public _func_arg<mem_base_t<u8, u32>>{};
template<typename T> struct _func_arg<mem_list_ptr_t<T, u32>> : public _func_arg<mem_base_t<T, u32>> {};
template<typename T> struct _func_arg<mem_t<T, u32>> : public _func_arg<mem_base_t<T, u32>> {};
template<typename T>
struct _func_arg<be_t<T>>
{
__forceinline static u64 get_value(const be_t<T>& arg)
{
return arg.ToLE();
}
};
template<typename T, typename AT = u32> class mem_func_ptr_t;
template<typename T, typename AT = u32> class mem_func_beptr_t : public mem_func_ptr_t<T, be_t<AT>> {};
template<typename RT, typename AT>
class mem_func_ptr_t<RT (*)(), AT> : public mem_base_t<u64, AT>
{
__forceinline RT call_func(bool is_async) const
{
Callback cb;
cb.SetAddr(this->m_addr);
return (RT)cb.Branch(!is_async);
}
public:
__forceinline RT operator()() const
{
return call_func(false);
}
__forceinline void async() const
{
call_func(true);
}
};
template<typename AT, typename RT, typename ...T>
class mem_func_ptr_t<RT(*)(T...), AT> : public mem_base_t<u64, AT>
{
__forceinline RT call_func(bool is_async, T... args) const
{
Callback cb;
cb.SetAddr(this->m_addr);
cb.Handle(_func_arg<T>::get_value(args)...);
return (RT)cb.Branch(!is_async);
}
public:
__forceinline RT operator()(T... args) const
{
return call_func(false, args...);
}
__forceinline void async(T... args) const
{
call_func(true, args...);
}
};
template<typename T>
class MemoryAllocator
{
u32 m_addr;
u32 m_size;
T* m_ptr;
public:
MemoryAllocator(u32 size = sizeof(T), u32 align = 1)
: m_size(size)
, m_addr(Memory.Alloc(size, align))
, m_ptr((T*)&Memory[m_addr])
{
}
~MemoryAllocator()
{
Memory.Free(m_addr);
}
T* operator -> ()
{
return m_ptr;
}
T* GetPtr()
{
return m_ptr;
}
const T* GetPtr() const
{
return m_ptr;
}
const T* operator -> () const
{
return m_ptr;
}
u32 GetAddr() const
{
return m_addr;
}
u32 GetSize() const
{
return m_size;
}
bool IsGood() const
{
return Memory.IsGoodAddr(m_addr, sizeof(T));
}
template<typename T1>
operator const T1() const
{
return T1(*m_ptr);
}
template<typename T1>
operator T1()
{
return T1(*m_ptr);
}
operator const T&() const
{
return *m_ptr;
}
operator T&()
{
return *m_ptr;
}
operator const T*() const
{
return m_ptr;
}
operator T*()
{
return m_ptr;
}
T operator [](int index)
{
return *(m_ptr + index);
}
template<typename T1>
operator const mem_t<T1>() const
{
return GetAddr();
}
operator const mem_ptr_t<T>() const
{
return GetAddr();
}
template<typename NT>
NT* To(uint offset = 0)
{
return (NT*)(m_ptr + offset);
}
};
typedef mem_t<u8, u32> mem8_t;
typedef mem_t<u16, u32> mem16_t;
typedef mem_t<u32, u32> mem32_t;
typedef mem_t<u64, u32> mem64_t;
/*
typedef mem_ptr_t<be_t<u8>> mem8_ptr_t;
typedef mem_ptr_t<be_t<u16>> mem16_ptr_t;
typedef mem_ptr_t<be_t<u32>> mem32_ptr_t;
typedef mem_ptr_t<be_t<u64>> mem64_ptr_t;
typedef mem_list_ptr_t<u8> mem8_lptr_t;
typedef mem_list_ptr_t<u16> mem16_lptr_t;
typedef mem_list_ptr_t<u32> mem32_lptr_t;
typedef mem_list_ptr_t<u64> mem64_lptr_t;
*/
typedef mem_list_ptr_t<u8, u32> mem8_ptr_t;
typedef mem_list_ptr_t<u16, u32> mem16_ptr_t;
typedef mem_list_ptr_t<u32, u32> mem32_ptr_t;
typedef mem_list_ptr_t<u64, u32> mem64_ptr_t;