rpcs3/rpcs3/Emu/Cell/lv2/sys_mutex.cpp
Lassi Hämäläinen c963c51a60 Remove unnecessary header includes
- Manually removed lot of unneeded #includes to clean code and reduce
  compilation time
- Reordered some of the #includes to be in more logical order
2019-06-25 17:11:10 +03:00

255 lines
4.3 KiB
C++

#include "stdafx.h"
#include "sys_mutex.h"
#include "Emu/System.h"
#include "Emu/IdManager.h"
#include "Emu/IPC.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
LOG_CHANNEL(sys_mutex);
template<> DECLARE(ipc_manager<lv2_mutex, u64>::g_ipc) {};
extern u64 get_system_time();
error_code sys_mutex_create(ppu_thread& ppu, vm::ptr<u32> mutex_id, vm::ptr<sys_mutex_attribute_t> attr)
{
vm::temporary_unlock(ppu);
sys_mutex.warning("sys_mutex_create(mutex_id=*0x%x, attr=*0x%x)", mutex_id, attr);
if (!mutex_id || !attr)
{
return CELL_EFAULT;
}
switch (attr->protocol)
{
case SYS_SYNC_FIFO: break;
case SYS_SYNC_PRIORITY: break;
case SYS_SYNC_PRIORITY_INHERIT:
sys_mutex.fatal("sys_mutex_create(): SYS_SYNC_PRIORITY_INHERIT");
break;
default:
{
sys_mutex.error("sys_mutex_create(): unknown protocol (0x%x)", attr->protocol);
return CELL_EINVAL;
}
}
switch (attr->recursive)
{
case SYS_SYNC_RECURSIVE: break;
case SYS_SYNC_NOT_RECURSIVE: break;
default:
{
sys_mutex.error("sys_mutex_create(): unknown recursive (0x%x)", attr->recursive);
return CELL_EINVAL;
}
}
if (attr->adaptive != SYS_SYNC_NOT_ADAPTIVE)
{
sys_mutex.todo("sys_mutex_create(): unexpected adaptive (0x%x)", attr->adaptive);
}
if (auto error = lv2_obj::create<lv2_mutex>(attr->pshared, attr->ipc_key, attr->flags, [&]()
{
return std::make_shared<lv2_mutex>(
attr->protocol,
attr->recursive,
attr->pshared,
attr->adaptive,
attr->ipc_key,
attr->flags,
attr->name_u64);
}))
{
return error;
}
*mutex_id = idm::last_id();
return CELL_OK;
}
error_code sys_mutex_destroy(ppu_thread& ppu, u32 mutex_id)
{
vm::temporary_unlock(ppu);
sys_mutex.warning("sys_mutex_destroy(mutex_id=0x%x)", mutex_id);
const auto mutex = idm::withdraw<lv2_obj, lv2_mutex>(mutex_id, [](lv2_mutex& mutex) -> CellError
{
std::lock_guard lock(mutex.mutex);
if (mutex.owner || mutex.lock_count)
{
return CELL_EBUSY;
}
if (mutex.cond_count)
{
return CELL_EPERM;
}
return {};
});
if (!mutex)
{
return CELL_ESRCH;
}
if (mutex.ret)
{
return mutex.ret;
}
return CELL_OK;
}
error_code sys_mutex_lock(ppu_thread& ppu, u32 mutex_id, u64 timeout)
{
vm::temporary_unlock(ppu);
sys_mutex.trace("sys_mutex_lock(mutex_id=0x%x, timeout=0x%llx)", mutex_id, timeout);
const auto mutex = idm::get<lv2_obj, lv2_mutex>(mutex_id, [&](lv2_mutex& mutex)
{
CellError result = mutex.try_lock(ppu.id);
if (result == CELL_EBUSY)
{
std::lock_guard lock(mutex.mutex);
if (mutex.try_own(ppu, ppu.id))
{
result = {};
}
else
{
mutex.sleep(ppu, timeout);
}
}
return result;
});
if (!mutex)
{
return CELL_ESRCH;
}
if (mutex.ret)
{
if (mutex.ret != CELL_EBUSY)
{
return mutex.ret;
}
}
else
{
return CELL_OK;
}
ppu.gpr[3] = CELL_OK;
while (!ppu.state.test_and_reset(cpu_flag::signal))
{
if (ppu.is_stopped())
{
return 0;
}
if (timeout)
{
const u64 passed = get_system_time() - ppu.start_time;
if (passed >= timeout)
{
std::lock_guard lock(mutex->mutex);
if (!mutex->unqueue(mutex->sq, &ppu))
{
timeout = 0;
continue;
}
ppu.gpr[3] = CELL_ETIMEDOUT;
break;
}
thread_ctrl::wait_for(timeout - passed);
}
else
{
thread_ctrl::wait();
}
}
return not_an_error(ppu.gpr[3]);
}
error_code sys_mutex_trylock(ppu_thread& ppu, u32 mutex_id)
{
vm::temporary_unlock(ppu);
sys_mutex.trace("sys_mutex_trylock(mutex_id=0x%x)", mutex_id);
const auto mutex = idm::check<lv2_obj, lv2_mutex>(mutex_id, [&](lv2_mutex& mutex)
{
return mutex.try_lock(ppu.id);
});
if (!mutex)
{
return CELL_ESRCH;
}
if (mutex.ret)
{
if (mutex.ret == CELL_EBUSY)
{
return not_an_error(CELL_EBUSY);
}
return mutex.ret;
}
return CELL_OK;
}
error_code sys_mutex_unlock(ppu_thread& ppu, u32 mutex_id)
{
vm::temporary_unlock(ppu);
sys_mutex.trace("sys_mutex_unlock(mutex_id=0x%x)", mutex_id);
const auto mutex = idm::check<lv2_obj, lv2_mutex>(mutex_id, [&](lv2_mutex& mutex)
{
return mutex.try_unlock(ppu.id);
});
if (!mutex)
{
return CELL_ESRCH;
}
if (mutex.ret == CELL_EBUSY)
{
std::lock_guard lock(mutex->mutex);
if (auto cpu = mutex->reown<ppu_thread>())
{
mutex->awake(*cpu);
}
}
else if (mutex.ret)
{
return mutex.ret;
}
return CELL_OK;
}