rpcs3/rpcs3/Emu/Cell/SPUThread.cpp
2015-02-01 16:52:34 +03:00

1247 lines
27 KiB
C++

#include "stdafx.h"
#include "rpcs3/Ini.h"
#include "Utilities/Log.h"
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/IdManager.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h"
#include "Emu/SysCalls/ErrorCodes.h"
#include "Emu/SysCalls/lv2/sys_spu.h"
#include "Emu/SysCalls/lv2/sys_event_flag.h"
#include "Emu/SysCalls/lv2/sys_time.h"
#include "Emu/Cell/SPUDisAsm.h"
#include "Emu/Cell/SPUThread.h"
#include "Emu/Cell/SPUDecoder.h"
#include "Emu/Cell/SPUInterpreter.h"
#include "Emu/Cell/SPURecompiler.h"
#include <cfenv>
SPUThread& GetCurrentSPUThread()
{
PPCThread* thread = GetCurrentPPCThread();
if(!thread || (thread->GetType() != CPU_THREAD_SPU && thread->GetType() != CPU_THREAD_RAW_SPU))
{
throw std::string("GetCurrentSPUThread: bad thread");
}
return *(SPUThread*)thread;
}
SPUThread::SPUThread(CPUThreadType type) : PPCThread(type)
{
assert(type == CPU_THREAD_SPU || type == CPU_THREAD_RAW_SPU);
group = nullptr;
for (auto& p : SPUPs)
{
p.reset(new EventPort());
}
Reset();
}
SPUThread::~SPUThread()
{
}
void SPUThread::Task()
{
const int round = std::fegetround();
std::fesetround(FE_TOWARDZERO);
if (m_custom_task)
{
m_custom_task(*this);
}
else
{
CPUThread::Task();
}
if (std::fegetround() != FE_TOWARDZERO)
{
LOG_ERROR(Log::SPU, "Rounding mode has changed(%d)", std::fegetround());
}
std::fesetround(round);
}
void SPUThread::DoReset()
{
PPCThread::DoReset();
//reset regs
memset(GPR, 0, sizeof(u128) * 128);
}
void SPUThread::InitRegs()
{
GPR[1]._u32[3] = 0x3FFF0; // initial stack frame pointer
cfg.Reset();
ls_offset = m_offset;
SPU.Status.SetValue(SPU_STATUS_STOPPED);
// TODO: check initialization if necessary
MFC2.QueryType.SetValue(0); // prxy
MFC1.CMDStatus.SetValue(0);
MFC2.CMDStatus.SetValue(0);
MFC1.TagStatus.SetValue(0);
MFC2.TagStatus.SetValue(0);
//PC = SPU.NPC.GetValue();
m_event_mask = 0;
m_events = 0;
R_ADDR = 0;
}
void SPUThread::InitStack()
{
m_stack_size = 0x1000; // this value is wrong
m_stack_addr = m_offset + 0x40000 - m_stack_size; // stack is the part of SPU Local Storage
}
void SPUThread::CloseStack()
{
// nothing to do here
}
void SPUThread::DoRun()
{
switch(Ini.SPUDecoderMode.GetValue())
{
case 1:
m_dec = new SPUDecoder(*new SPUInterpreter(*this));
break;
case 2:
m_dec = new SPURecompilerCore(*this);
break;
default:
LOG_ERROR(Log::SPU, "Invalid SPU decoder mode: %d", Ini.SPUDecoderMode.GetValue());
Emu.Pause();
}
}
void SPUThread::DoResume()
{
}
void SPUThread::DoPause()
{
}
void SPUThread::DoStop()
{
delete m_dec;
m_dec = nullptr;
}
void SPUThread::DoClose()
{
// disconnect all event ports
if (Emu.IsStopped())
{
return;
}
for (u32 i = 0; i < 64; i++)
{
std::shared_ptr<EventPort> port = SPUPs[i];
std::lock_guard<std::mutex> lock(port->m_mutex);
if (port->eq)
{
port->eq->ports.remove(port);
port->eq = nullptr;
}
}
}
void SPUThread::FastCall(u32 ls_addr)
{
// can't be called from another thread (because it doesn't make sense)
WriteLS32(0x0, 2);
auto old_PC = PC;
auto old_LR = GPR[0]._u32[3];
auto old_stack = GPR[1]._u32[3]; // only saved and restored (may be wrong)
m_status = Running;
PC = ls_addr;
GPR[0]._u32[3] = 0x0;
CPUThread::Task();
PC = old_PC;
GPR[0]._u32[3] = old_LR;
GPR[1]._u32[3] = old_stack;
}
void SPUThread::FastStop()
{
m_status = Stopped;
}
void SPUThread::WriteSNR(bool number, u32 value)
{
if (cfg.value & ((u64)1 << (u64)number))
{
SPU.SNR[number ? 1 : 0].PushUncond_OR(value); // logical OR
}
else
{
SPU.SNR[number ? 1 : 0].PushUncond(value); // overwrite
}
}
#define LOG_DMAC(type, text) type(Log::SPU, "DMAC::ProcessCmd(cmd=0x%x, tag=0x%x, lsa=0x%x, ea=0x%llx, size=0x%x): " text, cmd, tag, lsa, ea, size)
void SPUThread::ProcessCmd(u32 cmd, u32 tag, u32 lsa, u64 ea, u32 size)
{
if (cmd & (MFC_BARRIER_MASK | MFC_FENCE_MASK)) _mm_mfence();
if (ea >= SYS_SPU_THREAD_BASE_LOW)
{
if (ea >= 0x100000000)
{
LOG_DMAC(LOG_ERROR, "Invalid external address");
Emu.Pause();
return;
}
else if (group)
{
// SPU Thread Group MMIO (LS and SNR)
u32 num = (ea & SYS_SPU_THREAD_BASE_MASK) / SYS_SPU_THREAD_OFFSET; // thread number in group
if (num >= group->list.size() || !group->list[num])
{
LOG_DMAC(LOG_ERROR, "Invalid thread (SPU Thread Group MMIO)");
Emu.Pause();
return;
}
std::shared_ptr<CPUThread> spu = Emu.GetCPU().GetThread(group->list[num]);
u32 addr = (ea & SYS_SPU_THREAD_BASE_MASK) % SYS_SPU_THREAD_OFFSET;
if ((addr <= 0x3ffff) && (addr + size <= 0x40000))
{
// LS access
ea = ((SPUThread*)spu.get())->ls_offset + addr;
}
else if ((cmd & MFC_PUT_CMD) && size == 4 && (addr == SYS_SPU_THREAD_SNR1 || addr == SYS_SPU_THREAD_SNR2))
{
((SPUThread*)spu.get())->WriteSNR(SYS_SPU_THREAD_SNR2 == addr, vm::read32(ls_offset + lsa));
return;
}
else
{
LOG_DMAC(LOG_ERROR, "Invalid register (SPU Thread Group MMIO)");
Emu.Pause();
return;
}
}
else
{
LOG_DMAC(LOG_ERROR, "Thread group not set (SPU Thread Group MMIO)");
Emu.Pause();
return;
}
}
else if (ea >= RAW_SPU_BASE_ADDR && size == 4)
{
switch (cmd & ~(MFC_BARRIER_MASK | MFC_FENCE_MASK | MFC_LIST_MASK | MFC_RESULT_MASK))
{
case MFC_PUT_CMD:
{
vm::write32((u32)ea, ReadLS32(lsa));
return;
}
case MFC_GET_CMD:
{
WriteLS32(lsa, vm::read32((u32)ea));
return;
}
default:
{
LOG_DMAC(LOG_ERROR, "Unknown DMA command");
Emu.Pause();
return;
}
}
}
switch (cmd & ~(MFC_BARRIER_MASK | MFC_FENCE_MASK | MFC_LIST_MASK | MFC_RESULT_MASK))
{
case MFC_PUT_CMD:
{
memcpy(vm::get_ptr<void>((u32)ea), vm::get_ptr<void>(ls_offset + lsa), size);
return;
}
case MFC_GET_CMD:
{
memcpy(vm::get_ptr<void>(ls_offset + lsa), vm::get_ptr<void>((u32)ea), size);
return;
}
default:
{
LOG_DMAC(LOG_ERROR, "Unknown DMA command");
Emu.Pause();
return;
}
}
}
#undef LOG_CMD
void SPUThread::ListCmd(u32 lsa, u64 ea, u16 tag, u16 size, u32 cmd, MFCReg& MFCArgs)
{
const u32 list_addr = ea & 0x3ffff;
const u32 list_size = size / 8;
lsa &= 0x3fff0;
struct list_element
{
be_t<u16> s; // Stall-and-Notify bit (0x8000)
be_t<u16> ts; // List Transfer Size
be_t<u32> ea; // External Address Low
};
u32 result = MFC_PPU_DMA_CMD_ENQUEUE_SUCCESSFUL;
for (u32 i = 0; i < list_size; i++)
{
auto rec = vm::ptr<list_element>::make(ls_offset + list_addr + i * 8);
const u32 size = rec->ts;
if (!(rec->s.data() & se16(0x8000)) && size < 16 && size != 1 && size != 2 && size != 4 && size != 8)
{
LOG_ERROR(Log::SPU, "DMA List: invalid transfer size(%d)", size);
result = MFC_PPU_DMA_CMD_SEQUENCE_ERROR;
break;
}
const u32 addr = rec->ea;
if (size)
{
ProcessCmd(cmd, tag, lsa | (addr & 0xf), addr, size);
}
if (Ini.HLELogging.GetValue() || rec->s.data())
{
LOG_NOTICE(Log::SPU, "*** list element(%d/%d): s = 0x%x, ts = 0x%x, low ea = 0x%x (lsa = 0x%x)", i, list_size, rec->s, rec->ts, rec->ea, lsa | (addr & 0xf));
}
if (size)
{
lsa += std::max<u32>(size, 16);
}
if (rec->s.data() & se16(0x8000))
{
StallStat.PushUncond_OR(1 << tag);
if (StallList[tag].MFCArgs)
{
LOG_ERROR(Log::SPU, "DMA List: existing stalled list found (tag=%d)", tag);
result = MFC_PPU_DMA_CMD_SEQUENCE_ERROR;
break;
}
StallList[tag].MFCArgs = &MFCArgs;
StallList[tag].cmd = cmd;
StallList[tag].ea = (ea & ~0xffffffff) | (list_addr + (i + 1) * 8);
StallList[tag].lsa = lsa;
StallList[tag].size = (list_size - i - 1) * 8;
break;
}
}
MFCArgs.CMDStatus.SetValue(result);
}
void SPUThread::EnqMfcCmd(MFCReg& MFCArgs)
{
u32 cmd = MFCArgs.CMDStatus.GetValue();
u16 op = cmd & MFC_MASK_CMD;
u32 lsa = MFCArgs.LSA.GetValue();
u64 ea = (u64)MFCArgs.EAL.GetValue() | ((u64)MFCArgs.EAH.GetValue() << 32);
u32 size_tag = MFCArgs.Size_Tag.GetValue();
u16 tag = (u16)size_tag;
u16 size = size_tag >> 16;
switch (op & ~(MFC_BARRIER_MASK | MFC_FENCE_MASK))
{
case MFC_PUT_CMD:
case MFC_PUTR_CMD: // ???
case MFC_GET_CMD:
{
if (Ini.HLELogging.GetValue()) LOG_NOTICE(Log::SPU, "DMA %s%s%s%s: lsa = 0x%x, ea = 0x%llx, tag = 0x%x, size = 0x%x, cmd = 0x%x",
(op & MFC_PUT_CMD ? "PUT" : "GET"),
(op & MFC_RESULT_MASK ? "R" : ""),
(op & MFC_BARRIER_MASK ? "B" : ""),
(op & MFC_FENCE_MASK ? "F" : ""),
lsa, ea, tag, size, cmd);
ProcessCmd(cmd, tag, lsa, ea, size);
MFCArgs.CMDStatus.SetValue(MFC_PPU_DMA_CMD_ENQUEUE_SUCCESSFUL);
break;
}
case MFC_PUTL_CMD:
case MFC_PUTRL_CMD: // ???
case MFC_GETL_CMD:
{
if (Ini.HLELogging.GetValue()) LOG_NOTICE(Log::SPU, "DMA %s%s%s%s: lsa = 0x%x, list = 0x%llx, tag = 0x%x, size = 0x%x, cmd = 0x%x",
(op & MFC_PUT_CMD ? "PUT" : "GET"),
(op & MFC_RESULT_MASK ? "RL" : "L"),
(op & MFC_BARRIER_MASK ? "B" : ""),
(op & MFC_FENCE_MASK ? "F" : ""),
lsa, ea, tag, size, cmd);
ListCmd(lsa, ea, tag, size, cmd, MFCArgs);
break;
}
case MFC_GETLLAR_CMD:
case MFC_PUTLLC_CMD:
case MFC_PUTLLUC_CMD:
case MFC_PUTQLLUC_CMD:
{
if (Ini.HLELogging.GetValue() || size != 128) LOG_NOTICE(Log::SPU, "DMA %s: lsa=0x%x, ea = 0x%llx, (tag) = 0x%x, (size) = 0x%x, cmd = 0x%x",
(op == MFC_GETLLAR_CMD ? "GETLLAR" :
op == MFC_PUTLLC_CMD ? "PUTLLC" :
op == MFC_PUTLLUC_CMD ? "PUTLLUC" : "PUTQLLUC"),
lsa, ea, tag, size, cmd);
if ((u32)ea != ea)
{
LOG_ERROR(Log::SPU, "DMA %s: Invalid external address (0x%llx)",
(op == MFC_GETLLAR_CMD ? "GETLLAR" :
op == MFC_PUTLLC_CMD ? "PUTLLC" :
op == MFC_PUTLLUC_CMD ? "PUTLLUC" : "PUTQLLUC"),
ea);
Emu.Pause();
return;
}
if (op == MFC_GETLLAR_CMD) // get reservation
{
if (R_ADDR)
{
m_events |= SPU_EVENT_LR;
}
R_ADDR = ea;
for (u32 i = 0; i < 16; i++)
{
R_DATA[i] = vm::get_ptr<u64>((u32)R_ADDR)[i];
vm::get_ptr<u64>(ls_offset + lsa)[i] = R_DATA[i];
}
MFCArgs.AtomicStat.PushUncond(MFC_GETLLAR_SUCCESS);
}
else if (op == MFC_PUTLLC_CMD) // store conditional
{
MFCArgs.AtomicStat.PushUncond(MFC_PUTLLC_SUCCESS);
if (R_ADDR == ea)
{
u32 changed = 0, mask = 0;
u64 buf[16];
for (u32 i = 0; i < 16; i++)
{
buf[i] = vm::get_ptr<u64>(ls_offset + lsa)[i];
if (buf[i] != R_DATA[i])
{
changed++;
mask |= (0x3 << (i * 2));
if (vm::get_ptr<u64>((u32)R_ADDR)[i] != R_DATA[i])
{
m_events |= SPU_EVENT_LR;
MFCArgs.AtomicStat.PushUncond(MFC_PUTLLC_FAILURE);
R_ADDR = 0;
return;
}
}
}
for (u32 i = 0; i < 16; i++)
{
if (buf[i] != R_DATA[i])
{
if (InterlockedCompareExchange(&vm::get_ptr<volatile u64>((u32)R_ADDR)[i], buf[i], R_DATA[i]) != R_DATA[i])
{
m_events |= SPU_EVENT_LR;
MFCArgs.AtomicStat.PushUncond(MFC_PUTLLC_FAILURE);
if (changed > 1)
{
LOG_ERROR(Log::SPU, "MFC_PUTLLC_CMD: Memory corrupted (~x%d (mask=0x%x)) (opcode=0x%x, cmd=0x%x, lsa = 0x%x, ea = 0x%llx, tag = 0x%x, size = 0x%x)",
changed, mask, op, cmd, lsa, ea, tag, size);
Emu.Pause();
}
break;
}
}
}
if (changed > 1)
{
LOG_WARNING(Log::SPU, "MFC_PUTLLC_CMD: Reservation impossibru (~x%d (mask=0x%x)) (opcode=0x%x, cmd=0x%x, lsa = 0x%x, ea = 0x%llx, tag = 0x%x, size = 0x%x)",
changed, mask, op, cmd, lsa, ea, tag, size);
SPUDisAsm dis_asm(CPUDisAsm_InterpreterMode);
for (s32 i = (s32)PC; i < (s32)PC + 4 * 7; i += 4)
{
dis_asm.dump_pc = i;
dis_asm.offset = vm::get_ptr<u8>(ls_offset);
const u32 opcode = vm::read32(i + ls_offset);
(*SPU_instr::rrr_list)(&dis_asm, opcode);
if (i >= 0 && i < 0x40000)
{
LOG_NOTICE(Log::SPU, "*** %s", dis_asm.last_opcode.c_str());
}
}
}
}
else
{
MFCArgs.AtomicStat.PushUncond(MFC_PUTLLC_FAILURE);
}
R_ADDR = 0;
}
else // store unconditional
{
if (R_ADDR) // may be wrong
{
m_events |= SPU_EVENT_LR;
}
ProcessCmd(MFC_PUT_CMD, tag, lsa, ea, 128);
if (op == MFC_PUTLLUC_CMD)
{
MFCArgs.AtomicStat.PushUncond(MFC_PUTLLUC_SUCCESS);
}
R_ADDR = 0;
}
break;
}
default:
LOG_ERROR(Log::SPU, "Unknown MFC cmd. (opcode=0x%x, cmd=0x%x, lsa = 0x%x, ea = 0x%llx, tag = 0x%x, size = 0x%x)",
op, cmd, lsa, ea, tag, size);
break;
}
}
bool SPUThread::CheckEvents()
{
// checks events:
// SPU_EVENT_LR:
if (R_ADDR)
{
for (u32 i = 0; i < 16; i++)
{
if (vm::get_ptr<u64>((u32)R_ADDR)[i] != R_DATA[i])
{
m_events |= SPU_EVENT_LR;
R_ADDR = 0;
break;
}
}
}
return (m_events & m_event_mask) != 0;
}
u32 SPUThread::GetChannelCount(u32 ch)
{
u32 res = 0xdeafbeef;
switch (ch)
{
case SPU_WrSRR0: res = 1; break;
case SPU_RdSRR0: res = 1; break;
case SPU_WrOutMbox: res = SPU.Out_MBox.GetFreeCount(); break;
case SPU_WrOutIntrMbox: res = SPU.Out_IntrMBox.GetFreeCount(); break;
case SPU_RdInMbox: res = SPU.In_MBox.GetCount(); break;
case MFC_RdTagStat: res = MFC1.TagStatus.GetCount(); break;
case MFC_RdListStallStat: res = StallStat.GetCount(); break;
case MFC_WrTagUpdate: res = MFC1.TagStatus.GetCount(); break;// hack
case SPU_RdSigNotify1: res = SPU.SNR[0].GetCount(); break;
case SPU_RdSigNotify2: res = SPU.SNR[1].GetCount(); break;
case MFC_RdAtomicStat: res = MFC1.AtomicStat.GetCount(); break;
case SPU_RdEventStat: res = CheckEvents() ? 1 : 0; break;
default:
{
LOG_ERROR(Log::SPU, "%s error: unknown/illegal channel (%d [%s]).",
__FUNCTION__, ch, spu_ch_name[ch]);
return 0;
}
}
//LOG_NOTICE(Log::SPU, "%s(%s) -> 0x%x", __FUNCTION__, spu_ch_name[ch], res);
return res;
}
void SPUThread::WriteChannel(u32 ch, const u128& r)
{
const u32 v = r._u32[3];
//LOG_NOTICE(Log::SPU, "%s(%s): v=0x%x", __FUNCTION__, spu_ch_name[ch], v);
switch (ch)
{
case SPU_WrSRR0:
SRR0 = v & 0x3FFFC; //LSLR & ~3
break;
case SPU_WrOutIntrMbox:
{
if (!group) // if RawSPU
{
if (Ini.HLELogging.GetValue()) LOG_NOTICE(Log::SPU, "SPU_WrOutIntrMbox: interrupt(v=0x%x)", v);
while (!SPU.Out_IntrMBox.Push(v))
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (Emu.IsStopped())
{
LOG_WARNING(Log::SPU, "%s(%s) aborted", __FUNCTION__, spu_ch_name[ch]);
return;
}
}
m_intrtag[2].stat |= 1;
if (std::shared_ptr<CPUThread> t = Emu.GetCPU().GetThread(m_intrtag[2].thread))
{
if (t->GetType() == CPU_THREAD_PPU)
{
if (t->IsAlive())
{
LOG_ERROR(Log::SPU, "%s(%s): interrupt thread was alive", __FUNCTION__, spu_ch_name[ch]);
Emu.Pause();
return;
}
PPUThread& ppu = *(PPUThread*)t.get();
ppu.GPR[3] = ppu.m_interrupt_arg;
ppu.FastCall2(vm::read32(ppu.entry), vm::read32(ppu.entry + 4));
}
}
}
else
{
const u8 code = v >> 24;
if (code < 64)
{
/* ===== sys_spu_thread_send_event (used by spu_printf) ===== */
u8 spup = code & 63;
u32 data;
if (!SPU.Out_MBox.Pop(data))
{
LOG_ERROR(Log::SPU, "sys_spu_thread_send_event(v=0x%x, spup=%d): Out_MBox is empty", v, spup);
return;
}
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(Log::SPU, "sys_spu_thread_send_event(spup=%d, data0=0x%x, data1=0x%x)", spup, v & 0x00ffffff, data);
}
std::shared_ptr<EventPort> port = SPUPs[spup];
std::lock_guard<std::mutex> lock(port->m_mutex);
if (!port->eq)
{
LOG_WARNING(Log::SPU, "sys_spu_thread_send_event(spup=%d, data0=0x%x, data1=0x%x): event queue not connected", spup, (v & 0x00ffffff), data);
SPU.In_MBox.PushUncond(CELL_ENOTCONN); // TODO: check error passing
return;
}
if (!port->eq->events.push(SYS_SPU_THREAD_EVENT_USER_KEY, GetId(), ((u64)spup << 32) | (v & 0x00ffffff), data))
{
SPU.In_MBox.PushUncond(CELL_EBUSY);
return;
}
SPU.In_MBox.PushUncond(CELL_OK);
return;
}
else if (code < 128)
{
/* ===== sys_spu_thread_throw_event ===== */
const u8 spup = code & 63;
u32 data;
if (!SPU.Out_MBox.Pop(data))
{
LOG_ERROR(Log::SPU, "sys_spu_thread_throw_event(v=0x%x, spup=%d): Out_MBox is empty", v, spup);
return;
}
//if (Ini.HLELogging.GetValue())
{
LOG_WARNING(Log::SPU, "sys_spu_thread_throw_event(spup=%d, data0=0x%x, data1=0x%x)", spup, v & 0x00ffffff, data);
}
std::shared_ptr<EventPort> port = SPUPs[spup];
std::lock_guard<std::mutex> lock(port->m_mutex);
if (!port->eq)
{
LOG_WARNING(Log::SPU, "sys_spu_thread_throw_event(spup=%d, data0=0x%x, data1=0x%x): event queue not connected", spup, (v & 0x00ffffff), data);
return;
}
// TODO: check passing spup value
if (!port->eq->events.push(SYS_SPU_THREAD_EVENT_USER_KEY, GetId(), ((u64)spup << 32) | (v & 0x00ffffff), data))
{
LOG_WARNING(Log::SPU, "sys_spu_thread_throw_event(spup=%d, data0=0x%x, data1=0x%x) failed (queue is full)", spup, (v & 0x00ffffff), data);
return;
}
return;
}
else if (code == 128)
{
/* ===== sys_event_flag_set_bit ===== */
u32 flag = v & 0xffffff;
u32 data;
if (!SPU.Out_MBox.Pop(data))
{
LOG_ERROR(Log::SPU, "sys_event_flag_set_bit(v=0x%x (flag=%d)): Out_MBox is empty", v, flag);
return;
}
if (flag > 63)
{
LOG_ERROR(Log::SPU, "sys_event_flag_set_bit(id=%d, v=0x%x): flag > 63", data, v, flag);
return;
}
//if (Ini.HLELogging.GetValue())
{
LOG_WARNING(Log::SPU, "sys_event_flag_set_bit(id=%d, v=0x%x (flag=%d))", data, v, flag);
}
std::shared_ptr<EventFlag> ef;
if (!Emu.GetIdManager().GetIDData(data, ef))
{
LOG_ERROR(Log::SPU, "sys_event_flag_set_bit(id=%d, v=0x%x (flag=%d)): EventFlag not found", data, v, flag);
SPU.In_MBox.PushUncond(CELL_ESRCH);
return;
}
std::lock_guard<std::mutex> lock(ef->mutex);
ef->flags |= (u64)1 << flag;
if (u32 target = ef->check())
{
ef->signal.push(target);
}
SPU.In_MBox.PushUncond(CELL_OK);
return;
}
else if (code == 192)
{
/* ===== sys_event_flag_set_bit_impatient ===== */
u32 flag = v & 0xffffff;
u32 data;
if (!SPU.Out_MBox.Pop(data))
{
LOG_ERROR(Log::SPU, "sys_event_flag_set_bit_impatient(v=0x%x (flag=%d)): Out_MBox is empty", v, flag);
return;
}
if (flag > 63)
{
LOG_ERROR(Log::SPU, "sys_event_flag_set_bit_impatient(id=%d, v=0x%x): flag > 63", data, v, flag);
return;
}
//if (Ini.HLELogging.GetValue())
{
LOG_WARNING(Log::SPU, "sys_event_flag_set_bit_impatient(id=%d, v=0x%x (flag=%d))", data, v, flag);
}
std::shared_ptr<EventFlag> ef;
if (!Emu.GetIdManager().GetIDData(data, ef))
{
LOG_WARNING(Log::SPU, "sys_event_flag_set_bit_impatient(id=%d, v=0x%x (flag=%d)): EventFlag not found", data, v, flag);
return;
}
std::lock_guard<std::mutex> lock(ef->mutex);
ef->flags |= (u64)1 << flag;
if (u32 target = ef->check())
{
ef->signal.push(target);
}
return;
}
else
{
u32 data;
if (SPU.Out_MBox.Pop(data))
{
LOG_ERROR(Log::SPU, "SPU_WrOutIntrMbox: unknown data (v=0x%x); Out_MBox = 0x%x", v, data);
}
else
{
LOG_ERROR(Log::SPU, "SPU_WrOutIntrMbox: unknown data (v=0x%x)", v);
}
SPU.In_MBox.PushUncond(CELL_EINVAL); // ???
return;
}
}
break;
}
case SPU_WrOutMbox:
{
while (!SPU.Out_MBox.Push(v) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
break;
}
case MFC_WrTagMask:
{
MFC1.QueryMask.SetValue(v);
break;
}
case MFC_WrTagUpdate:
{
MFC1.TagStatus.PushUncond(MFC1.QueryMask.GetValue());
break;
}
case MFC_LSA:
{
MFC1.LSA.SetValue(v);
break;
}
case MFC_EAH:
{
MFC1.EAH.SetValue(v);
break;
}
case MFC_EAL:
{
MFC1.EAL.SetValue(v);
break;
}
case MFC_Size:
{
MFC1.Size_Tag.SetValue((MFC1.Size_Tag.GetValue() & 0xffff) | (v << 16));
break;
}
case MFC_TagID:
{
MFC1.Size_Tag.SetValue((MFC1.Size_Tag.GetValue() & ~0xffff) | (v & 0xffff));
break;
}
case MFC_Cmd:
{
MFC1.CMDStatus.SetValue(v);
EnqMfcCmd(MFC1);
break;
}
case MFC_WrListStallAck:
{
if (v >= 32)
{
LOG_ERROR(Log::SPU, "MFC_WrListStallAck error: invalid tag(%d)", v);
return;
}
StalledList temp = StallList[v];
if (!temp.MFCArgs)
{
LOG_ERROR(Log::SPU, "MFC_WrListStallAck error: empty tag(%d)", v);
return;
}
StallList[v].MFCArgs = nullptr;
ListCmd(temp.lsa, temp.ea, temp.tag, temp.size, temp.cmd, *temp.MFCArgs);
break;
}
case SPU_WrDec:
{
m_dec_start = get_time();
m_dec_value = v;
break;
}
case SPU_WrEventMask:
{
m_event_mask = v;
if (v & ~(SPU_EVENT_IMPLEMENTED)) LOG_ERROR(Log::SPU, "SPU_WrEventMask: unsupported event masked (0x%x)");
break;
}
case SPU_WrEventAck:
{
m_events &= ~v;
break;
}
default:
{
LOG_ERROR(Log::SPU, "%s error (v=0x%x): unknown/illegal channel (%d [%s]).", __FUNCTION__, v, ch, spu_ch_name[ch]);
break;
}
}
if (Emu.IsStopped()) LOG_WARNING(Log::SPU, "%s(%s) aborted", __FUNCTION__, spu_ch_name[ch]);
}
void SPUThread::ReadChannel(u128& r, u32 ch)
{
r.clear();
u32& v = r._u32[3];
switch (ch)
{
case SPU_RdSRR0:
v = SRR0;
break;
case SPU_RdInMbox:
{
while (!SPU.In_MBox.Pop(v) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
break;
}
case MFC_RdTagStat:
{
while (!MFC1.TagStatus.Pop(v) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
break;
}
case MFC_RdTagMask:
{
v = MFC1.QueryMask.GetValue();
break;
}
case SPU_RdSigNotify1:
{
if (cfg.value & 1)
{
while (!SPU.SNR[0].Pop_XCHG(v) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
}
else
{
while (!SPU.SNR[0].Pop(v) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
}
break;
}
case SPU_RdSigNotify2:
{
if (cfg.value & 2)
{
while (!SPU.SNR[1].Pop_XCHG(v) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
}
else
{
while (!SPU.SNR[1].Pop(v) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
}
break;
}
case MFC_RdAtomicStat:
{
while (!MFC1.AtomicStat.Pop(v) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
break;
}
case MFC_RdListStallStat:
{
while (!StallStat.Pop(v) && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
break;
}
case SPU_RdDec:
{
v = m_dec_value - (u32)(get_time() - m_dec_start);
break;
}
case SPU_RdEventMask:
{
v = m_event_mask;
break;
}
case SPU_RdEventStat:
{
while (!CheckEvents() && !Emu.IsStopped())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
v = m_events & m_event_mask;
break;
}
case SPU_RdMachStat:
{
v = 1; // hack (not isolated, interrupts enabled)
// TODO: check value
break;
}
default:
{
LOG_ERROR(Log::SPU, "%s error: unknown/illegal channel (%d [%s]).", __FUNCTION__, ch, spu_ch_name[ch]);
break;
}
}
if (Emu.IsStopped()) LOG_WARNING(Log::SPU, "%s(%s) aborted", __FUNCTION__, spu_ch_name[ch]);
//LOG_NOTICE(Log::SPU, "%s(%s) -> 0x%x", __FUNCTION__, spu_ch_name[ch], v);
}
void SPUThread::StopAndSignal(u32 code)
{
SetExitStatus(code); // exit code (not status)
// TODO: process interrupts for RawSPU
switch (code)
{
case 0x001:
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
break;
}
case 0x002:
{
FastStop();
break;
}
case 0x003:
{
GPR[3]._u64[1] = m_code3_func(*this);
break;
}
case 0x110:
{
/* ===== sys_spu_thread_receive_event ===== */
u32 spuq = 0;
if (!SPU.Out_MBox.Pop(spuq))
{
LOG_ERROR(Log::SPU, "sys_spu_thread_receive_event: cannot read Out_MBox");
SPU.In_MBox.PushUncond(CELL_EINVAL); // ???
return;
}
if (SPU.In_MBox.GetCount())
{
LOG_ERROR(Log::SPU, "sys_spu_thread_receive_event(spuq=0x%x): In_MBox is not empty", spuq);
SPU.In_MBox.PushUncond(CELL_EBUSY); // ???
return;
}
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(Log::SPU, "sys_spu_thread_receive_event(spuq=0x%x)", spuq);
}
std::shared_ptr<EventQueue> eq;
if (!SPUQs.GetEventQueue(FIX_SPUQ(spuq), eq))
{
SPU.In_MBox.PushUncond(CELL_EINVAL); // TODO: check error value
return;
}
u32 tid = GetId();
eq->sq.push(tid, eq->protocol); // add thread to sleep queue
while (true)
{
u32 old_owner = eq->owner.compare_and_swap(0, tid);
switch (s32 res = old_owner ? (old_owner == tid ? 1 : 2) : 0)
{
case 0:
{
const u32 next = eq->events.count() ? eq->sq.signal(eq->protocol) : 0;
if (next != tid)
{
if (!eq->owner.compare_and_swap_test(tid, next))
{
assert(!"sys_spu_thread_receive_event() failed (I)");
}
break;
}
// fallthrough
}
case 1:
{
sys_event_data event;
eq->events.pop(event);
if (!eq->owner.compare_and_swap_test(tid, 0))
{
assert(!"sys_spu_thread_receive_event() failed (II)");
}
SPU.In_MBox.PushUncond(CELL_OK);
SPU.In_MBox.PushUncond((u32)event.data1);
SPU.In_MBox.PushUncond((u32)event.data2);
SPU.In_MBox.PushUncond((u32)event.data3);
if (!eq->sq.invalidate(tid, eq->protocol) && !eq->sq.pop(tid, eq->protocol))
{
assert(!"sys_spu_thread_receive_event() failed (receiving)");
}
return;
}
}
if (!~old_owner)
{
if (!eq->sq.invalidate(tid, eq->protocol))
{
assert(!"sys_spu_thread_receive_event() failed (cancelling)");
}
SPU.In_MBox.PushUncond(CELL_ECANCELED);
return;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (Emu.IsStopped())
{
LOG_WARNING(Log::SPU, "sys_spu_thread_receive_event(spuq=0x%x) aborted", spuq);
return;
}
}
break;
}
case 0x101:
{
/* ===== sys_spu_thread_group_exit ===== */
if (!group)
{
LOG_ERROR(Log::SPU, "sys_spu_thread_group_exit(): group not set");
break;
}
else if (!SPU.Out_MBox.GetCount())
{
LOG_ERROR(Log::SPU, "sys_spu_thread_group_exit(): Out_MBox is empty");
}
else if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(Log::SPU, "sys_spu_thread_group_exit(status=0x%x)", SPU.Out_MBox.GetValue());
}
group->m_group_exit = true;
group->m_exit_status = SPU.Out_MBox.GetValue();
for (auto& v : group->list)
{
if (std::shared_ptr<CPUThread> t = Emu.GetCPU().GetThread(v))
{
t->Stop();
}
}
break;
}
case 0x102:
{
/* ===== sys_spu_thread_exit ===== */
if (!SPU.Out_MBox.GetCount())
{
LOG_ERROR(Log::SPU, "sys_spu_thread_exit(): Out_MBox is empty");
}
else if (Ini.HLELogging.GetValue())
{
// the real exit status
LOG_NOTICE(Log::SPU, "sys_spu_thread_exit(status=0x%x)", SPU.Out_MBox.GetValue());
}
SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_STOP);
Stop();
break;
}
default:
if (!SPU.Out_MBox.GetCount())
{
LOG_ERROR(Log::SPU, "Unknown STOP code: 0x%x (no message)", code);
}
else
{
LOG_ERROR(Log::SPU, "Unknown STOP code: 0x%x (message=0x%x)", code, SPU.Out_MBox.GetValue());
}
Emu.Pause();
break;
}
}
spu_thread::spu_thread(u32 entry, const std::string& name, u32 stack_size, u32 prio)
{
thread = &Emu.GetCPU().AddThread(CPU_THREAD_SPU);
thread->SetName(name);
thread->SetEntry(entry);
thread->SetStackSize(stack_size ? stack_size : Emu.GetInfo().GetProcParam().primary_stacksize);
thread->SetPrio(prio ? prio : Emu.GetInfo().GetProcParam().primary_prio);
argc = 0;
}