rpcs3/rpcs3/Emu/RSX/RSXThread.h

398 lines
9.8 KiB
C++

#pragma once
#include <stack>
#include <deque>
#include <set>
#include <mutex>
#include "GCM.h"
#include "rsx_cache.h"
#include "RSXTexture.h"
#include "RSXVertexProgram.h"
#include "RSXFragmentProgram.h"
#include "Utilities/Thread.h"
#include "Utilities/Timer.h"
#include "Utilities/geometry.h"
extern u64 get_system_time();
struct frame_capture_data
{
struct draw_state
{
std::string name;
std::pair<std::string, std::string> programs;
size_t width = 0, height = 0;
rsx::surface_color_format color_format;
std::array<std::vector<gsl::byte>, 4> color_buffer;
rsx::surface_depth_format depth_format;
std::array<std::vector<gsl::byte>, 2> depth_stencil;
rsx::index_array_type index_type;
std::vector<gsl::byte> index;
u32 vertex_count;
};
std::vector<std::pair<u32, u32> > command_queue;
std::vector<draw_state> draw_calls;
void reset()
{
command_queue.clear();
draw_calls.clear();
}
};
extern bool user_asked_for_frame_capture;
extern frame_capture_data frame_debug;
namespace rsx
{
namespace old_shaders_cache
{
enum class shader_language
{
glsl,
hlsl,
};
}
}
template<>
struct unveil<rsx::old_shaders_cache::shader_language>
{
static inline const char* get(rsx::old_shaders_cache::shader_language in)
{
switch (in)
{
case rsx::old_shaders_cache::shader_language::glsl: return "glsl";
case rsx::old_shaders_cache::shader_language::hlsl: return "hlsl";
}
return "";
}
};
namespace rsx
{
namespace limits
{
enum
{
textures_count = 16,
vertex_textures_count = 4,
vertex_count = 16,
fragment_count = 32,
tiles_count = 15,
zculls_count = 8,
color_buffers_count = 4
};
}
namespace old_shaders_cache
{
struct decompiled_shader
{
std::string code;
};
struct finalized_shader
{
u64 ucode_hash;
std::string code;
};
template<typename Type, typename KeyType = u64, typename Hasher = std::hash<KeyType>>
struct cache
{
private:
std::unordered_map<KeyType, Type, Hasher> m_entries;
public:
const Type* find(u64 key) const
{
auto found = m_entries.find(key);
if (found == m_entries.end())
return nullptr;
return &found->second;
}
void insert(KeyType key, const Type &shader)
{
m_entries.insert({ key, shader });
}
};
struct shaders_cache
{
cache<decompiled_shader> decompiled_fragment_shaders;
cache<decompiled_shader> decompiled_vertex_shaders;
cache<finalized_shader> finailized_fragment_shaders;
cache<finalized_shader> finailized_vertex_shaders;
void load(const std::string &path, shader_language lang);
void load(shader_language lang);
static std::string path_to_root();
};
}
u32 get_vertex_type_size_on_host(vertex_base_type type, u32 size);
u32 get_address(u32 offset, u32 location);
struct tiled_region
{
u32 address;
u32 base;
GcmTileInfo *tile;
u8 *ptr;
void write(const void *src, u32 width, u32 height, u32 pitch);
void read(void *dst, u32 width, u32 height, u32 pitch);
};
struct surface_info
{
u8 log2height;
u8 log2width;
surface_antialiasing antialias;
surface_depth_format depth_format;
surface_color_format color_format;
u32 width;
u32 height;
u32 format;
void unpack(u32 surface_format)
{
format = surface_format;
log2height = surface_format >> 24;
log2width = (surface_format >> 16) & 0xff;
antialias = to_surface_antialiasing((surface_format >> 12) & 0xf);
depth_format = to_surface_depth_format((surface_format >> 5) & 0x7);
color_format = to_surface_color_format(surface_format & 0x1f);
width = 1 << (u32(log2width) + 1);
height = 1 << (u32(log2width) + 1);
}
};
struct data_array_format_info
{
u16 frequency = 0;
u8 stride = 0;
u8 size = 0;
vertex_base_type type = vertex_base_type::f;
void unpack_array(u32 data_array_format)
{
frequency = data_array_format >> 16;
stride = (data_array_format >> 8) & 0xff;
size = (data_array_format >> 4) & 0xf;
type = to_vertex_base_type(data_array_format & 0xf);
}
};
enum class draw_command
{
array,
inlined_array,
indexed,
};
class thread : public named_thread
{
protected:
std::stack<u32> m_call_stack;
public:
old_shaders_cache::shaders_cache shaders_cache;
rsx::programs_cache programs_cache;
CellGcmControl* ctrl = nullptr;
Timer timer_sync;
GcmTileInfo tiles[limits::tiles_count];
GcmZcullInfo zculls[limits::zculls_count];
rsx::texture textures[limits::textures_count];
rsx::vertex_texture vertex_textures[limits::vertex_textures_count];
/**
* RSX can sources vertex attributes from 2 places:
* - Immediate values passed by NV4097_SET_VERTEX_DATA*_M + ARRAY_ID write.
* For a given ARRAY_ID the last command of this type defines the actual type of the immediate value.
* Since there can be only a single value per ARRAY_ID passed this way, all vertex in the draw call
* shares it.
* - Vertex array values passed by offset/stride/size/format description.
*
* A given ARRAY_ID can have both an immediate value and a vertex array enabled at the same time
* (See After Burner Climax intro cutscene). In such case the vertex array has precedence over the
* immediate value. As soon as the vertex array is disabled (size set to 0) the immediate value
* must be used if the vertex attrib mask request it.
*
* Note that behavior when both vertex array and immediate value system are disabled but vertex attrib mask
* request inputs is unknow.
*/
data_array_format_info register_vertex_info[limits::vertex_count];
std::vector<u8> register_vertex_data[limits::vertex_count];
data_array_format_info vertex_arrays_info[limits::vertex_count];
u32 vertex_draw_count = 0;
std::unordered_map<u32, color4_base<f32>> transform_constants;
/**
* Stores the first and count argument from draw/draw indexed parameters between begin/end clauses.
*/
std::vector<std::pair<u32, u32> > first_count_commands;
// Constant stored for whole frame
std::unordered_map<u32, color4f> local_transform_constants;
u32 transform_program[512 * 4] = {};
bool capture_current_frame = false;
void capture_frame(const std::string &name);
public:
u32 ioAddress, ioSize;
int flip_status;
int flip_mode;
int debug_level;
int frequency_mode;
u32 tiles_addr;
u32 zculls_addr;
vm::ps3::ptr<CellGcmDisplayInfo> gcm_buffers;
u32 gcm_buffers_count;
u32 gcm_current_buffer;
u32 ctxt_addr;
u32 label_addr;
rsx::draw_command draw_command;
primitive_type draw_mode;
u32 local_mem_addr, main_mem_addr;
bool strict_ordering[0x1000];
bool draw_inline_vertex_array;
std::vector<u32> inline_vertex_array;
bool m_rtts_dirty;
bool m_transform_constants_dirty;
bool m_textures_dirty[16];
protected:
std::array<u32, 4> get_color_surface_addresses() const;
u32 get_zeta_surface_address() const;
RSXVertexProgram get_current_vertex_program() const;
RSXFragmentProgram get_current_fragment_program() const;
public:
u32 draw_array_count;
u32 draw_array_first;
double fps_limit = 59.94;
public:
u64 last_flip_time;
vm::ps3::ptr<void(u32)> flip_handler = vm::null;
vm::ps3::ptr<void(u32)> user_handler = vm::null;
vm::ps3::ptr<void(u32)> vblank_handler = vm::null;
u64 vblank_count;
public:
std::set<u32> m_used_gcm_commands;
protected:
thread();
virtual ~thread();
virtual void on_task() override;
public:
virtual std::string get_name() const override;
virtual void on_init() override {} // disable start() (TODO)
virtual void on_stop() override {} // disable join()
virtual void begin();
virtual void end();
virtual void on_init_rsx() = 0;
virtual void on_init_thread() = 0;
virtual bool do_method(u32 cmd, u32 value) { return false; }
virtual void flip(int buffer) = 0;
virtual u64 timestamp() const;
virtual bool on_access_violation(u32 address, bool is_writing) { return false; }
private:
std::mutex m_mtx_task;
struct internal_task_entry
{
std::function<bool()> callback;
//std::promise<void> promise;
internal_task_entry(std::function<bool()> callback) : callback(callback)
{
}
};
std::deque<internal_task_entry> m_internal_tasks;
void do_internal_task();
public:
//std::future<void> add_internal_task(std::function<bool()> callback);
//void invoke(std::function<bool()> callback);
/**
* Fill buffer with 4x4 scale offset matrix.
* Vertex shader's position is to be multiplied by this matrix.
* if is_d3d is set, the matrix is modified to use d3d convention.
*/
void fill_scale_offset_data(void *buffer, bool is_d3d = true) const;
/**
* Fill buffer with vertex program constants.
* Buffer must be at least 512 float4 wide.
*/
void fill_vertex_program_constants_data(void *buffer);
/**
* Write inlined array data to buffer.
* The storage of inlined data looks different from memory stored arrays.
* There is no swapping required except for 4 u8 (according to Bleach Soul Resurection)
*/
void write_inline_array_to_buffer(void *dst_buffer);
/**
* Copy rtt values to buffer.
* TODO: It's more efficient to combine multiple call of this function into one.
*/
virtual std::array<std::vector<gsl::byte>, 4> copy_render_targets_to_memory() {
return std::array<std::vector<gsl::byte>, 4>();
};
/**
* Copy depth and stencil content to buffers.
* TODO: It's more efficient to combine multiple call of this function into one.
*/
virtual std::array<std::vector<gsl::byte>, 2> copy_depth_stencil_buffer_to_memory() {
return std::array<std::vector<gsl::byte>, 2>();
};
virtual std::pair<std::string, std::string> get_programs() const { return std::make_pair("", ""); };
struct raw_program get_raw_program() const;
public:
void reset();
void init(const u32 ioAddress, const u32 ioSize, const u32 ctrlAddress, const u32 localAddress);
tiled_region get_tiled_address(u32 offset, u32 location);
GcmTileInfo *find_tile(u32 offset, u32 location);
u32 ReadIO32(u32 addr);
void WriteIO32(u32 addr, u32 value);
};
}