rpcs3/rpcs3/Emu/RSX/Common/BufferUtils.cpp
Nekotekina d836033212 LLVM: enable some JIT events (Intel, Perf)
Made some related adjustments.
Currently incomplete.
2021-12-26 16:41:37 +03:00

869 lines
24 KiB
C++

#include "stdafx.h"
#include "BufferUtils.h"
#include "../rsx_methods.h"
#include "../RSXThread.h"
#include "util/to_endian.hpp"
#include "util/sysinfo.hpp"
#include "util/asm.hpp"
#include "emmintrin.h"
#include "immintrin.h"
#if !defined(_MSC_VER) && defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wold-style-cast"
#endif
#if defined(_MSC_VER)
#define PLAIN_FUNC
#define SSSE3_FUNC
#define SSE4_1_FUNC
#define AVX2_FUNC
#define AVX3_FUNC
#else
#ifndef __clang__
#define PLAIN_FUNC __attribute__((optimize("no-tree-vectorize")))
#define SSSE3_FUNC __attribute__((__target__("ssse3"))) __attribute__((optimize("tree-vectorize")))
#else
#define PLAIN_FUNC
#define SSSE3_FUNC __attribute__((__target__("ssse3")))
#endif
#define SSE4_1_FUNC __attribute__((__target__("sse4.1")))
#define AVX2_FUNC __attribute__((__target__("avx2")))
#define AVX3_FUNC __attribute__((__target__("avx512f,avx512bw,avx512dq,avx512cd,avx512vl")))
#ifndef __AVX2__
using __m256i = long long __attribute__((vector_size(32)));
#endif
#endif // _MSC_VER
SSE4_1_FUNC static inline u16 sse41_hmin_epu16(__m128i x)
{
return _mm_cvtsi128_si32(_mm_minpos_epu16(x));
}
SSE4_1_FUNC static inline u16 sse41_hmax_epu16(__m128i x)
{
return ~_mm_cvtsi128_si32(_mm_minpos_epu16(_mm_xor_si128(x, _mm_set1_epi32(-1))));
}
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512CD__) && defined(__AVX512BW__)
constexpr bool s_use_ssse3 = true;
constexpr bool s_use_sse4_1 = true;
constexpr bool s_use_avx2 = true;
constexpr bool s_use_avx3 = true;
#elif defined(__AVX2__)
constexpr bool s_use_ssse3 = true;
constexpr bool s_use_sse4_1 = true;
constexpr bool s_use_avx2 = true;
constexpr bool s_use_avx3 = false;
#elif defined(__SSE41__)
constexpr bool s_use_ssse3 = true;
constexpr bool s_use_sse4_1 = true;
constexpr bool s_use_avx2 = false;
constexpr bool s_use_avx3 = false;
#elif defined(__SSSE3__)
constexpr bool s_use_ssse3 = true;
constexpr bool s_use_sse4_1 = false;
constexpr bool s_use_avx2 = false;
constexpr bool s_use_avx3 = false;
#else
const bool s_use_ssse3 = utils::has_ssse3();
const bool s_use_sse4_1 = utils::has_sse41();
const bool s_use_avx2 = utils::has_avx2();
const bool s_use_avx3 = utils::has_avx512();
#endif
const __m128i s_bswap_u32_mask = _mm_set_epi8(
0xC, 0xD, 0xE, 0xF,
0x8, 0x9, 0xA, 0xB,
0x4, 0x5, 0x6, 0x7,
0x0, 0x1, 0x2, 0x3);
const __m128i s_bswap_u16_mask = _mm_set_epi8(
0xE, 0xF, 0xC, 0xD,
0xA, 0xB, 0x8, 0x9,
0x6, 0x7, 0x4, 0x5,
0x2, 0x3, 0x0, 0x1);
namespace utils
{
template <typename T, typename U>
[[nodiscard]] auto bless(const std::span<U>& span)
{
return std::span<T>(bless<T>(span.data()), sizeof(U) * span.size() / sizeof(T));
}
}
namespace
{
template <bool Compare>
PLAIN_FUNC bool copy_data_swap_u32_naive(u32* dst, const u32* src, u32 count)
{
u32 result = 0;
#ifdef __clang__
#pragma clang loop vectorize(disable) interleave(disable) unroll(disable)
#endif
for (u32 i = 0; i < count; i++)
{
const u32 data = stx::se_storage<u32>::swap(src[i]);
if constexpr (Compare)
{
result |= data ^ dst[i];
}
dst[i] = data;
}
return static_cast<bool>(result);
}
template <bool Compare>
SSSE3_FUNC bool copy_data_swap_u32_ssse3(u32* dst, const u32* src, u32 count)
{
u32 result = 0;
#ifdef __clang__
#pragma clang loop vectorize(enable) interleave(disable) unroll(disable)
#endif
for (u32 i = 0; i < count; i++)
{
const u32 data = stx::se_storage<u32>::swap(src[i]);
if constexpr (Compare)
{
result |= data ^ dst[i];
}
dst[i] = data;
}
return static_cast<bool>(result);
}
template <bool Compare, int Size, typename RT>
void build_copy_data_swap_u32_avx3(asmjit::X86Assembler& c, std::array<asmjit::X86Gp, 4>& args, const RT& rmask, const RT& rload, const RT& rtest)
{
using namespace asmjit;
Label loop = c.newLabel();
Label tail = c.newLabel();
// Get start alignment offset
c.mov(args[3].r32(), args[0].r32());
c.and_(args[3].r32(), Size * 4 - 1);
// Load and duplicate shuffle mask
c.vbroadcasti32x4(rmask, x86::oword_ptr(uptr(&s_bswap_u32_mask)));
if (Compare)
c.vpxor(x86::xmm2, x86::xmm2, x86::xmm2);
c.or_(x86::eax, -1);
// Small data: skip to tail (ignore alignment)
c.cmp(args[2].r32(), Size);
c.jbe(tail);
// Generate mask for first iteration, adjust args using alignment offset
c.sub(args[1], args[3]);
c.shr(args[3].r32(), 2);
c.shlx(x86::eax, x86::eax, args[3].r32());
c.kmovw(x86::k1, x86::eax);
c.and_(args[0], -Size * 4);
c.add(args[2].r32(), args[3].r32());
c.k(x86::k1).z().vmovdqu32(rload, X86Mem(args[1], 0, Size * 4u));
c.vpshufb(rload, rload, rmask);
if (Compare)
c.k(x86::k1).z().vpxord(rtest, rload, X86Mem(args[0], 0, Size * 4u));
c.k(x86::k1).vmovdqa32(X86Mem(args[0], 0, Size * 4u), rload);
c.lea(args[0], x86::qword_ptr(args[0], Size * 4));
c.lea(args[1], x86::qword_ptr(args[1], Size * 4));
c.sub(args[2].r32(), Size);
c.or_(x86::eax, -1);
c.align(kAlignCode, 16);
c.bind(loop);
c.cmp(args[2].r32(), Size);
c.jbe(tail);
c.vmovdqu32(rload, X86Mem(args[1], 0, Size * 4u));
c.vpshufb(rload, rload, rmask);
if (Compare)
c.vpternlogd(rtest, rload, X86Mem(args[0], 0, Size * 4u), 0xf6); // orAxorBC
c.vmovdqa32(X86Mem(args[0], 0, Size * 4u), rload);
c.lea(args[0], x86::qword_ptr(args[0], Size * 4));
c.lea(args[1], x86::qword_ptr(args[1], Size * 4));
c.sub(args[2].r32(), Size);
c.jmp(loop);
c.bind(tail);
c.shlx(x86::eax, x86::eax, args[2].r32());
c.not_(x86::eax);
c.kmovw(x86::k1, x86::eax);
c.k(x86::k1).z().vmovdqu32(rload, X86Mem(args[1], 0, Size * 4u));
c.vpshufb(rload, rload, rmask);
if (Compare)
c.k(x86::k1).vpternlogd(rtest, rload, X86Mem(args[0], 0, Size * 4u), 0xf6);
c.k(x86::k1).vmovdqu32(X86Mem(args[0], 0, Size * 4u), rload);
if (Compare)
{
if constexpr (Size != 16)
{
c.vptest(rtest, rtest);
}
else
{
c.vptestmd(x86::k1, rtest, rtest);
c.ktestw(x86::k1, x86::k1);
}
c.setnz(x86::al);
}
#ifndef __AVX__
c.vzeroupper();
#endif
c.ret();
}
template <bool Compare>
void build_copy_data_swap_u32(asmjit::X86Assembler& c, std::array<asmjit::X86Gp, 4>& args)
{
using namespace asmjit;
if (utils::has_avx512())
{
if (utils::has_avx512_icl())
{
build_copy_data_swap_u32_avx3<Compare, 16>(c, args, x86::zmm0, x86::zmm1, x86::zmm2);
return;
}
build_copy_data_swap_u32_avx3<Compare, 8>(c, args, x86::ymm0, x86::ymm1, x86::ymm2);
return;
}
if (utils::has_ssse3())
{
c.jmp(asmjit::imm_ptr(&copy_data_swap_u32_ssse3<Compare>));
return;
}
c.jmp(asmjit::imm_ptr(&copy_data_swap_u32_naive<Compare>));
}
}
built_function<void(*)(void*, const void*, u32)> copy_data_swap_u32("copy_data_swap_u32", &build_copy_data_swap_u32<false>);
built_function<bool(*)(void*, const void*, u32)> copy_data_swap_u32_cmp("copy_data_swap_u32_cmp", &build_copy_data_swap_u32<true>);
namespace
{
template <typename T>
constexpr T index_limit()
{
return -1;
}
template <typename T>
const T& min_max(T& min, T& max, const T& value)
{
if (value < min)
min = value;
if (value > max)
max = value;
return value;
}
struct untouched_impl
{
SSE4_1_FUNC
static
std::tuple<u16, u16, u32> upload_u16_swapped_sse4_1(const void *src, void *dst, u32 count)
{
auto src_stream = static_cast<const __m128i*>(src);
auto dst_stream = static_cast<__m128i*>(dst);
__m128i min = _mm_set1_epi16(-1);
__m128i max = _mm_set1_epi16(0);
const auto iterations = count / 8;
for (unsigned n = 0; n < iterations; ++n)
{
const __m128i raw = _mm_loadu_si128(src_stream++);
const __m128i value = _mm_shuffle_epi8(raw, s_bswap_u16_mask);
max = _mm_max_epu16(max, value);
min = _mm_min_epu16(min, value);
_mm_store_si128(dst_stream++, value);
}
const u16 min_index = sse41_hmin_epu16(min);
const u16 max_index = sse41_hmax_epu16(max);
return std::make_tuple(min_index, max_index, count);
}
SSE4_1_FUNC
static
std::tuple<u32, u32, u32> upload_u32_swapped_sse4_1(const void *src, void *dst, u32 count)
{
auto src_stream = static_cast<const __m128i*>(src);
auto dst_stream = static_cast<__m128i*>(dst);
__m128i min = _mm_set1_epi32(~0u);
__m128i max = _mm_set1_epi32(0);
const auto iterations = count / 4;
for (unsigned n = 0; n < iterations; ++n)
{
const __m128i raw = _mm_loadu_si128(src_stream++);
const __m128i value = _mm_shuffle_epi8(raw, s_bswap_u32_mask);
max = _mm_max_epu32(max, value);
min = _mm_min_epu32(min, value);
_mm_store_si128(dst_stream++, value);
}
__m128i tmp = _mm_srli_si128(min, 8);
min = _mm_min_epu32(min, tmp);
tmp = _mm_srli_si128(min, 4);
min = _mm_min_epu32(min, tmp);
tmp = _mm_srli_si128(max, 8);
max = _mm_max_epu32(max, tmp);
tmp = _mm_srli_si128(max, 4);
max = _mm_max_epu32(max, tmp);
const u32 min_index = _mm_cvtsi128_si32(min);
const u32 max_index = _mm_cvtsi128_si32(max);
return std::make_tuple(min_index, max_index, count);
}
template<typename T>
static
std::tuple<T, T, u32> upload_untouched(std::span<to_be_t<const T>> src, std::span<T> dst)
{
T min_index, max_index;
u32 written;
u32 remaining = ::size32(src);
if (s_use_sse4_1 && remaining >= 32)
{
if constexpr (std::is_same<T, u32>::value)
{
const auto count = (remaining & ~0x3);
std::tie(min_index, max_index, written) = upload_u32_swapped_sse4_1(src.data(), dst.data(), count);
}
else if constexpr (std::is_same<T, u16>::value)
{
const auto count = (remaining & ~0x7);
std::tie(min_index, max_index, written) = upload_u16_swapped_sse4_1(src.data(), dst.data(), count);
}
else
{
fmt::throw_exception("Unreachable");
}
remaining -= written;
}
else
{
min_index = index_limit<T>();
max_index = 0;
written = 0;
}
while (remaining--)
{
T index = src[written];
dst[written++] = min_max(min_index, max_index, index);
}
return std::make_tuple(min_index, max_index, written);
}
};
struct primitive_restart_impl
{
AVX2_FUNC
static
std::tuple<u16, u16> upload_u16_swapped_avx2(const void *src, void *dst, u32 iterations, u16 restart_index)
{
const __m256i shuffle_mask = _mm256_set_m128i(s_bswap_u16_mask, s_bswap_u16_mask);
auto src_stream = static_cast<const __m256i*>(src);
auto dst_stream = static_cast<__m256i*>(dst);
__m256i restart = _mm256_set1_epi16(restart_index);
__m256i min = _mm256_set1_epi16(-1);
__m256i max = _mm256_set1_epi16(0);
for (unsigned n = 0; n < iterations; ++n)
{
const __m256i raw = _mm256_loadu_si256(src_stream++);
const __m256i value = _mm256_shuffle_epi8(raw, shuffle_mask);
const __m256i mask = _mm256_cmpeq_epi16(restart, value);
const __m256i value_with_min_restart = _mm256_andnot_si256(mask, value);
const __m256i value_with_max_restart = _mm256_or_si256(mask, value);
max = _mm256_max_epu16(max, value_with_min_restart);
min = _mm256_min_epu16(min, value_with_max_restart);
_mm256_store_si256(dst_stream++, value_with_max_restart);
}
__m128i tmp = _mm256_extracti128_si256(min, 1);
__m128i min2 = _mm256_castsi256_si128(min);
min2 = _mm_min_epu16(min2, tmp);
tmp = _mm256_extracti128_si256(max, 1);
__m128i max2 = _mm256_castsi256_si128(max);
max2 = _mm_max_epu16(max2, tmp);
const u16 min_index = sse41_hmin_epu16(min2);
const u16 max_index = sse41_hmax_epu16(max2);
return std::make_tuple(min_index, max_index);
}
SSE4_1_FUNC
static
std::tuple<u16, u16> upload_u16_swapped_sse4_1(const void *src, void *dst, u32 iterations, u16 restart_index)
{
auto src_stream = static_cast<const __m128i*>(src);
auto dst_stream = static_cast<__m128i*>(dst);
__m128i restart = _mm_set1_epi16(restart_index);
__m128i min = _mm_set1_epi16(-1);
__m128i max = _mm_set1_epi16(0);
for (unsigned n = 0; n < iterations; ++n)
{
const __m128i raw = _mm_loadu_si128(src_stream++);
const __m128i value = _mm_shuffle_epi8(raw, s_bswap_u16_mask);
const __m128i mask = _mm_cmpeq_epi16(restart, value);
const __m128i value_with_min_restart = _mm_andnot_si128(mask, value);
const __m128i value_with_max_restart = _mm_or_si128(mask, value);
max = _mm_max_epu16(max, value_with_min_restart);
min = _mm_min_epu16(min, value_with_max_restart);
_mm_store_si128(dst_stream++, value_with_max_restart);
}
const u16 min_index = sse41_hmin_epu16(min);
const u16 max_index = sse41_hmax_epu16(max);
return std::make_tuple(min_index, max_index);
}
SSE4_1_FUNC
static
std::tuple<u32, u32> upload_u32_swapped_sse4_1(const void *src, void *dst, u32 iterations, u32 restart_index)
{
auto src_stream = static_cast<const __m128i*>(src);
auto dst_stream = static_cast<__m128i*>(dst);
__m128i restart = _mm_set1_epi32(restart_index);
__m128i min = _mm_set1_epi32(0xffffffff);
__m128i max = _mm_set1_epi32(0);
for (unsigned n = 0; n < iterations; ++n)
{
const __m128i raw = _mm_loadu_si128(src_stream++);
const __m128i value = _mm_shuffle_epi8(raw, s_bswap_u32_mask);
const __m128i mask = _mm_cmpeq_epi32(restart, value);
const __m128i value_with_min_restart = _mm_andnot_si128(mask, value);
const __m128i value_with_max_restart = _mm_or_si128(mask, value);
max = _mm_max_epu32(max, value_with_min_restart);
min = _mm_min_epu32(min, value_with_max_restart);
_mm_store_si128(dst_stream++, value_with_max_restart);
}
__m128i tmp = _mm_srli_si128(min, 8);
min = _mm_min_epu32(min, tmp);
tmp = _mm_srli_si128(min, 4);
min = _mm_min_epu32(min, tmp);
tmp = _mm_srli_si128(max, 8);
max = _mm_max_epu32(max, tmp);
tmp = _mm_srli_si128(max, 4);
max = _mm_max_epu32(max, tmp);
const u32 min_index = _mm_cvtsi128_si32(min);
const u32 max_index = _mm_cvtsi128_si32(max);
return std::make_tuple(min_index, max_index);
}
template<typename T>
static
std::tuple<T, T, u32> upload_untouched(std::span<to_be_t<const T>> src, std::span<T> dst, T restart_index, bool skip_restart)
{
T min_index = index_limit<T>();
T max_index = 0;
u32 written = 0;
u32 length = ::size32(src);
if (length >= 32 && !skip_restart)
{
if constexpr (std::is_same<T, u16>::value)
{
if (s_use_avx2)
{
u32 iterations = length >> 4;
written = length & ~0xF;
std::tie(min_index, max_index) = upload_u16_swapped_avx2(src.data(), dst.data(), iterations, restart_index);
}
else if (s_use_sse4_1)
{
u32 iterations = length >> 3;
written = length & ~0x7;
std::tie(min_index, max_index) = upload_u16_swapped_sse4_1(src.data(), dst.data(), iterations, restart_index);
}
}
else if constexpr (std::is_same<T, u32>::value)
{
if (s_use_sse4_1)
{
u32 iterations = length >> 2;
written = length & ~0x3;
std::tie(min_index, max_index) = upload_u32_swapped_sse4_1(src.data(), dst.data(), iterations, restart_index);
}
}
else
{
fmt::throw_exception("Unreachable");
}
}
for (u32 i = written; i < length; ++i)
{
T index = src[i];
if (index == restart_index)
{
if (!skip_restart)
{
dst[written++] = index_limit<T>();
}
}
else
{
dst[written++] = min_max(min_index, max_index, index);
}
}
return std::make_tuple(min_index, max_index, written);
}
};
template<typename T>
std::tuple<T, T, u32> upload_untouched(std::span<to_be_t<const T>> src, std::span<T> dst, rsx::primitive_type draw_mode, bool is_primitive_restart_enabled, u32 primitive_restart_index)
{
if (!is_primitive_restart_enabled)
{
return untouched_impl::upload_untouched(src, dst);
}
else if constexpr (std::is_same<T, u16>::value)
{
if (primitive_restart_index > 0xffff)
{
return untouched_impl::upload_untouched(src, dst);
}
else
{
return primitive_restart_impl::upload_untouched(src, dst, static_cast<u16>(primitive_restart_index), is_primitive_disjointed(draw_mode));
}
}
else
{
return primitive_restart_impl::upload_untouched(src, dst, primitive_restart_index, is_primitive_disjointed(draw_mode));
}
}
template<typename T>
std::tuple<T, T, u32> expand_indexed_triangle_fan(std::span<to_be_t<const T>> src, std::span<T> dst, bool is_primitive_restart_enabled, u32 primitive_restart_index)
{
const T invalid_index = index_limit<T>();
T min_index = invalid_index;
T max_index = 0;
ensure((dst.size() >= 3 * (src.size() - 2)));
u32 dst_idx = 0;
bool needs_anchor = true;
T anchor = invalid_index;
T last_index = invalid_index;
for (const T index : src)
{
if (needs_anchor)
{
if (is_primitive_restart_enabled && index == primitive_restart_index)
continue;
anchor = min_max(min_index, max_index, index);
needs_anchor = false;
continue;
}
if (is_primitive_restart_enabled && index == primitive_restart_index)
{
needs_anchor = true;
last_index = invalid_index;
continue;
}
if (last_index == invalid_index)
{
//Need at least one anchor and one outer index to create a triangle
last_index = min_max(min_index, max_index, index);
continue;
}
dst[dst_idx++] = anchor;
dst[dst_idx++] = last_index;
dst[dst_idx++] = min_max(min_index, max_index, index);
last_index = index;
}
return std::make_tuple(min_index, max_index, dst_idx);
}
template<typename T>
std::tuple<T, T, u32> expand_indexed_quads(std::span<to_be_t<const T>> src, std::span<T> dst, bool is_primitive_restart_enabled, u32 primitive_restart_index)
{
T min_index = index_limit<T>();
T max_index = 0;
ensure((4 * dst.size_bytes() >= 6 * src.size_bytes()));
u32 dst_idx = 0;
u8 set_size = 0;
T tmp_indices[4];
for (const T index : src)
{
if (is_primitive_restart_enabled && index == primitive_restart_index)
{
//empty temp buffer
set_size = 0;
continue;
}
tmp_indices[set_size++] = min_max(min_index, max_index, index);
if (set_size == 4)
{
// First triangle
dst[dst_idx++] = tmp_indices[0];
dst[dst_idx++] = tmp_indices[1];
dst[dst_idx++] = tmp_indices[2];
// Second triangle
dst[dst_idx++] = tmp_indices[2];
dst[dst_idx++] = tmp_indices[3];
dst[dst_idx++] = tmp_indices[0];
set_size = 0;
}
}
return std::make_tuple(min_index, max_index, dst_idx);
}
}
// Only handle quads and triangle fan now
bool is_primitive_native(rsx::primitive_type draw_mode)
{
switch (draw_mode)
{
case rsx::primitive_type::points:
case rsx::primitive_type::lines:
case rsx::primitive_type::line_strip:
case rsx::primitive_type::triangles:
case rsx::primitive_type::triangle_strip:
case rsx::primitive_type::quad_strip:
return true;
case rsx::primitive_type::line_loop:
case rsx::primitive_type::polygon:
case rsx::primitive_type::triangle_fan:
case rsx::primitive_type::quads:
return false;
case rsx::primitive_type::invalid:
break;
}
fmt::throw_exception("Wrong primitive type");
}
bool is_primitive_disjointed(rsx::primitive_type draw_mode)
{
switch (draw_mode)
{
case rsx::primitive_type::line_loop:
case rsx::primitive_type::line_strip:
case rsx::primitive_type::polygon:
case rsx::primitive_type::quad_strip:
case rsx::primitive_type::triangle_fan:
case rsx::primitive_type::triangle_strip:
return false;
default:
return true;
}
}
u32 get_index_count(rsx::primitive_type draw_mode, u32 initial_index_count)
{
// Index count
if (is_primitive_native(draw_mode))
return initial_index_count;
switch (draw_mode)
{
case rsx::primitive_type::line_loop:
return initial_index_count + 1;
case rsx::primitive_type::polygon:
case rsx::primitive_type::triangle_fan:
return (initial_index_count - 2) * 3;
case rsx::primitive_type::quads:
return (6 * initial_index_count) / 4;
default:
return 0;
}
}
u32 get_index_type_size(rsx::index_array_type type)
{
switch (type)
{
case rsx::index_array_type::u16: return sizeof(u16);
case rsx::index_array_type::u32: return sizeof(u32);
}
fmt::throw_exception("Wrong index type");
}
void write_index_array_for_non_indexed_non_native_primitive_to_buffer(char* dst, rsx::primitive_type draw_mode, unsigned count)
{
auto typedDst = reinterpret_cast<u16*>(dst);
switch (draw_mode)
{
case rsx::primitive_type::line_loop:
for (unsigned i = 0; i < count; ++i)
typedDst[i] = i;
typedDst[count] = 0;
return;
case rsx::primitive_type::triangle_fan:
case rsx::primitive_type::polygon:
for (unsigned i = 0; i < (count - 2); i++)
{
typedDst[3 * i] = 0;
typedDst[3 * i + 1] = i + 2 - 1;
typedDst[3 * i + 2] = i + 2;
}
return;
case rsx::primitive_type::quads:
for (unsigned i = 0; i < count / 4; i++)
{
// First triangle
typedDst[6 * i] = 4 * i;
typedDst[6 * i + 1] = 4 * i + 1;
typedDst[6 * i + 2] = 4 * i + 2;
// Second triangle
typedDst[6 * i + 3] = 4 * i + 2;
typedDst[6 * i + 4] = 4 * i + 3;
typedDst[6 * i + 5] = 4 * i;
}
return;
case rsx::primitive_type::quad_strip:
case rsx::primitive_type::points:
case rsx::primitive_type::lines:
case rsx::primitive_type::line_strip:
case rsx::primitive_type::triangles:
case rsx::primitive_type::triangle_strip:
fmt::throw_exception("Native primitive type doesn't require expansion");
case rsx::primitive_type::invalid:
break;
}
fmt::throw_exception("Tried to load invalid primitive type");
}
namespace
{
template<typename T>
std::tuple<T, T, u32> write_index_array_data_to_buffer_impl(std::span<T> dst,
std::span<const be_t<T>> src,
rsx::primitive_type draw_mode, bool restart_index_enabled, u32 restart_index,
const std::function<bool(rsx::primitive_type)>& expands)
{
if (!expands(draw_mode)) [[likely]]
{
return upload_untouched<T>(src, dst, draw_mode, restart_index_enabled, restart_index);
}
switch (draw_mode)
{
case rsx::primitive_type::line_loop:
{
const auto &returnvalue = upload_untouched<T>(src, dst, draw_mode, restart_index_enabled, restart_index);
const auto index_count = dst.size_bytes() / sizeof(T);
dst[index_count] = src[0];
return returnvalue;
}
case rsx::primitive_type::polygon:
case rsx::primitive_type::triangle_fan:
{
return expand_indexed_triangle_fan<T>(src, dst, restart_index_enabled, restart_index);
}
case rsx::primitive_type::quads:
{
return expand_indexed_quads<T>(src, dst, restart_index_enabled, restart_index);
}
default:
fmt::throw_exception("Unknown draw mode (0x%x)", static_cast<u8>(draw_mode));
}
}
}
std::tuple<u32, u32, u32> write_index_array_data_to_buffer(std::span<std::byte> dst_ptr,
std::span<const std::byte> src_ptr,
rsx::index_array_type type, rsx::primitive_type draw_mode, bool restart_index_enabled, u32 restart_index,
const std::function<bool(rsx::primitive_type)>& expands)
{
switch (type)
{
case rsx::index_array_type::u16:
{
return write_index_array_data_to_buffer_impl<u16>(utils::bless<u16>(dst_ptr), utils::bless<const be_t<u16>>(src_ptr),
draw_mode, restart_index_enabled, restart_index, expands);
}
case rsx::index_array_type::u32:
{
return write_index_array_data_to_buffer_impl<u32>(utils::bless<u32>(dst_ptr), utils::bless<const be_t<u32>>(src_ptr),
draw_mode, restart_index_enabled, restart_index, expands);
}
default:
fmt::throw_exception("Unreachable");
}
}
void stream_vector(void *dst, u32 x, u32 y, u32 z, u32 w)
{
const __m128i vector = _mm_set_epi32(w, z, y, x);
_mm_stream_si128(reinterpret_cast<__m128i*>(dst), vector);
}
void stream_vector(void *dst, f32 x, f32 y, f32 z, f32 w)
{
stream_vector(dst, std::bit_cast<u32>(x), std::bit_cast<u32>(y), std::bit_cast<u32>(z), std::bit_cast<u32>(w));
}
void stream_vector_from_memory(void *dst, void *src)
{
const __m128i vector = _mm_loadu_si128(reinterpret_cast<__m128i*>(src));
_mm_stream_si128(reinterpret_cast<__m128i*>(dst), vector);
}