rpcs3/rpcs3/util/shared_ptr.hpp
Vestral e066735fe9
Some checks are pending
Generate Translation Template / Generate Translation Template (push) Waiting to run
Build RPCS3 / RPCS3 Linux ubuntu-24.04 gcc (push) Waiting to run
Build RPCS3 / RPCS3 Linux ubuntu-24.04-arm clang (push) Waiting to run
Build RPCS3 / RPCS3 Linux ubuntu-24.04 clang (push) Waiting to run
Build RPCS3 / RPCS3 Windows (push) Waiting to run
Utils fixes for ASLR
2025-04-30 02:56:23 +02:00

1190 lines
26 KiB
C++

#pragma once // No BOM and only basic ASCII in this header, or a neko will die
#include <memory>
#include <utility>
#include "atomic.hpp"
#include "bless.hpp"
namespace stx
{
template <typename To, typename From>
constexpr bool same_ptr_implicit_v = std::is_convertible_v<const volatile From*, const volatile To*> ? PtrSame<From, To> : false;
template <typename T>
class single_ptr;
template <typename T>
class shared_ptr;
template <typename T>
class atomic_ptr;
// Use 16 bits as atomic_ptr internal counter of borrowed refs
constexpr uint c_ref_mask = 0xffff;
struct shared_counter
{
// Stored destructor
atomic_t<void (*)(shared_counter* _this) noexcept> destroy{};
// Reference counter
atomic_t<usz> refs{1};
};
template <usz Size, usz Align>
struct align_filler
{
};
template <usz Size, usz Align> requires (Align > Size)
struct align_filler<Size, Align>
{
char dummy[Align - Size];
};
// Control block with data and reference counter
template <typename T>
class shared_data final : align_filler<sizeof(shared_counter), alignof(T)>
{
public:
shared_counter m_ctr{};
T m_data;
template <typename... Args>
explicit constexpr shared_data(Args&&... args) noexcept
: m_data(std::forward<Args>(args)...)
{
}
};
template <typename T>
class shared_data<T[]> final : align_filler<sizeof(shared_counter) + sizeof(usz), alignof(T)>
{
public:
usz m_count{};
shared_counter m_ctr{};
constexpr shared_data() noexcept = default;
};
struct null_ptr_t;
// Simplified unique pointer. In some cases, std::unique_ptr is preferred.
// This one is shared_ptr counterpart, it has a control block with refs and deleter.
// It's trivially convertible to shared_ptr, and back if refs == 1.
template <typename T>
class single_ptr
{
std::remove_extent_t<T>* m_ptr{};
shared_counter* d() const noexcept
{
// Shared counter, deleter, should be at negative offset
return std::launder(reinterpret_cast<shared_counter*>(reinterpret_cast<u64>(m_ptr) - sizeof(shared_counter)));
}
template <typename U>
friend class single_ptr;
template <typename U>
friend class shared_ptr;
template <typename U>
friend class atomic_ptr;
public:
using element_type = std::remove_extent_t<T>;
constexpr single_ptr() noexcept = default;
single_ptr(const single_ptr&) = delete;
// Default constructor or null_ptr should be used instead
[[deprecated("Use null_ptr")]] single_ptr(std::nullptr_t) = delete;
explicit single_ptr(shared_data<T>&, element_type* ptr) noexcept
: m_ptr(ptr)
{
}
single_ptr(single_ptr&& r) noexcept
: m_ptr(r.m_ptr)
{
r.m_ptr = nullptr;
}
template <typename U> requires same_ptr_implicit_v<T, U>
single_ptr(single_ptr<U>&& r) noexcept
{
m_ptr = r.m_ptr;
r.m_ptr = nullptr;
}
~single_ptr() noexcept
{
reset();
}
single_ptr& operator=(const single_ptr&) = delete;
[[deprecated("Use null_ptr")]] single_ptr& operator=(std::nullptr_t) = delete;
single_ptr& operator=(single_ptr&& r) noexcept
{
single_ptr(std::move(r)).swap(*this);
return *this;
}
template <typename U> requires same_ptr_implicit_v<T, U>
single_ptr& operator=(single_ptr<U>&& r) noexcept
{
single_ptr(std::move(r)).swap(*this);
return *this;
}
void reset() noexcept
{
if (m_ptr) [[likely]]
{
const auto o = d();
ensure(o->refs == 1);
o->destroy.load()(o);
m_ptr = nullptr;
}
}
void swap(single_ptr& r) noexcept
{
std::swap(m_ptr, r.m_ptr);
}
element_type* get() const noexcept
{
return m_ptr;
}
element_type& operator*() const noexcept requires (!std::is_void_v<element_type>)
{
return *m_ptr;
}
element_type* operator->() const noexcept
{
return m_ptr;
}
element_type& operator[](std::ptrdiff_t idx) const noexcept requires (!std::is_void_v<element_type> && std::is_array_v<T>)
{
return m_ptr[idx];
}
template <typename... Args> requires (std::is_invocable_v<T, Args&&...>)
decltype(auto) operator()(Args&&... args) const noexcept
{
return std::invoke(*m_ptr, std::forward<Args>(args)...);
}
explicit constexpr operator bool() const noexcept
{
return m_ptr != nullptr;
}
// "Moving" "static cast"
template <typename U> requires PtrSame<T, U>
explicit operator single_ptr<U>() && noexcept
{
single_ptr<U> r;
r.m_ptr = static_cast<decltype(r.m_ptr)>(std::exchange(m_ptr, nullptr));
return r;
}
template <typename U> requires same_ptr_implicit_v<T, U>
bool operator==(const single_ptr<U>& r) const noexcept
{
return get() == r.get();
}
};
#ifndef _MSC_VER
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Winvalid-offsetof"
#endif
template <typename T, bool Init = true, typename... Args>
requires(!std::is_unbounded_array_v<T> && (Init || std::is_array_v<T>) && (Init || !sizeof...(Args)))
static single_ptr<T> make_single(Args&&... args) noexcept
{
static_assert(offsetof(shared_data<T>, m_data) - offsetof(shared_data<T>, m_ctr) == sizeof(shared_counter));
using etype = std::remove_extent_t<T>;
shared_data<T>* ptr = nullptr;
if constexpr (!std::is_array_v<T>)
{
ptr = new shared_data<T>(std::forward<Args>(args)...);
}
else
{
ptr = new shared_data<T>;
if constexpr (Init && std::is_array_v<T>)
{
// Weird case, destroy and reinitialize every fixed array arg (fill)
for (auto& e : ptr->m_data)
{
e.~etype();
new (&e) etype(std::forward<Args>(args)...);
}
}
}
ptr->m_ctr.destroy.raw() = [](shared_counter* _this) noexcept
{
delete reinterpret_cast<shared_data<T>*>(reinterpret_cast<u64>(_this) - offsetof(shared_data<T>, m_ctr));
};
return single_ptr<T>(*ptr, &ptr->m_data);
}
template <typename T, bool Init = true, usz Align = alignof(std::remove_extent_t<T>)>
requires (std::is_unbounded_array_v<T> && std::is_default_constructible_v<std::remove_extent_t<T>>)
static single_ptr<T> make_single(usz count) noexcept
{
static_assert(sizeof(shared_data<T>) - offsetof(shared_data<T>, m_ctr) == sizeof(shared_counter));
using etype = std::remove_extent_t<T>;
const usz size = sizeof(shared_data<T>) + count * sizeof(etype);
std::byte* bytes = nullptr;
if constexpr (Align > (__STDCPP_DEFAULT_NEW_ALIGNMENT__))
{
bytes = static_cast<std::byte*>(::operator new(size, std::align_val_t{Align}));
}
else
{
bytes = new std::byte[size];
}
// Initialize control block
shared_data<T>* ptr = new (reinterpret_cast<shared_data<T>*>(bytes)) shared_data<T>();
// Initialize array next to the control block
etype* arr = reinterpret_cast<etype*>(bytes + sizeof(shared_data<T>));
if constexpr (Init)
{
std::uninitialized_value_construct_n(arr, count);
}
else
{
std::uninitialized_default_construct_n(arr, count);
}
ptr->m_count = count;
ptr->m_ctr.destroy.raw() = [](shared_counter* _this) noexcept
{
shared_data<T>* ptr = reinterpret_cast<shared_data<T>*>(reinterpret_cast<u64>(_this) - offsetof(shared_data<T>, m_ctr));
std::byte* bytes = reinterpret_cast<std::byte*>(ptr);
std::destroy_n(std::launder(reinterpret_cast<etype*>(bytes + sizeof(shared_data<T>))), ptr->m_count);
ptr->~shared_data<T>();
if constexpr (Align > (__STDCPP_DEFAULT_NEW_ALIGNMENT__))
{
::operator delete[](bytes, std::align_val_t{Align});
}
else
{
delete[] bytes;
}
};
return single_ptr<T>(*ptr, std::launder(arr));
}
template <typename T>
static single_ptr<std::remove_reference_t<T>> make_single_value(T&& value)
{
return make_single<std::remove_reference_t<T>>(std::forward<T>(value));
}
#ifndef _MSC_VER
#pragma GCC diagnostic pop
#endif
// Simplified shared pointer
template <typename T>
class shared_ptr
{
std::remove_extent_t<T>* m_ptr{};
shared_counter* d() const noexcept
{
// Shared counter, deleter, should be at negative offset
return std::launder(reinterpret_cast<shared_counter*>(reinterpret_cast<u64>(m_ptr) - sizeof(shared_counter)));
}
template <typename U>
friend class shared_ptr;
template <typename U>
friend class atomic_ptr;
public:
using element_type = std::remove_extent_t<T>;
constexpr shared_ptr() noexcept = default;
shared_ptr(const shared_ptr& r) noexcept
: m_ptr(r.m_ptr)
{
if (m_ptr)
d()->refs++;
}
// Default constructor or null_ptr constant should be used instead
[[deprecated("Use null_ptr")]] shared_ptr(std::nullptr_t) = delete;
// Not-so-aliasing constructor: emulates std::enable_shared_from_this without its overhead
template <typename Type>
friend shared_ptr<Type> make_shared_from_this(const Type* _this) noexcept;
template <typename U> requires same_ptr_implicit_v<T, U>
shared_ptr(const shared_ptr<U>& r) noexcept
{
m_ptr = r.m_ptr;
if (m_ptr)
d()->refs++;
}
shared_ptr(shared_ptr&& r) noexcept
: m_ptr(r.m_ptr)
{
r.m_ptr = nullptr;
}
template <typename U> requires same_ptr_implicit_v<T, U>
shared_ptr(shared_ptr<U>&& r) noexcept
{
m_ptr = r.m_ptr;
r.m_ptr = nullptr;
}
template <typename U> requires same_ptr_implicit_v<T, U>
shared_ptr(single_ptr<U>&& r) noexcept
{
m_ptr = r.m_ptr;
r.m_ptr = nullptr;
}
~shared_ptr() noexcept
{
reset();
}
shared_ptr& operator=(const shared_ptr& r) noexcept
{
shared_ptr(r).swap(*this);
return *this;
}
[[deprecated("Use null_ptr")]] shared_ptr& operator=(std::nullptr_t) = delete;
template <typename U> requires same_ptr_implicit_v<T, U>
shared_ptr& operator=(const shared_ptr<U>& r) noexcept
{
shared_ptr(r).swap(*this);
return *this;
}
shared_ptr& operator=(shared_ptr&& r) noexcept
{
shared_ptr(std::move(r)).swap(*this);
return *this;
}
template <typename U> requires same_ptr_implicit_v<T, U>
shared_ptr& operator=(shared_ptr<U>&& r) noexcept
{
shared_ptr(std::move(r)).swap(*this);
return *this;
}
template <typename U> requires same_ptr_implicit_v<T, U>
shared_ptr& operator=(single_ptr<U>&& r) noexcept
{
shared_ptr(std::move(r)).swap(*this);
return *this;
}
// Set to null
void reset() noexcept
{
if (m_ptr) [[unlikely]]
{
const auto o = d();
if (!--o->refs)
{
o->destroy(o);
}
m_ptr = nullptr;
}
}
// Converts to unique (single) ptr if reference is 1. Nullifies self on success.
template <typename U> requires PtrSame<T, U>
single_ptr<U> try_convert_to_single_ptr() noexcept
{
if (const auto o = m_ptr ? d() : nullptr; o && o->refs == 1u)
{
// Convert last reference to single_ptr instance.
single_ptr<U> r;
r.m_ptr = static_cast<decltype(r.m_ptr)>(std::exchange(m_ptr, nullptr));
return r;
}
return {};
}
void swap(shared_ptr& r) noexcept
{
std::swap(this->m_ptr, r.m_ptr);
}
element_type* get() const noexcept
{
return m_ptr;
}
element_type& operator*() const noexcept requires (!std::is_void_v<element_type>)
{
return *m_ptr;
}
element_type* operator->() const noexcept
{
return m_ptr;
}
element_type& operator[](std::ptrdiff_t idx) const noexcept requires (!std::is_void_v<element_type> && std::is_array_v<T>)
{
return m_ptr[idx];
}
template <typename... Args> requires (std::is_invocable_v<T, Args&&...>)
decltype(auto) operator()(Args&&... args) const noexcept
{
return std::invoke(*m_ptr, std::forward<Args>(args)...);
}
usz use_count() const noexcept
{
if (m_ptr)
{
return d()->refs;
}
else
{
return 0;
}
}
explicit constexpr operator bool() const noexcept
{
return m_ptr != nullptr;
}
// Basic "static cast" support
template <typename U> requires PtrSame<T, U>
explicit operator shared_ptr<U>() const& noexcept
{
if (m_ptr)
{
d()->refs++;
}
shared_ptr<U> r;
r.m_ptr = static_cast<decltype(r.m_ptr)>(m_ptr);
return r;
}
// "Moving" "static cast"
template <typename U> requires PtrSame<T, U>
explicit operator shared_ptr<U>() && noexcept
{
shared_ptr<U> r;
r.m_ptr = static_cast<decltype(r.m_ptr)>(std::exchange(m_ptr, nullptr));
return r;
}
template <typename U> requires same_ptr_implicit_v<T, U>
bool operator==(const shared_ptr<U>& r) const noexcept
{
return get() == r.get();
}
};
template <typename T, typename... Args>
requires(!std::is_unbounded_array_v<T> && std::is_constructible_v<std::remove_extent_t<T>, Args&& ...>)
static shared_ptr<T> make_shared(Args&&... args) noexcept
{
return make_single<T>(std::forward<Args>(args)...);
}
template <typename T, bool Init = true>
requires (std::is_unbounded_array_v<T> && std::is_default_constructible_v<std::remove_extent_t<T>>)
static shared_ptr<T> make_shared(usz count) noexcept
{
return make_single<T, Init>(count);
}
template <typename T>
requires (std::is_constructible_v<std::remove_reference_t<T>, T&&>)
static shared_ptr<std::remove_reference_t<T>> make_shared_value(T&& value) noexcept
{
return make_single_value(std::forward<T>(value));
}
// Not-so-aliasing constructor: emulates std::enable_shared_from_this without its overhead
template <typename T>
static shared_ptr<T> make_shared_from_this(const T* _this) noexcept
{
shared_ptr<T> r;
r.m_ptr = const_cast<T*>(_this);
if (!_this) [[unlikely]]
{
return r;
}
// Random checks which may fail on invalid pointer
ensure((r.d()->refs++ - 1) >> 58 == 0);
return r;
}
// Atomic simplified shared pointer
template <typename T>
class atomic_ptr
{
public:
struct fat_ptr
{
uptr ptr{};
u32 is_non_null{};
u32 ref_ctr{};
};
private:
mutable atomic_t<fat_ptr> m_val{fat_ptr{}};
static shared_counter* d(fat_ptr val) noexcept
{
return std::launder(reinterpret_cast<shared_counter*>(val.ptr - sizeof(shared_counter)));
}
shared_counter* d() const noexcept
{
return d(m_val);
}
static fat_ptr to_val(const volatile std::remove_extent_t<T>* ptr) noexcept
{
return fat_ptr{reinterpret_cast<uptr>(ptr), ptr != nullptr, 0};
}
static fat_ptr to_val(uptr ptr) noexcept
{
return fat_ptr{ptr, ptr != 0, 0};
}
static std::remove_extent_t<T>* ptr_to(fat_ptr val) noexcept
{
return reinterpret_cast<std::remove_extent_t<T>*>(val.ptr);
}
template <typename U>
friend class atomic_ptr;
// Helper struct to check if a type is an instance of a template
template <typename T1, template <typename> class Template>
struct is_instance_of : std::false_type {};
template <typename T1, template <typename> class Template>
struct is_instance_of<Template<T1>, Template> : std::true_type {};
template <typename T1>
static constexpr bool is_stx_pointer = false
|| is_instance_of<std::remove_cvref_t<T1>, shared_ptr>::value
|| is_instance_of<std::remove_cvref_t<T1>, single_ptr>::value
|| is_instance_of<std::remove_cvref_t<T1>, atomic_ptr>::value
|| std::is_same_v<std::remove_cvref_t<T1>, null_ptr_t>;
public:
using element_type = std::remove_extent_t<T>;
using shared_type = shared_ptr<T>;
constexpr atomic_ptr() noexcept = default;
// Optimized value construct
template <typename... Args> requires (true
&& sizeof...(Args) != 0
&& !(sizeof...(Args) == 1 && (is_stx_pointer<Args> || ...))
&& std::is_constructible_v<element_type, Args&&...>)
explicit atomic_ptr(Args&&... args) noexcept
{
shared_type r = make_single<T>(std::forward<Args>(args)...);
m_val.raw() = to_val(std::exchange(r.m_ptr, nullptr));
d()->refs.raw() += c_ref_mask;
}
template <typename U> requires same_ptr_implicit_v<T, U>
atomic_ptr(const shared_ptr<U>& r) noexcept
{
// Obtain a ref + as many refs as an atomic_ptr can additionally reference
if (fat_ptr rval = to_val(r.m_ptr); rval.ptr != 0)
{
m_val.raw() = rval;
d(rval)->refs += c_ref_mask + 1;
}
}
template <typename U> requires same_ptr_implicit_v<T, U>
atomic_ptr(shared_ptr<U>&& r) noexcept
{
if (fat_ptr rval = to_val(r.m_ptr); rval.ptr != 0)
{
m_val.raw() = rval;
d(rval)->refs += c_ref_mask;
}
r.m_ptr = nullptr;
}
template <typename U> requires same_ptr_implicit_v<T, U>
atomic_ptr(single_ptr<U>&& r) noexcept
{
if (fat_ptr rval = to_val(r.m_ptr); rval.ptr != 0)
{
m_val.raw() = rval;
d(rval)->refs += c_ref_mask;
}
r.m_ptr = nullptr;
}
~atomic_ptr() noexcept
{
const fat_ptr v = m_val.raw();
if (v.ptr)
{
const auto o = d(v);
if (!o->refs.sub_fetch(c_ref_mask + 1 - (v.ref_ctr & c_ref_mask)))
{
o->destroy.load()(o);
}
}
}
// Optimized value assignment
atomic_ptr& operator=(std::remove_cv_t<T> value) noexcept requires (!is_stx_pointer<T>)
{
shared_type r = make_single<T>(std::move(value));
r.d()->refs.raw() += c_ref_mask;
atomic_ptr old;
old.m_val.raw() = m_val.exchange(to_val(std::exchange(r.m_ptr, nullptr)));
return *this;
}
template <typename U> requires same_ptr_implicit_v<T, U>
atomic_ptr& operator=(const shared_ptr<U>& r) noexcept
{
store(r);
return *this;
}
template <typename U> requires same_ptr_implicit_v<T, U>
atomic_ptr& operator=(shared_ptr<U>&& r) noexcept
{
store(std::move(r));
return *this;
}
template <typename U> requires same_ptr_implicit_v<T, U>
atomic_ptr& operator=(single_ptr<U>&& r) noexcept
{
store(std::move(r));
return *this;
}
void reset() noexcept
{
store(shared_type{});
}
shared_type load() const noexcept
{
shared_type r;
// Add reference
const auto [prev, did_ref] = m_val.fetch_op([](fat_ptr& val)
{
if (val.ptr)
{
val.ref_ctr++;
return true;
}
return false;
});
if (!did_ref)
{
// Null pointer
return r;
}
// Set referenced pointer
r.m_ptr = std::launder(ptr_to(prev));
r.d()->refs++;
// Dereference if still the same pointer
const auto [_, did_deref] = m_val.fetch_op([prev = prev](fat_ptr& val)
{
if (val.ptr == prev.ptr)
{
val.ref_ctr--;
return true;
}
return false;
});
if (!did_deref)
{
// Otherwise fix ref count (atomic_ptr has been overwritten)
r.d()->refs--;
}
return r;
}
// Atomically inspect pointer with the possibility to reference it if necessary
template <typename F, typename RT = std::invoke_result_t<F, const shared_type&>>
RT peek_op(F op) const noexcept
{
shared_type r;
// Add reference
const auto [prev, did_ref] = m_val.fetch_op([](fat_ptr& val)
{
if (val.ptr)
{
val.ref_ctr++;
return true;
}
return false;
});
// Set fake unreferenced pointer
if (did_ref)
{
r.m_ptr = std::launder(ptr_to(prev));
}
// Result temp storage
[[maybe_unused]] std::conditional_t<std::is_void_v<RT>, int, RT> result;
// Invoke
if constexpr (std::is_void_v<RT>)
{
std::invoke(op, std::as_const(r));
if (!did_ref)
{
return;
}
}
else
{
result = std::invoke(op, std::as_const(r));
if (!did_ref)
{
return result;
}
}
// Dereference if still the same pointer
const auto [_, did_deref] = m_val.fetch_op([prev = prev](fat_ptr& val)
{
if (val.ptr == prev.ptr)
{
val.ref_ctr--;
return true;
}
return false;
});
if (did_deref)
{
// Deactivate fake pointer
r.m_ptr = nullptr;
}
if constexpr (std::is_void_v<RT>)
{
return;
}
else
{
return result;
}
}
// Create an object from variadic args
// If a type needs shared_type to be constructed, std::reference_wrapper can be used
template <typename... Args> requires (true
&& sizeof...(Args) != 0
&& !(sizeof...(Args) == 1 && (is_stx_pointer<Args> || ...))
&& std::is_constructible_v<element_type, Args&&...>)
void store(Args&&... args) noexcept
{
shared_type r = make_single<T>(std::forward<Args>(args)...);
r.d()->refs.raw() += c_ref_mask;
atomic_ptr old;
old.m_val.raw() = m_val.exchange(to_val(std::exchange(r.m_ptr, nullptr)));
}
void store(shared_type value) noexcept
{
if (value.m_ptr)
{
// Consume value and add refs
value.d()->refs += c_ref_mask;
}
atomic_ptr old;
old.m_val.raw() = m_val.exchange(to_val(std::exchange(value.m_ptr, nullptr)));
}
template <typename... Args> requires (true
&& sizeof...(Args) != 0
&& !(sizeof...(Args) == 1 && (is_stx_pointer<Args> || ...))
&& std::is_constructible_v<element_type, Args&...>)
[[nodiscard]] shared_type exchange(Args&&... args) noexcept
{
shared_type r = make_single<T>(std::forward<Args>(args)...);
r.d()->refs.raw() += c_ref_mask;
atomic_ptr old;
old.m_val.raw() = m_val.exchange(to_val(r.m_ptr));
old.m_val.raw().ref_ctr += 1;
r.m_ptr = std::launder(ptr_to(old.m_val));
return r;
}
[[nodiscard]] shared_type exchange(shared_type value) noexcept
{
if (value.m_ptr)
{
// Consume value and add refs
value.d()->refs += c_ref_mask;
}
atomic_ptr old;
old.m_val.raw() = m_val.exchange(to_val(value.m_ptr));
old.m_val.raw().ref_ctr += 1;
value.m_ptr = std::launder(ptr_to(old.m_val));
return value;
}
// Ineffective
[[nodiscard]] bool compare_exchange(shared_type& cmp_and_old, shared_type exch)
{
const uptr _old = reinterpret_cast<uptr>(cmp_and_old.m_ptr);
const uptr _new = reinterpret_cast<uptr>(exch.m_ptr);
if (exch.m_ptr)
{
exch.d()->refs += c_ref_mask;
}
atomic_ptr old;
const fat_ptr _val = m_val.fetch_op([&](fat_ptr& val)
{
if (val.ptr == _old)
{
// Set new value
val = to_val(_new);
}
else if (val.ptr != 0)
{
// Reference previous value
val.ref_ctr++;
}
});
if (_val.ptr == _old)
{
// Success (exch is consumed, cmp_and_old is unchanged)
if (exch.m_ptr)
{
exch.m_ptr = nullptr;
}
// Cleanup
old.m_val.raw() = _val;
return true;
}
atomic_ptr old_exch;
old_exch.m_val.raw() = to_val(std::exchange(exch.m_ptr, nullptr));
// Set to reset old cmp_and_old value
old.m_val.raw() = to_val(cmp_and_old.m_ptr);
old.m_val.raw().ref_ctr |= c_ref_mask;
if (!_val.ptr)
{
return false;
}
// Set referenced pointer
cmp_and_old.m_ptr = std::launder(ptr_to(_val));
cmp_and_old.d()->refs++;
// Dereference if still the same pointer
const auto [_, did_deref] = m_val.fetch_op([_val](fat_ptr& val)
{
if (val.ptr == _val.ptr)
{
val.ref_ctr--;
return true;
}
return false;
});
if (!did_deref)
{
// Otherwise fix ref count (atomic_ptr has been overwritten)
cmp_and_old.d()->refs--;
}
return false;
}
// Unoptimized
template <typename U> requires same_ptr_implicit_v<T, U>
shared_type compare_and_swap(const shared_ptr<U>& cmp, shared_type exch)
{
shared_type old = cmp;
static_cast<void>(compare_exchange(old, std::move(exch)));
return old;
}
// More lightweight than compare_exchange
template <typename U> requires same_ptr_implicit_v<T, U>
bool compare_and_swap_test(const shared_ptr<U>& cmp, shared_type exch)
{
const uptr _old = reinterpret_cast<uptr>(cmp.m_ptr);
const uptr _new = reinterpret_cast<uptr>(exch.m_ptr);
if (exch.m_ptr)
{
exch.d()->refs += c_ref_mask;
}
atomic_ptr old;
const auto [_val, ok] = m_val.fetch_op([&](fat_ptr& val)
{
if (val.ptr == _old)
{
// Set new value
val = to_val(_new);
return true;
}
return false;
});
if (ok)
{
// Success (exch is consumed, cmp_and_old is unchanged)
exch.m_ptr = nullptr;
old.m_val.raw() = _val;
return true;
}
// Failure (return references)
old.m_val.raw() = to_val(std::exchange(exch.m_ptr, nullptr));
return false;
}
// Unoptimized
template <typename U> requires same_ptr_implicit_v<T, U>
shared_type compare_and_swap(const single_ptr<U>& cmp, shared_type exch)
{
shared_type old = cmp;
static_cast<void>(compare_exchange(old, std::move(exch)));
return old;
}
// Supplementary
template <typename U> requires same_ptr_implicit_v<T, U>
bool compare_and_swap_test(const single_ptr<U>& cmp, shared_type exch)
{
return compare_and_swap_test(reinterpret_cast<const shared_ptr<U>&>(cmp), std::move(exch));
}
// Helper utility
void push_head(shared_type& next, shared_type exch) noexcept
{
if (exch.m_ptr) [[likely]]
{
// Add missing references first
exch.d()->refs += c_ref_mask;
}
if (next.m_ptr) [[unlikely]]
{
// Just in case
next.reset();
}
atomic_ptr old;
old.m_val.raw() = m_val.load();
do
{
// Update old head with current value
next.m_ptr = std::launder(ptr_to(old.m_val.raw()));
} while (!m_val.compare_exchange(old.m_val.raw(), to_val(exch.m_ptr)));
// This argument is consumed (moved from)
exch.m_ptr = nullptr;
if (next.m_ptr)
{
// Compensation for `next` assignment
old.m_val.raw().ref_ctr += 1;
}
}
// Simple atomic load is much more effective than load(), but it's a non-owning reference
T* observe() const noexcept
{
return std::launder(ptr_to(m_val));
}
explicit constexpr operator bool() const noexcept
{
return observe() != nullptr;
}
template <typename U> requires same_ptr_implicit_v<T, U>
bool is_equal(const shared_ptr<U>& r) const noexcept
{
return static_cast<volatile const void*>(observe()) == r.get();
}
template <typename U> requires same_ptr_implicit_v<T, U>
bool is_equal(const single_ptr<U>& r) const noexcept
{
return static_cast<volatile const void*>(observe()) == r.get();
}
void wait(std::nullptr_t, atomic_wait_timeout timeout = atomic_wait_timeout::inf)
{
utils::bless<atomic_t<u32>>(&m_val.raw().is_non_null)->wait(0, timeout);
}
void notify_one()
{
utils::bless<atomic_t<u32>>(&m_val.raw().is_non_null)->notify_one();
}
void notify_all()
{
utils::bless<atomic_t<u32>>(&m_val.raw().is_non_null)->notify_all();
}
};
// Some nullptr replacement for few cases
constexpr struct null_ptr_t
{
template <typename T>
constexpr operator single_ptr<T>() const noexcept
{
return {};
}
template <typename T>
constexpr operator shared_ptr<T>() const noexcept
{
return {};
}
template <typename T>
constexpr operator atomic_ptr<T>() const noexcept
{
return {};
}
explicit constexpr operator bool() const noexcept
{
return false;
}
} null_ptr;
}
template <typename T>
struct std::hash<stx::single_ptr<T>>
{
usz operator()(const stx::single_ptr<T>& x) const noexcept
{
return std::hash<T*>()(x.get());
}
};
template <typename T>
struct std::hash<stx::shared_ptr<T>>
{
usz operator()(const stx::shared_ptr<T>& x) const noexcept
{
return std::hash<T*>()(x.get());
}
};
using stx::null_ptr;
using stx::single_ptr;
using stx::shared_ptr;
using stx::atomic_ptr;
using stx::make_single;
using stx::make_shared;
using stx::make_single_value;
using stx::make_shared_value;