rpcs3/rpcs3/Emu/RSX/VK/VKTextureCache.cpp
kd-11 d0a824996b vk: Add basic support for FSR 1.0
- Only implemented for image upscaling.
- Disabled by default. Emulators cannot ensure upscalers are injected at the right rendering step.
- GUI integration not implemented.
2021-08-06 17:18:48 +03:00

1328 lines
43 KiB
C++

#include "stdafx.h"
#include "VKGSRender.h"
#include "VKTextureCache.h"
#include "VKCompute.h"
#include "util/asm.hpp"
namespace vk
{
void cached_texture_section::dma_transfer(vk::command_buffer& cmd, vk::image* src, const areai& src_area, const utils::address_range& valid_range, u32 pitch)
{
ensure(src->samples() == 1);
if (!m_device)
{
m_device = &cmd.get_command_pool().get_owner();
}
if (dma_fence)
{
// NOTE: This can be reached if previously synchronized, or a special path happens.
// If a hard flush occurred while this surface was flush_always the cache would have reset its protection afterwards.
// DMA resource would still be present but already used to flush previously.
vk::get_resource_manager()->dispose(dma_fence);
}
if (vk::is_renderpass_open(cmd))
{
vk::end_renderpass(cmd);
}
src->push_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
const auto internal_bpp = vk::get_format_texel_width(src->format());
const auto transfer_width = static_cast<u32>(src_area.width());
const auto transfer_height = static_cast<u32>(src_area.height());
real_pitch = internal_bpp * transfer_width;
rsx_pitch = pitch;
const bool require_format_conversion = !!(src->aspect() & VK_IMAGE_ASPECT_STENCIL_BIT) || src->format() == VK_FORMAT_D32_SFLOAT;
if (require_format_conversion || pack_unpack_swap_bytes)
{
const auto section_length = valid_range.length();
const auto transfer_pitch = real_pitch;
const auto task_length = transfer_pitch * src_area.height();
const auto working_buffer_length = calculate_working_buffer_size(task_length, src->aspect());
auto working_buffer = vk::get_scratch_buffer(working_buffer_length);
auto final_mapping = vk::map_dma(valid_range.start, section_length);
VkBufferImageCopy region = {};
region.imageSubresource = { src->aspect(), 0, 0, 1 };
region.imageOffset = { src_area.x1, src_area.y1, 0 };
region.imageExtent = { transfer_width, transfer_height, 1 };
vk::copy_image_to_buffer(cmd, src, working_buffer, region, (require_format_conversion && pack_unpack_swap_bytes));
// NOTE: For depth/stencil formats, copying to buffer and byteswap are combined into one step above
if (pack_unpack_swap_bytes && !require_format_conversion)
{
const auto texel_layout = vk::get_format_element_size(src->format());
const auto elem_size = texel_layout.first;
vk::cs_shuffle_base* shuffle_kernel;
if (elem_size == 2)
{
shuffle_kernel = vk::get_compute_task<vk::cs_shuffle_16>();
}
else if (elem_size == 4)
{
shuffle_kernel = vk::get_compute_task<vk::cs_shuffle_32>();
}
else
{
ensure(get_context() == rsx::texture_upload_context::dma);
shuffle_kernel = nullptr;
}
if (shuffle_kernel)
{
vk::insert_buffer_memory_barrier(cmd, working_buffer->value, 0, task_length,
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT);
shuffle_kernel->run(cmd, working_buffer, task_length);
vk::insert_buffer_memory_barrier(cmd, working_buffer->value, 0, task_length,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT);
}
}
if (rsx_pitch == real_pitch) [[likely]]
{
VkBufferCopy copy = {};
copy.dstOffset = final_mapping.first;
copy.size = section_length;
vkCmdCopyBuffer(cmd, working_buffer->value, final_mapping.second->value, 1, &copy);
}
else
{
if (context != rsx::texture_upload_context::dma)
{
// Partial load for the bits outside the existing image
// NOTE: A true DMA section would have been prepped beforehand
// TODO: Parial range load/flush
vk::load_dma(valid_range.start, section_length);
}
std::vector<VkBufferCopy> copy;
copy.reserve(transfer_height);
u32 dst_offset = final_mapping.first;
u32 src_offset = 0;
for (unsigned row = 0; row < transfer_height; ++row)
{
copy.push_back({ src_offset, dst_offset, transfer_pitch });
src_offset += real_pitch;
dst_offset += rsx_pitch;
}
vkCmdCopyBuffer(cmd, working_buffer->value, final_mapping.second->value, transfer_height, copy.data());
}
}
else
{
VkBufferImageCopy region = {};
region.bufferRowLength = (rsx_pitch / internal_bpp);
region.imageSubresource = { src->aspect(), 0, 0, 1 };
region.imageOffset = { src_area.x1, src_area.y1, 0 };
region.imageExtent = { transfer_width, transfer_height, 1 };
auto mapping = vk::map_dma(valid_range.start, valid_range.length());
region.bufferOffset = mapping.first;
vkCmdCopyImageToBuffer(cmd, src->value, src->current_layout, mapping.second->value, 1, &region);
}
src->pop_layout(cmd);
// Create event object for this transfer and queue signal op
dma_fence = std::make_unique<vk::event>(*m_device, sync_domain::any);
dma_fence->signal(cmd, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_TRANSFER_WRITE_BIT);
// Set cb flag for queued dma operations
cmd.set_flag(vk::command_buffer::cb_has_dma_transfer);
if (get_context() == rsx::texture_upload_context::dma)
{
// Save readback hint in case transformation is required later
switch (internal_bpp)
{
case 2:
gcm_format = CELL_GCM_TEXTURE_R5G6B5;
break;
case 4:
default:
gcm_format = CELL_GCM_TEXTURE_A8R8G8B8;
break;
}
}
synchronized = true;
sync_timestamp = get_system_time();
}
void texture_cache::on_section_destroyed(cached_texture_section& tex)
{
if (tex.is_managed())
{
vk::get_resource_manager()->dispose(tex.get_texture());
}
}
void texture_cache::clear()
{
baseclass::clear();
m_temporary_storage.clear();
m_temporary_memory_size = 0;
}
void texture_cache::copy_transfer_regions_impl(vk::command_buffer& cmd, vk::image* dst, const std::vector<copy_region_descriptor>& sections_to_transfer) const
{
const auto dst_aspect = dst->aspect();
const auto dst_bpp = vk::get_format_texel_width(dst->format());
for (const auto& section : sections_to_transfer)
{
if (!section.src)
continue;
const bool typeless = section.src->aspect() != dst_aspect ||
!formats_are_bitcast_compatible(dst, section.src);
// Avoid inserting unnecessary barrier GENERAL->TRANSFER_SRC->GENERAL in active render targets
const auto preferred_layout = (section.src->current_layout != VK_IMAGE_LAYOUT_GENERAL) ?
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL : VK_IMAGE_LAYOUT_GENERAL;
section.src->push_layout(cmd, preferred_layout);
auto src_image = section.src;
auto src_x = section.src_x;
auto src_y = section.src_y;
auto src_w = section.src_w;
auto src_h = section.src_h;
rsx::flags32_t transform = section.xform;
if (section.xform == rsx::surface_transform::coordinate_transform)
{
// Dimensions were given in 'dst' space. Work out the real source coordinates
const auto src_bpp = vk::get_format_texel_width(section.src->format());
src_x = (src_x * dst_bpp) / src_bpp;
src_w = utils::aligned_div<u16>(src_w * dst_bpp, src_bpp);
transform &= ~(rsx::surface_transform::coordinate_transform);
}
if (auto surface = dynamic_cast<vk::render_target*>(section.src))
{
surface->transform_samples_to_pixels(src_x, src_w, src_y, src_h);
}
if (typeless) [[unlikely]]
{
const auto src_bpp = vk::get_format_texel_width(section.src->format());
const u16 convert_w = u16(src_w * src_bpp) / dst_bpp;
const u16 convert_x = u16(src_x * src_bpp) / dst_bpp;
if (convert_w == section.dst_w && src_h == section.dst_h &&
transform == rsx::surface_transform::identity &&
section.level == 0 && section.dst_z == 0)
{
// Optimization to avoid double transfer
// TODO: Handle level and layer offsets
const areai src_rect = coordi{{ src_x, src_y }, { src_w, src_h }};
const areai dst_rect = coordi{{ section.dst_x, section.dst_y }, { section.dst_w, section.dst_h }};
vk::copy_image_typeless(cmd, section.src, dst, src_rect, dst_rect, 1);
section.src->pop_layout(cmd);
continue;
}
src_image = vk::get_typeless_helper(dst->format(), dst->format_class(), convert_x + convert_w, src_y + src_h);
src_image->change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
const areai src_rect = coordi{{ src_x, src_y }, { src_w, src_h }};
const areai dst_rect = coordi{{ convert_x, src_y }, { convert_w, src_h }};
vk::copy_image_typeless(cmd, section.src, src_image, src_rect, dst_rect, 1);
src_image->change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
src_x = convert_x;
src_w = convert_w;
}
ensure(src_image->current_layout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL || src_image->current_layout == VK_IMAGE_LAYOUT_GENERAL);
// Final aspect mask of the 'final' transfer source
const auto new_src_aspect = src_image->aspect();
if (src_w == section.dst_w && src_h == section.dst_h && transform == rsx::surface_transform::identity) [[likely]]
{
VkImageCopy copy_rgn;
copy_rgn.srcOffset = { src_x, src_y, 0 };
copy_rgn.dstOffset = { section.dst_x, section.dst_y, 0 };
copy_rgn.dstSubresource = { dst_aspect, 0, 0, 1 };
copy_rgn.srcSubresource = { new_src_aspect, 0, 0, 1 };
copy_rgn.extent = { src_w, src_h, 1 };
if (dst->info.imageType == VK_IMAGE_TYPE_3D)
{
copy_rgn.dstOffset.z = section.dst_z;
}
else
{
copy_rgn.dstSubresource.baseArrayLayer = section.dst_z;
copy_rgn.dstSubresource.mipLevel = section.level;
}
vkCmdCopyImage(cmd, src_image->value, src_image->current_layout, dst->value, dst->current_layout, 1, &copy_rgn);
}
else
{
ensure(section.dst_z == 0);
u16 dst_x = section.dst_x, dst_y = section.dst_y;
vk::image* _dst;
if (src_image->info.format == dst->info.format && section.level == 0) [[likely]]
{
_dst = dst;
}
else
{
// Either a bitcast is required or a scale+copy to mipmap level
_dst = vk::get_typeless_helper(src_image->format(), src_image->format_class(), dst->width(), dst->height() * 2);
_dst->change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
}
if (transform == rsx::surface_transform::identity)
{
vk::copy_scaled_image(cmd, src_image, _dst,
coordi{ { src_x, src_y }, { src_w, src_h } },
coordi{ { section.dst_x, section.dst_y }, { section.dst_w, section.dst_h } },
1, src_image->format() == _dst->format(),
VK_FILTER_NEAREST);
}
else if (transform == rsx::surface_transform::argb_to_bgra)
{
VkBufferImageCopy copy{};
copy.imageExtent = { src_w, src_h, 1 };
copy.imageOffset = { src_x, src_y, 0 };
copy.imageSubresource = { src_image->aspect(), 0, 0, 1 };
const auto mem_length = src_w * src_h * dst_bpp;
auto scratch_buf = vk::get_scratch_buffer(mem_length);
vkCmdCopyImageToBuffer(cmd, src_image->value, src_image->current_layout, scratch_buf->value, 1, &copy);
vk::insert_buffer_memory_barrier(cmd, scratch_buf->value, 0, mem_length, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT);
auto shuffle_kernel = vk::get_compute_task<vk::cs_shuffle_32>();
shuffle_kernel->run(cmd, scratch_buf, mem_length);
vk::insert_buffer_memory_barrier(cmd, scratch_buf->value, 0, mem_length, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT);
auto tmp = vk::get_typeless_helper(src_image->format(), src_image->format_class(), section.dst_x + section.dst_w, section.dst_y + section.dst_h);
tmp->change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
copy.imageOffset = { 0, 0, 0 };
vkCmdCopyBufferToImage(cmd, scratch_buf->value, tmp->value, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copy);
dst_x = 0;
dst_y = 0;
if (src_w != section.dst_w || src_h != section.dst_h)
{
// Optionally scale if needed
if (tmp == _dst) [[unlikely]]
{
dst_y = src_h;
}
vk::copy_scaled_image(cmd, tmp, _dst,
areai{ 0, 0, src_w, static_cast<s32>(src_h) },
coordi{ { dst_x, dst_y }, { section.dst_w, section.dst_h } },
1, tmp->info.format == _dst->info.format,
VK_FILTER_NEAREST);
}
else
{
_dst = tmp;
}
}
else
{
fmt::throw_exception("Unreachable");
}
if (_dst != dst) [[unlikely]]
{
// Casting comes after the scaling!
VkImageCopy copy_rgn;
copy_rgn.srcOffset = { s32(dst_x), s32(dst_y), 0 };
copy_rgn.dstOffset = { section.dst_x, section.dst_y, 0 };
copy_rgn.dstSubresource = { dst_aspect, section.level, 0, 1 };
copy_rgn.srcSubresource = { _dst->aspect(), 0, 0, 1 };
copy_rgn.extent = { section.dst_w, section.dst_h, 1 };
_dst->change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
vkCmdCopyImage(cmd, _dst->value, _dst->current_layout, dst->value, dst->current_layout, 1, &copy_rgn);
}
}
section.src->pop_layout(cmd);
}
}
VkComponentMapping texture_cache::apply_component_mapping_flags(u32 gcm_format, rsx::component_order flags, const rsx::texture_channel_remap_t& remap_vector) const
{
switch (gcm_format)
{
case CELL_GCM_TEXTURE_DEPTH24_D8:
case CELL_GCM_TEXTURE_DEPTH24_D8_FLOAT:
case CELL_GCM_TEXTURE_DEPTH16:
case CELL_GCM_TEXTURE_DEPTH16_FLOAT:
// Dont bother letting this propagate
return{ VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_R };
default:
break;
}
VkComponentMapping mapping = {};
switch (flags)
{
case rsx::component_order::default_:
{
mapping = vk::apply_swizzle_remap(vk::get_component_mapping(gcm_format), remap_vector);
break;
}
case rsx::component_order::native:
{
mapping = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
break;
}
case rsx::component_order::swapped_native:
{
mapping = { VK_COMPONENT_SWIZZLE_A, VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B };
break;
}
default:
break;
}
return mapping;
}
vk::image* texture_cache::get_template_from_collection_impl(const std::vector<copy_region_descriptor>& sections_to_transfer) const
{
if (sections_to_transfer.size() == 1) [[likely]]
{
return sections_to_transfer.front().src;
}
vk::image* result = nullptr;
for (const auto& section : sections_to_transfer)
{
if (!section.src)
continue;
if (!result)
{
result = section.src;
}
else
{
if (section.src->native_component_map.a != result->native_component_map.a ||
section.src->native_component_map.r != result->native_component_map.r ||
section.src->native_component_map.g != result->native_component_map.g ||
section.src->native_component_map.b != result->native_component_map.b)
{
// TODO
// This requires a far more complex setup as its not always possible to mix and match without compute assistance
return nullptr;
}
}
}
return result;
}
std::unique_ptr<vk::viewable_image> texture_cache::find_temporary_image(VkFormat format, u16 w, u16 h, u16 d, u8 mipmaps)
{
for (auto& e : m_temporary_storage)
{
if (e.can_reuse && e.matches(format, w, h, d, mipmaps, 0))
{
m_temporary_memory_size -= e.block_size;
e.block_size = 0;
e.can_reuse = false;
return std::move(e.combined_image);
}
}
return {};
}
std::unique_ptr<vk::viewable_image> texture_cache::find_temporary_cubemap(VkFormat format, u16 size)
{
for (auto& e : m_temporary_storage)
{
if (e.can_reuse && e.matches(format, size, size, 1, 1, VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT))
{
m_temporary_memory_size -= e.block_size;
e.block_size = 0;
e.can_reuse = false;
return std::move(e.combined_image);
}
}
return {};
}
vk::image_view* texture_cache::create_temporary_subresource_view_impl(vk::command_buffer& cmd, vk::image* source, VkImageType image_type, VkImageViewType view_type,
u32 gcm_format, u16 x, u16 y, u16 w, u16 h, u16 d, u8 mips, const rsx::texture_channel_remap_t& remap_vector, bool copy)
{
std::unique_ptr<vk::viewable_image> image;
VkImageCreateFlags image_flags = (view_type == VK_IMAGE_VIEW_TYPE_CUBE) ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0;
VkFormat dst_format = vk::get_compatible_sampler_format(m_formats_support, gcm_format);
u16 layers = 1;
if (!image_flags) [[likely]]
{
image = find_temporary_image(dst_format, w, h, 1, mips);
}
else
{
image = find_temporary_cubemap(dst_format, w);
layers = 6;
}
if (!image)
{
image = std::make_unique<vk::viewable_image>(*vk::get_current_renderer(), m_memory_types.device_local, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
image_type,
dst_format,
w, h, d, mips, layers, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, image_flags | VK_IMAGE_CREATE_ALLOW_NULL,
VMM_ALLOCATION_POOL_TEXTURE_CACHE, rsx::classify_format(gcm_format));
if (!image->value)
{
// OOM, bail
return nullptr;
}
}
// This method is almost exclusively used to work on framebuffer resources
// Keep the original swizzle layout unless there is data format conversion
VkComponentMapping view_swizzle;
if (!source || dst_format != source->info.format)
{
// This is a data cast operation
// Use native mapping for the new type
// TODO: Also simulate the readback+reupload step (very tricky)
const auto remap = get_component_mapping(gcm_format);
view_swizzle = { remap[1], remap[2], remap[3], remap[0] };
}
else
{
view_swizzle = source->native_component_map;
}
image->set_native_component_layout(view_swizzle);
auto view = image->get_view(rsx::get_remap_encoding(remap_vector), remap_vector);
if (copy)
{
std::vector<copy_region_descriptor> region =
{ {
source,
rsx::surface_transform::coordinate_transform,
0,
x, y, 0, 0, 0,
w, h, w, h
} };
vk::change_image_layout(cmd, image.get(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
copy_transfer_regions_impl(cmd, image.get(), region);
vk::change_image_layout(cmd, image.get(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
const u32 resource_memory = w * h * 4; //Rough approximate
m_temporary_storage.emplace_back(image);
m_temporary_storage.back().block_size = resource_memory;
m_temporary_memory_size += resource_memory;
return view;
}
vk::image_view* texture_cache::create_temporary_subresource_view(vk::command_buffer& cmd, vk::image* source, u32 gcm_format,
u16 x, u16 y, u16 w, u16 h, const rsx::texture_channel_remap_t& remap_vector)
{
return create_temporary_subresource_view_impl(cmd, source, source->info.imageType, VK_IMAGE_VIEW_TYPE_2D,
gcm_format, x, y, w, h, 1, 1, remap_vector, true);
}
vk::image_view* texture_cache::create_temporary_subresource_view(vk::command_buffer& cmd, vk::image** source, u32 gcm_format,
u16 x, u16 y, u16 w, u16 h, const rsx::texture_channel_remap_t& remap_vector)
{
return create_temporary_subresource_view(cmd, *source, gcm_format, x, y, w, h, remap_vector);
}
vk::image_view* texture_cache::generate_cubemap_from_images(vk::command_buffer& cmd, u32 gcm_format, u16 size,
const std::vector<copy_region_descriptor>& sections_to_copy, const rsx::texture_channel_remap_t& remap_vector)
{
auto _template = get_template_from_collection_impl(sections_to_copy);
auto result = create_temporary_subresource_view_impl(cmd, _template, VK_IMAGE_TYPE_2D,
VK_IMAGE_VIEW_TYPE_CUBE, gcm_format, 0, 0, size, size, 1, 1, remap_vector, false);
if (!result)
{
// Failed to create temporary object, bail
return nullptr;
}
const auto image = result->image();
VkImageAspectFlags dst_aspect = vk::get_aspect_flags(result->info.format);
VkImageSubresourceRange dst_range = { dst_aspect, 0, 1, 0, 6 };
vk::change_image_layout(cmd, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, dst_range);
if (!(dst_aspect & VK_IMAGE_ASPECT_DEPTH_BIT))
{
VkClearColorValue clear = {};
vkCmdClearColorImage(cmd, image->value, image->current_layout, &clear, 1, &dst_range);
}
else
{
VkClearDepthStencilValue clear = { 1.f, 0 };
vkCmdClearDepthStencilImage(cmd, image->value, image->current_layout, &clear, 1, &dst_range);
}
copy_transfer_regions_impl(cmd, image, sections_to_copy);
vk::change_image_layout(cmd, image, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, dst_range);
return result;
}
vk::image_view* texture_cache::generate_3d_from_2d_images(vk::command_buffer& cmd, u32 gcm_format, u16 width, u16 height, u16 depth,
const std::vector<copy_region_descriptor>& sections_to_copy, const rsx::texture_channel_remap_t& remap_vector)
{
auto _template = get_template_from_collection_impl(sections_to_copy);
auto result = create_temporary_subresource_view_impl(cmd, _template, VK_IMAGE_TYPE_3D,
VK_IMAGE_VIEW_TYPE_3D, gcm_format, 0, 0, width, height, depth, 1, remap_vector, false);
if (!result)
{
// Failed to create temporary object, bail
return nullptr;
}
const auto image = result->image();
VkImageAspectFlags dst_aspect = vk::get_aspect_flags(result->info.format);
VkImageSubresourceRange dst_range = { dst_aspect, 0, 1, 0, 1 };
vk::change_image_layout(cmd, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, dst_range);
if (!(dst_aspect & VK_IMAGE_ASPECT_DEPTH_BIT))
{
VkClearColorValue clear = {};
vkCmdClearColorImage(cmd, image->value, image->current_layout, &clear, 1, &dst_range);
}
else
{
VkClearDepthStencilValue clear = { 1.f, 0 };
vkCmdClearDepthStencilImage(cmd, image->value, image->current_layout, &clear, 1, &dst_range);
}
copy_transfer_regions_impl(cmd, image, sections_to_copy);
vk::change_image_layout(cmd, image, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, dst_range);
return result;
}
vk::image_view* texture_cache::generate_atlas_from_images(vk::command_buffer& cmd, u32 gcm_format, u16 width, u16 height,
const std::vector<copy_region_descriptor>& sections_to_copy, const rsx::texture_channel_remap_t& remap_vector)
{
auto _template = get_template_from_collection_impl(sections_to_copy);
auto result = create_temporary_subresource_view_impl(cmd, _template, VK_IMAGE_TYPE_2D,
VK_IMAGE_VIEW_TYPE_2D, gcm_format, 0, 0, width, height, 1, 1, remap_vector, false);
if (!result)
{
// Failed to create temporary object, bail
return nullptr;
}
const auto image = result->image();
VkImageAspectFlags dst_aspect = vk::get_aspect_flags(result->info.format);
VkImageSubresourceRange dst_range = { dst_aspect, 0, 1, 0, 1 };
vk::change_image_layout(cmd, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, dst_range);
if (!(dst_aspect & VK_IMAGE_ASPECT_DEPTH_BIT))
{
VkClearColorValue clear = {};
vkCmdClearColorImage(cmd, image->value, image->current_layout, &clear, 1, &dst_range);
}
else
{
VkClearDepthStencilValue clear = { 1.f, 0 };
vkCmdClearDepthStencilImage(cmd, image->value, image->current_layout, &clear, 1, &dst_range);
}
copy_transfer_regions_impl(cmd, image, sections_to_copy);
vk::change_image_layout(cmd, image, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, dst_range);
return result;
}
vk::image_view* texture_cache::generate_2d_mipmaps_from_images(vk::command_buffer& cmd, u32 gcm_format, u16 width, u16 height,
const std::vector<copy_region_descriptor>& sections_to_copy, const rsx::texture_channel_remap_t& remap_vector)
{
const auto mipmaps = ::narrow<u8>(sections_to_copy.size());
auto _template = get_template_from_collection_impl(sections_to_copy);
auto result = create_temporary_subresource_view_impl(cmd, _template, VK_IMAGE_TYPE_2D,
VK_IMAGE_VIEW_TYPE_2D, gcm_format, 0, 0, width, height, 1, mipmaps, remap_vector, false);
if (!result)
{
// Failed to create temporary object, bail
return nullptr;
}
const auto image = result->image();
VkImageAspectFlags dst_aspect = vk::get_aspect_flags(result->info.format);
VkImageSubresourceRange dst_range = { dst_aspect, 0, mipmaps, 0, 1 };
vk::change_image_layout(cmd, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, dst_range);
if (!(dst_aspect & VK_IMAGE_ASPECT_DEPTH_BIT))
{
VkClearColorValue clear = {};
vkCmdClearColorImage(cmd, image->value, image->current_layout, &clear, 1, &dst_range);
}
else
{
VkClearDepthStencilValue clear = { 1.f, 0 };
vkCmdClearDepthStencilImage(cmd, image->value, image->current_layout, &clear, 1, &dst_range);
}
copy_transfer_regions_impl(cmd, image, sections_to_copy);
vk::change_image_layout(cmd, image, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, dst_range);
return result;
}
void texture_cache::release_temporary_subresource(vk::image_view* view)
{
auto handle = dynamic_cast<vk::viewable_image*>(view->image());
for (auto& e : m_temporary_storage)
{
if (e.combined_image.get() == handle)
{
e.can_reuse = true;
return;
}
}
}
void texture_cache::update_image_contents(vk::command_buffer& cmd, vk::image_view* dst_view, vk::image* src, u16 width, u16 height)
{
std::vector<copy_region_descriptor> region =
{ {
src,
rsx::surface_transform::identity,
0,
0, 0, 0, 0, 0,
width, height, width, height
} };
auto dst = dst_view->image();
dst->push_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
copy_transfer_regions_impl(cmd, dst, region);
dst->pop_layout(cmd);
}
cached_texture_section* texture_cache::create_new_texture(vk::command_buffer& cmd, const utils::address_range& rsx_range, u16 width, u16 height, u16 depth, u16 mipmaps, u16 pitch,
u32 gcm_format, rsx::texture_upload_context context, rsx::texture_dimension_extended type, bool swizzled, rsx::component_order swizzle_flags, rsx::flags32_t flags)
{
const auto section_depth = depth;
// Define desirable attributes based on type
VkImageType image_type;
VkImageUsageFlags usage_flags = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
u8 layer = 0;
switch (type)
{
case rsx::texture_dimension_extended::texture_dimension_1d:
image_type = VK_IMAGE_TYPE_1D;
height = 1;
depth = 1;
layer = 1;
break;
case rsx::texture_dimension_extended::texture_dimension_2d:
image_type = VK_IMAGE_TYPE_2D;
depth = 1;
layer = 1;
break;
case rsx::texture_dimension_extended::texture_dimension_cubemap:
image_type = VK_IMAGE_TYPE_2D;
depth = 1;
layer = 6;
break;
case rsx::texture_dimension_extended::texture_dimension_3d:
image_type = VK_IMAGE_TYPE_3D;
layer = 1;
break;
default:
fmt::throw_exception("Unreachable");
}
// Check what actually exists at that address
const rsx::image_section_attributes_t search_desc = { .gcm_format = gcm_format, .width = width, .height = height, .depth = section_depth, .mipmaps = mipmaps };
const bool allow_dirty = (context != rsx::texture_upload_context::framebuffer_storage);
cached_texture_section& region = *find_cached_texture(rsx_range, search_desc, true, true, allow_dirty);
ensure(!region.is_locked());
vk::viewable_image* image = nullptr;
if (region.exists())
{
image = dynamic_cast<vk::viewable_image*>(region.get_raw_texture());
if (!image || region.get_image_type() != type || image->depth() != depth) // TODO
{
// Incompatible view/type
region.destroy();
image = nullptr;
}
else
{
ensure(region.is_managed());
// Reuse
region.set_rsx_pitch(pitch);
if (flags & texture_create_flags::initialize_image_contents)
{
// Wipe memory
image->change_layout(cmd, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageSubresourceRange range{ image->aspect(), 0, image->mipmaps(), 0, image->layers() };
if (image->aspect() & VK_IMAGE_ASPECT_COLOR_BIT)
{
VkClearColorValue color = { {0.f, 0.f, 0.f, 1.f} };
vkCmdClearColorImage(cmd, image->value, image->current_layout, &color, 1, &range);
}
else
{
VkClearDepthStencilValue clear{ 1.f, 255 };
vkCmdClearDepthStencilImage(cmd, image->value, image->current_layout, &clear, 1, &range);
}
}
}
}
if (!image)
{
const bool is_cubemap = type == rsx::texture_dimension_extended::texture_dimension_cubemap;
const VkFormat vk_format = get_compatible_sampler_format(m_formats_support, gcm_format);
image = new vk::viewable_image(*m_device,
m_memory_types.device_local, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
image_type, vk_format,
width, height, depth, mipmaps, layer, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_TILING_OPTIMAL, usage_flags, is_cubemap ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0,
VMM_ALLOCATION_POOL_TEXTURE_CACHE, rsx::classify_format(gcm_format));
// New section, we must prepare it
region.reset(rsx_range);
region.set_gcm_format(gcm_format);
region.set_image_type(type);
region.create(width, height, section_depth, mipmaps, image, pitch, true, gcm_format);
}
region.set_view_flags(swizzle_flags);
region.set_context(context);
region.set_swizzled(swizzled);
region.set_dirty(false);
image->native_component_map = apply_component_mapping_flags(gcm_format, swizzle_flags, rsx::default_remap_vector);
// Its not necessary to lock blit dst textures as they are just reused as necessary
switch (context)
{
case rsx::texture_upload_context::shader_read:
case rsx::texture_upload_context::blit_engine_src:
region.protect(utils::protection::ro);
read_only_range = region.get_min_max(read_only_range, rsx::section_bounds::locked_range);
break;
case rsx::texture_upload_context::blit_engine_dst:
region.set_unpack_swap_bytes(true);
no_access_range = region.get_min_max(no_access_range, rsx::section_bounds::locked_range);
break;
case rsx::texture_upload_context::dma:
case rsx::texture_upload_context::framebuffer_storage:
// Should not be initialized with this method
default:
fmt::throw_exception("Unexpected upload context 0x%x", u32(context));
}
update_cache_tag();
return &region;
}
cached_texture_section* texture_cache::create_nul_section(vk::command_buffer& /*cmd*/, const utils::address_range& rsx_range, bool memory_load)
{
auto& region = *find_cached_texture(rsx_range, { .gcm_format = RSX_GCM_FORMAT_IGNORED }, true, false, false);
ensure(!region.is_locked());
// Prepare section
region.reset(rsx_range);
region.set_context(rsx::texture_upload_context::dma);
region.set_dirty(false);
region.set_unpack_swap_bytes(true);
if (memory_load)
{
vk::map_dma(rsx_range.start, rsx_range.length());
vk::load_dma(rsx_range.start, rsx_range.length());
}
no_access_range = region.get_min_max(no_access_range, rsx::section_bounds::locked_range);
update_cache_tag();
return &region;
}
cached_texture_section* texture_cache::upload_image_from_cpu(vk::command_buffer& cmd, const utils::address_range& rsx_range, u16 width, u16 height, u16 depth, u16 mipmaps, u16 pitch, u32 gcm_format,
rsx::texture_upload_context context, const std::vector<rsx::subresource_layout>& subresource_layout, rsx::texture_dimension_extended type, bool swizzled)
{
if (context != rsx::texture_upload_context::shader_read)
{
if (vk::is_renderpass_open(cmd))
{
vk::end_renderpass(cmd);
}
}
auto section = create_new_texture(cmd, rsx_range, width, height, depth, mipmaps, pitch, gcm_format, context, type, swizzled,
rsx::component_order::default_, 0);
auto image = section->get_raw_texture();
image->set_debug_name(fmt::format("Raw Texture @0x%x", rsx_range.start));
vk::enter_uninterruptible();
bool input_swizzled = swizzled;
if (context == rsx::texture_upload_context::blit_engine_src)
{
// Swizzling is ignored for blit engine copy and emulated using remapping
input_swizzled = false;
}
rsx::flags32_t upload_command_flags = initialize_image_layout |
(rsx::get_current_renderer()->get_backend_config().supports_asynchronous_compute ? upload_contents_async : upload_contents_inline);
vk::upload_image(cmd, image, subresource_layout, gcm_format, input_swizzled, mipmaps, image->aspect(),
*m_texture_upload_heap, upload_heap_align_default, upload_command_flags);
vk::leave_uninterruptible();
if (context != rsx::texture_upload_context::shader_read)
{
// Insert appropriate barrier depending on use. Shader read resources should be lazy-initialized before consuming.
// TODO: All texture resources should be initialized on use, this is wasteful
VkImageLayout preferred_layout;
switch (context)
{
default:
preferred_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
break;
case rsx::texture_upload_context::blit_engine_dst:
preferred_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
break;
case rsx::texture_upload_context::blit_engine_src:
preferred_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
break;
}
if (preferred_layout != image->current_layout)
{
image->change_layout(cmd, preferred_layout);
}
else
{
// Insert ordering barrier
ensure(preferred_layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
insert_image_memory_barrier(cmd, image->value, image->current_layout, preferred_layout,
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_WRITE_BIT,
{ image->aspect(), 0, image->mipmaps(), 0, image->layers() });
}
}
section->last_write_tag = rsx::get_shared_tag();
return section;
}
void texture_cache::set_component_order(cached_texture_section& section, u32 gcm_format, rsx::component_order expected_flags)
{
if (expected_flags == section.get_view_flags())
return;
const VkComponentMapping mapping = apply_component_mapping_flags(gcm_format, expected_flags, rsx::default_remap_vector);
auto image = static_cast<vk::viewable_image*>(section.get_raw_texture());
ensure(image);
image->set_native_component_layout(mapping);
section.set_view_flags(expected_flags);
}
void texture_cache::insert_texture_barrier(vk::command_buffer& cmd, vk::image* tex, bool strong_ordering)
{
if (!strong_ordering && tex->current_layout == VK_IMAGE_LAYOUT_GENERAL)
{
// A previous barrier already exists, do nothing
return;
}
vk::as_rtt(tex)->texture_barrier(cmd);
}
bool texture_cache::render_target_format_is_compatible(vk::image* tex, u32 gcm_format)
{
auto vk_format = tex->info.format;
switch (gcm_format)
{
default:
//TODO
warn_once("Format incompatibility detected, reporting failure to force data copy (VK_FORMAT=0x%X, GCM_FORMAT=0x%X)", static_cast<u32>(vk_format), gcm_format);
return false;
case CELL_GCM_TEXTURE_W16_Z16_Y16_X16_FLOAT:
return (vk_format == VK_FORMAT_R16G16B16A16_SFLOAT);
case CELL_GCM_TEXTURE_W32_Z32_Y32_X32_FLOAT:
return (vk_format == VK_FORMAT_R32G32B32A32_SFLOAT);
case CELL_GCM_TEXTURE_X32_FLOAT:
return (vk_format == VK_FORMAT_R32_SFLOAT);
case CELL_GCM_TEXTURE_R5G6B5:
return (vk_format == VK_FORMAT_R5G6B5_UNORM_PACK16);
case CELL_GCM_TEXTURE_A8R8G8B8:
case CELL_GCM_TEXTURE_D8R8G8B8:
return (vk_format == VK_FORMAT_B8G8R8A8_UNORM || vk_format == VK_FORMAT_D24_UNORM_S8_UINT || vk_format == VK_FORMAT_D32_SFLOAT_S8_UINT);
case CELL_GCM_TEXTURE_B8:
return (vk_format == VK_FORMAT_R8_UNORM);
case CELL_GCM_TEXTURE_G8B8:
return (vk_format == VK_FORMAT_R8G8_UNORM);
case CELL_GCM_TEXTURE_DEPTH24_D8:
case CELL_GCM_TEXTURE_DEPTH24_D8_FLOAT:
return (vk_format == VK_FORMAT_D24_UNORM_S8_UINT || vk_format == VK_FORMAT_D32_SFLOAT_S8_UINT);
case CELL_GCM_TEXTURE_X16:
case CELL_GCM_TEXTURE_DEPTH16:
case CELL_GCM_TEXTURE_DEPTH16_FLOAT:
return (vk_format == VK_FORMAT_D16_UNORM || vk_format == VK_FORMAT_D32_SFLOAT);
}
}
void texture_cache::prepare_for_dma_transfers(vk::command_buffer& cmd)
{
if (!cmd.is_recording())
{
cmd.begin();
}
}
void texture_cache::cleanup_after_dma_transfers(vk::command_buffer& cmd)
{
bool occlusion_query_active = !!(cmd.flags & vk::command_buffer::cb_has_open_query);
if (occlusion_query_active)
{
// We really stepped in it
vk::do_query_cleanup(cmd);
}
// End recording
cmd.end();
if (cmd.access_hint != vk::command_buffer::access_type_hint::all)
{
// Flush any pending async jobs in case of blockers
// TODO: Context-level manager should handle this logic
g_fxo->get<async_scheduler_thread>().flush(VK_TRUE);
// Primary access command queue, must restart it after
vk::fence submit_fence(*m_device);
cmd.submit(m_submit_queue, VK_NULL_HANDLE, VK_NULL_HANDLE, &submit_fence, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_TRUE);
vk::wait_for_fence(&submit_fence, GENERAL_WAIT_TIMEOUT);
CHECK_RESULT(vkResetCommandBuffer(cmd, 0));
cmd.begin();
}
else
{
// Auxilliary command queue with auto-restart capability
cmd.submit(m_submit_queue, VK_NULL_HANDLE, VK_NULL_HANDLE, VK_NULL_HANDLE, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_TRUE);
}
ensure(cmd.flags == 0);
if (occlusion_query_active)
{
ensure(cmd.is_recording());
cmd.flags |= vk::command_buffer::cb_load_occluson_task;
}
}
void texture_cache::initialize(vk::render_device& device, VkQueue submit_queue, vk::data_heap& upload_heap)
{
m_device = &device;
m_memory_types = device.get_memory_mapping();
m_formats_support = device.get_formats_support();
m_submit_queue = submit_queue;
m_texture_upload_heap = &upload_heap;
}
void texture_cache::destroy()
{
clear();
}
bool texture_cache::is_depth_texture(u32 rsx_address, u32 rsx_size)
{
reader_lock lock(m_cache_mutex);
auto& block = m_storage.block_for(rsx_address);
if (block.get_locked_count() == 0)
return false;
for (auto& tex : block)
{
if (tex.is_dirty())
continue;
if (!tex.overlaps(rsx_address, rsx::section_bounds::full_range))
continue;
if ((rsx_address + rsx_size - tex.get_section_base()) <= tex.get_section_size())
{
switch (tex.get_format())
{
case VK_FORMAT_D16_UNORM:
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
case VK_FORMAT_D24_UNORM_S8_UINT:
return true;
default:
return false;
}
}
}
//Unreachable; silence compiler warning anyway
return false;
}
bool texture_cache::handle_memory_pressure(rsx::problem_severity severity)
{
auto any_released = baseclass::handle_memory_pressure(severity);
// TODO: This can cause invalidation of in-flight resources
if (severity <= rsx::problem_severity::low || !m_temporary_memory_size)
{
// Nothing left to do
return any_released;
}
constexpr u64 _1M = 0x100000;
if (severity <= rsx::problem_severity::moderate && m_temporary_memory_size < (64 * _1M))
{
// Some memory is consumed by the temporary resources, but no need to panic just yet
return any_released;
}
std::unique_lock lock(m_cache_mutex, std::defer_lock);
if (!lock.try_lock())
{
rsx_log.warning("Unable to remove temporary resources because we're already in the texture cache!");
return any_released;
}
// Nuke temporary resources. They will still be visible to the GPU.
auto gc = vk::get_resource_manager();
u64 actual_released_memory = 0;
for (auto& entry : m_temporary_storage)
{
if (!entry.combined_image)
{
continue;
}
actual_released_memory += entry.combined_image->memory->size();
gc->dispose(entry.combined_image);
m_temporary_memory_size -= entry.block_size;
}
ensure(m_temporary_memory_size == 0);
m_temporary_storage.clear();
m_temporary_subresource_cache.clear();
rsx_log.warning("Texture cache released %lluM of temporary resources.", (actual_released_memory / _1M));
return any_released || (actual_released_memory > 0);
}
void texture_cache::on_frame_end()
{
trim_sections();
if (m_storage.m_unreleased_texture_objects >= m_max_zombie_objects ||
m_temporary_memory_size > 0x4000000) //If already holding over 64M in discardable memory, be frugal with memory resources
{
purge_unreleased_sections();
}
const u64 last_complete_frame = vk::get_last_completed_frame_id();
m_temporary_storage.remove_if([&](const temporary_storage& o)
{
if (!o.block_size || o.test(last_complete_frame))
{
m_temporary_memory_size -= o.block_size;
return true;
}
return false;
});
m_temporary_subresource_cache.clear();
reset_frame_statistics();
baseclass::on_frame_end();
}
vk::viewable_image* texture_cache::upload_image_simple(vk::command_buffer& cmd, VkFormat format, u32 address, u32 width, u32 height, u32 pitch)
{
bool linear_format_supported = false;
switch (format)
{
case VK_FORMAT_B8G8R8A8_UNORM:
linear_format_supported = m_formats_support.bgra8_linear;
break;
case VK_FORMAT_R8G8B8A8_UNORM:
linear_format_supported = m_formats_support.argb8_linear;
break;
default:
rsx_log.error("Unsupported VkFormat 0x%x", static_cast<u32>(format));
return nullptr;
}
if (!linear_format_supported)
{
return nullptr;
}
// Uploads a linear memory range as a BGRA8 texture
auto image = std::make_unique<vk::viewable_image>(*m_device, m_memory_types.host_visible_coherent,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
VK_IMAGE_TYPE_2D,
format,
width, height, 1, 1, 1, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, 0,
VMM_ALLOCATION_POOL_UNDEFINED);
VkImageSubresource subresource{};
subresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout layout{};
vkGetImageSubresourceLayout(*m_device, image->value, &subresource, &layout);
void* mem = image->memory->map(0, layout.rowPitch * height);
auto src = vm::_ptr<const char>(address);
auto dst = static_cast<char*>(mem);
// TODO: SSE optimization
for (u32 row = 0; row < height; ++row)
{
auto casted_src = reinterpret_cast<const be_t<u32>*>(src);
auto casted_dst = reinterpret_cast<u32*>(dst);
for (u32 col = 0; col < width; ++col)
casted_dst[col] = casted_src[col];
src += pitch;
dst += layout.rowPitch;
}
image->memory->unmap();
vk::change_image_layout(cmd, image.get(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
auto result = image.get();
const u32 resource_memory = width * height * 4; //Rough approximate
m_temporary_storage.emplace_back(image);
m_temporary_storage.back().block_size = resource_memory;
m_temporary_memory_size += resource_memory;
return result;
}
bool texture_cache::blit(rsx::blit_src_info& src, rsx::blit_dst_info& dst, bool interpolate, vk::surface_cache& m_rtts, vk::command_buffer& cmd)
{
blitter helper;
auto reply = upload_scaled_image(src, dst, interpolate, cmd, m_rtts, helper);
if (reply.succeeded)
{
if (reply.real_dst_size)
{
flush_if_cache_miss_likely(cmd, reply.to_address_range());
}
return true;
}
return false;
}
u32 texture_cache::get_unreleased_textures_count() const
{
return baseclass::get_unreleased_textures_count() + ::size32(m_temporary_storage);
}
u32 texture_cache::get_temporary_memory_in_use() const
{
return m_temporary_memory_size;
}
bool texture_cache::is_overallocated() const
{
const auto total_device_memory = m_device->get_memory_mapping().device_local_total_bytes / 0x100000;
u64 quota = 0;
if (total_device_memory >= 1024)
{
quota = std::min<u64>(3072, (total_device_memory * 40) / 100);
}
else if (total_device_memory >= 768)
{
quota = 256;
}
else
{
quota = std::min<u64>(128, total_device_memory / 2);
}
quota *= 0x100000;
if (const u64 texture_cache_pool_usage = vmm_get_application_pool_usage(VMM_ALLOCATION_POOL_TEXTURE_CACHE);
texture_cache_pool_usage > quota)
{
rsx_log.warning("Texture cache is using %lluM of memory which exceeds the allocation quota of %lluM",
texture_cache_pool_usage, quota);
return true;
}
return false;
}
}