mirror of
https://github.com/RPCS3/rpcs3.git
synced 2025-07-03 13:31:27 +12:00
546 lines
14 KiB
C++
546 lines
14 KiB
C++
#include "stdafx.h"
|
|
#include "ProgramStateCache.h"
|
|
#include "Emu/system_config.h"
|
|
|
|
#include <stack>
|
|
#include "util/v128.hpp"
|
|
|
|
using namespace program_hash_util;
|
|
|
|
usz vertex_program_utils::get_vertex_program_ucode_hash(const RSXVertexProgram &program)
|
|
{
|
|
// 64-bit Fowler/Noll/Vo FNV-1a hash code
|
|
usz hash = 0xCBF29CE484222325ULL;
|
|
const void* instbuffer = program.data.data();
|
|
usz instIndex = 0;
|
|
|
|
for (unsigned i = 0; i < program.data.size() / 4; i++)
|
|
{
|
|
if (program.instruction_mask[i])
|
|
{
|
|
const auto inst = v128::loadu(instbuffer, instIndex);
|
|
hash ^= inst._u64[0];
|
|
hash += (hash << 1) + (hash << 4) + (hash << 5) + (hash << 7) + (hash << 8) + (hash << 40);
|
|
hash ^= inst._u64[1];
|
|
hash += (hash << 1) + (hash << 4) + (hash << 5) + (hash << 7) + (hash << 8) + (hash << 40);
|
|
}
|
|
|
|
instIndex++;
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
vertex_program_utils::vertex_program_metadata vertex_program_utils::analyse_vertex_program(const u32* data, u32 entry, RSXVertexProgram& dst_prog)
|
|
{
|
|
vertex_program_utils::vertex_program_metadata result{};
|
|
//u32 last_instruction_address = 0;
|
|
//u32 first_instruction_address = entry;
|
|
|
|
std::bitset<rsx::max_vertex_program_instructions> instructions_to_patch;
|
|
std::pair<u32, u32> instruction_range{ umax, 0 };
|
|
bool has_branch_instruction = false;
|
|
std::stack<u32> call_stack;
|
|
|
|
D3 d3;
|
|
D2 d2;
|
|
D1 d1;
|
|
D0 d0;
|
|
|
|
std::function<void(u32, bool)> walk_function = [&](u32 start, bool fast_exit)
|
|
{
|
|
u32 current_instruction = start;
|
|
std::set<u32> conditional_targets;
|
|
bool has_printed_error = false;
|
|
|
|
while (true)
|
|
{
|
|
ensure(current_instruction < rsx::max_vertex_program_instructions);
|
|
|
|
if (result.instruction_mask[current_instruction])
|
|
{
|
|
if (!fast_exit)
|
|
{
|
|
if (!has_printed_error)
|
|
{
|
|
// This can be harmless if a dangling RET was encountered before
|
|
rsx_log.error("vp_analyser: Possible infinite loop detected");
|
|
has_printed_error = true;
|
|
}
|
|
current_instruction++;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
// Block walk, looking for earliest exit
|
|
break;
|
|
}
|
|
}
|
|
|
|
const auto instruction = v128::loadu(&data[current_instruction * 4]);
|
|
d1.HEX = instruction._u32[1];
|
|
d2.HEX = instruction._u32[2];
|
|
d3.HEX = instruction._u32[3];
|
|
|
|
// Touch current instruction
|
|
result.instruction_mask[current_instruction] = true;
|
|
instruction_range.first = std::min(current_instruction, instruction_range.first);
|
|
instruction_range.second = std::max(current_instruction, instruction_range.second);
|
|
|
|
// Whether to check if the current instruction references an input stream
|
|
auto input_attribute_ref = [&]()
|
|
{
|
|
if (!d1.input_src)
|
|
{
|
|
// It is possible to reference ATTR0, but this is mandatory anyway. No need to explicitly test for it
|
|
return;
|
|
}
|
|
|
|
const auto ref_mask = (1u << d1.input_src);
|
|
if ((result.referenced_inputs_mask & ref_mask) == 0)
|
|
{
|
|
// Type is encoded in the first 2 bits of each block
|
|
const auto src0 = d2.src0l & 0x3;
|
|
const auto src1 = d2.src1 & 0x3;
|
|
const auto src2 = d3.src2l & 0x3;
|
|
|
|
if ((src0 == RSX_VP_REGISTER_TYPE_INPUT) ||
|
|
(src1 == RSX_VP_REGISTER_TYPE_INPUT) ||
|
|
(src2 == RSX_VP_REGISTER_TYPE_INPUT))
|
|
{
|
|
result.referenced_inputs_mask |= ref_mask;
|
|
}
|
|
}
|
|
};
|
|
|
|
auto branch_to = [&](const u32 target)
|
|
{
|
|
input_attribute_ref();
|
|
current_instruction = target;
|
|
};
|
|
|
|
// Basic vec op analysis, must be done before flow analysis
|
|
switch (d1.vec_opcode)
|
|
{
|
|
case RSX_VEC_OPCODE_NOP:
|
|
{
|
|
break;
|
|
}
|
|
case RSX_VEC_OPCODE_TXL:
|
|
{
|
|
result.referenced_textures_mask |= (1 << d2.tex_num);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
input_attribute_ref();
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool static_jump = false;
|
|
bool function_call = true;
|
|
|
|
switch (d1.sca_opcode)
|
|
{
|
|
case RSX_SCA_OPCODE_NOP:
|
|
{
|
|
break;
|
|
}
|
|
case RSX_SCA_OPCODE_BRI:
|
|
{
|
|
d0.HEX = instruction._u32[0];
|
|
static_jump = (d0.cond == 0x7);
|
|
[[fallthrough]];
|
|
}
|
|
case RSX_SCA_OPCODE_BRB:
|
|
{
|
|
function_call = false;
|
|
[[fallthrough]];
|
|
}
|
|
case RSX_SCA_OPCODE_CAL:
|
|
case RSX_SCA_OPCODE_CLI:
|
|
case RSX_SCA_OPCODE_CLB:
|
|
{
|
|
// Need to patch the jump address to be consistent wherever the program is located
|
|
instructions_to_patch[current_instruction] = true;
|
|
has_branch_instruction = true;
|
|
|
|
d0.HEX = instruction._u32[0];
|
|
const u32 jump_address = (d0.iaddrh2 << 9) | (d2.iaddrh << 3) | d3.iaddrl;
|
|
|
|
if (function_call)
|
|
{
|
|
call_stack.push(current_instruction + 1);
|
|
branch_to(jump_address);
|
|
continue;
|
|
}
|
|
else if (static_jump)
|
|
{
|
|
// NOTE: This will skip potential jump target blocks between current->target
|
|
branch_to(jump_address);
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
// Set possible end address and proceed as usual
|
|
conditional_targets.emplace(jump_address);
|
|
instruction_range.second = std::max(jump_address, instruction_range.second);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case RSX_SCA_OPCODE_RET:
|
|
{
|
|
if (call_stack.empty())
|
|
{
|
|
rsx_log.error("vp_analyser: RET found outside subroutine call");
|
|
}
|
|
else
|
|
{
|
|
branch_to(call_stack.top());
|
|
call_stack.pop();
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
input_attribute_ref();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((d3.end && (fast_exit || current_instruction >= instruction_range.second)) ||
|
|
(current_instruction + 1) == rsx::max_vertex_program_instructions)
|
|
{
|
|
break;
|
|
}
|
|
|
|
current_instruction++;
|
|
}
|
|
|
|
for (const u32 target : conditional_targets)
|
|
{
|
|
if (!result.instruction_mask[target])
|
|
{
|
|
walk_function(target, true);
|
|
}
|
|
}
|
|
};
|
|
|
|
if (g_cfg.video.debug_program_analyser)
|
|
{
|
|
fs::file dump(fs::get_cache_dir() + "shaderlog/vp_analyser.bin", fs::rewrite);
|
|
dump.write(&entry, 4);
|
|
dump.write(data, rsx::max_vertex_program_instructions * 16);
|
|
dump.close();
|
|
}
|
|
|
|
walk_function(entry, false);
|
|
|
|
const u32 instruction_count = (instruction_range.second - instruction_range.first + 1);
|
|
result.ucode_length = instruction_count * 16;
|
|
|
|
dst_prog.base_address = instruction_range.first;
|
|
dst_prog.entry = entry;
|
|
dst_prog.data.resize(instruction_count * 4);
|
|
dst_prog.instruction_mask = (result.instruction_mask >> instruction_range.first);
|
|
|
|
if (!has_branch_instruction)
|
|
{
|
|
ensure(instruction_range.first == entry);
|
|
std::memcpy(dst_prog.data.data(), data + (instruction_range.first * 4), result.ucode_length);
|
|
}
|
|
else
|
|
{
|
|
for (u32 i = instruction_range.first, count = 0; i <= instruction_range.second; ++i, ++count)
|
|
{
|
|
const u32* instruction = &data[i * 4];
|
|
u32* dst = &dst_prog.data[count * 4];
|
|
|
|
if (result.instruction_mask[i])
|
|
{
|
|
v128::storeu(v128::loadu(instruction), dst);
|
|
|
|
if (instructions_to_patch[i])
|
|
{
|
|
d0.HEX = dst[0];
|
|
d2.HEX = dst[2];
|
|
d3.HEX = dst[3];
|
|
|
|
u32 address = (d0.iaddrh2 << 9) | (d2.iaddrh << 3) | d3.iaddrl;
|
|
address -= instruction_range.first;
|
|
|
|
d0.iaddrh2 = (address >> 9) & 0x1;
|
|
d2.iaddrh = (address >> 3) & 0x3F;
|
|
d3.iaddrl = (address & 0x7);
|
|
dst[0] = d0.HEX;
|
|
dst[2] = d2.HEX;
|
|
dst[3] = d3.HEX;
|
|
|
|
dst_prog.jump_table.emplace(address);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
v128::storeu({}, dst);
|
|
}
|
|
}
|
|
|
|
// Verification
|
|
for (const u32 target : dst_prog.jump_table)
|
|
{
|
|
if (!dst_prog.instruction_mask[target])
|
|
{
|
|
rsx_log.error("vp_analyser: Failed, branch target 0x%x was not resolved", target);
|
|
}
|
|
}
|
|
}
|
|
|
|
result.referenced_inputs_mask |= 1u; // VPOS is always enabled, else no rendering can happen
|
|
return result;
|
|
}
|
|
|
|
usz vertex_program_storage_hash::operator()(const RSXVertexProgram &program) const
|
|
{
|
|
usz hash = vertex_program_utils::get_vertex_program_ucode_hash(program);
|
|
hash ^= program.output_mask;
|
|
hash ^= program.texture_state.texture_dimensions;
|
|
hash ^= program.texture_state.multisampled_textures;
|
|
return hash;
|
|
}
|
|
|
|
bool vertex_program_compare::operator()(const RSXVertexProgram &binary1, const RSXVertexProgram &binary2) const
|
|
{
|
|
if (binary1.output_mask != binary2.output_mask)
|
|
return false;
|
|
if (binary1.texture_state != binary2.texture_state)
|
|
return false;
|
|
if (binary1.data.size() != binary2.data.size())
|
|
return false;
|
|
if (binary1.jump_table != binary2.jump_table)
|
|
return false;
|
|
|
|
const void* instBuffer1 = binary1.data.data();
|
|
const void* instBuffer2 = binary2.data.data();
|
|
usz instIndex = 0;
|
|
for (unsigned i = 0; i < binary1.data.size() / 4; i++)
|
|
{
|
|
const auto active = binary1.instruction_mask[instIndex];
|
|
if (active != binary2.instruction_mask[instIndex])
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (active)
|
|
{
|
|
const auto inst1 = v128::loadu(instBuffer1, instIndex);
|
|
const auto inst2 = v128::loadu(instBuffer2, instIndex);
|
|
if (inst1._u ^ inst2._u)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
instIndex++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool fragment_program_utils::is_constant(u32 sourceOperand)
|
|
{
|
|
return ((sourceOperand >> 8) & 0x3) == 2;
|
|
}
|
|
|
|
usz fragment_program_utils::get_fragment_program_ucode_size(const void* ptr)
|
|
{
|
|
const auto instBuffer = ptr;
|
|
usz instIndex = 0;
|
|
while (true)
|
|
{
|
|
const v128 inst = v128::loadu(instBuffer, instIndex);
|
|
bool isSRC0Constant = is_constant(inst._u32[1]);
|
|
bool isSRC1Constant = is_constant(inst._u32[2]);
|
|
bool isSRC2Constant = is_constant(inst._u32[3]);
|
|
bool end = (inst._u32[0] >> 8) & 0x1;
|
|
|
|
if (isSRC0Constant || isSRC1Constant || isSRC2Constant)
|
|
{
|
|
instIndex += 2;
|
|
if (end)
|
|
return instIndex * 4 * 4;
|
|
continue;
|
|
}
|
|
instIndex++;
|
|
if (end)
|
|
return (instIndex)* 4 * 4;
|
|
}
|
|
}
|
|
|
|
fragment_program_utils::fragment_program_metadata fragment_program_utils::analyse_fragment_program(const void* ptr)
|
|
{
|
|
fragment_program_utils::fragment_program_metadata result{};
|
|
result.program_start_offset = -1;
|
|
const auto instBuffer = ptr;
|
|
s32 index = 0;
|
|
|
|
while (true)
|
|
{
|
|
const auto inst = v128::loadu(instBuffer, index);
|
|
|
|
// Check for opcode high bit which indicates a branch instructions (opcode 0x40...0x45)
|
|
if (inst._u32[2] & (1 << 23))
|
|
{
|
|
// NOTE: Jump instructions are not yet proved to work outside of loops and if/else blocks
|
|
// Otherwise we would need to follow the execution chain
|
|
result.has_branch_instructions = true;
|
|
}
|
|
else
|
|
{
|
|
const u32 opcode = (inst._u32[0] >> 16) & 0x3F;
|
|
if (opcode)
|
|
{
|
|
if (result.program_start_offset == umax)
|
|
{
|
|
result.program_start_offset = index * 16;
|
|
}
|
|
|
|
switch (opcode)
|
|
{
|
|
case RSX_FP_OPCODE_TEX:
|
|
case RSX_FP_OPCODE_TEXBEM:
|
|
case RSX_FP_OPCODE_TXP:
|
|
case RSX_FP_OPCODE_TXPBEM:
|
|
case RSX_FP_OPCODE_TXD:
|
|
case RSX_FP_OPCODE_TXB:
|
|
case RSX_FP_OPCODE_TXL:
|
|
{
|
|
//Bits 17-20 of word 1, swapped within u16 sections
|
|
//Bits 16-23 are swapped into the upper 8 bits (24-31)
|
|
const u32 tex_num = (inst._u32[0] >> 25) & 15;
|
|
result.referenced_textures_mask |= (1 << tex_num);
|
|
break;
|
|
}
|
|
case RSX_FP_OPCODE_PK4:
|
|
case RSX_FP_OPCODE_UP4:
|
|
case RSX_FP_OPCODE_PK2:
|
|
case RSX_FP_OPCODE_UP2:
|
|
case RSX_FP_OPCODE_PKB:
|
|
case RSX_FP_OPCODE_UPB:
|
|
case RSX_FP_OPCODE_PK16:
|
|
case RSX_FP_OPCODE_UP16:
|
|
case RSX_FP_OPCODE_PKG:
|
|
case RSX_FP_OPCODE_UPG:
|
|
{
|
|
result.has_pack_instructions = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_constant(inst._u32[1]) || is_constant(inst._u32[2]) || is_constant(inst._u32[3]))
|
|
{
|
|
//Instruction references constant, skip one slot occupied by data
|
|
index++;
|
|
result.program_ucode_length += 16;
|
|
result.program_constants_buffer_length += 16;
|
|
}
|
|
}
|
|
|
|
if (result.program_start_offset != umax)
|
|
{
|
|
result.program_ucode_length += 16;
|
|
}
|
|
|
|
if ((inst._u32[0] >> 8) & 0x1)
|
|
{
|
|
if (result.program_start_offset == umax)
|
|
{
|
|
result.program_start_offset = index * 16;
|
|
result.program_ucode_length = 16;
|
|
result.is_nop_shader = true;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
index++;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
usz fragment_program_utils::get_fragment_program_ucode_hash(const RSXFragmentProgram& program)
|
|
{
|
|
// 64-bit Fowler/Noll/Vo FNV-1a hash code
|
|
usz hash = 0xCBF29CE484222325ULL;
|
|
const void* instbuffer = program.get_data();
|
|
usz instIndex = 0;
|
|
while (true)
|
|
{
|
|
const auto inst = v128::loadu(instbuffer, instIndex);
|
|
hash ^= inst._u64[0];
|
|
hash += (hash << 1) + (hash << 4) + (hash << 5) + (hash << 7) + (hash << 8) + (hash << 40);
|
|
hash ^= inst._u64[1];
|
|
hash += (hash << 1) + (hash << 4) + (hash << 5) + (hash << 7) + (hash << 8) + (hash << 40);
|
|
instIndex++;
|
|
// Skip constants
|
|
if (fragment_program_utils::is_constant(inst._u32[1]) ||
|
|
fragment_program_utils::is_constant(inst._u32[2]) ||
|
|
fragment_program_utils::is_constant(inst._u32[3]))
|
|
instIndex++;
|
|
|
|
bool end = (inst._u32[0] >> 8) & 0x1;
|
|
if (end)
|
|
return hash;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
usz fragment_program_storage_hash::operator()(const RSXFragmentProgram& program) const
|
|
{
|
|
usz hash = fragment_program_utils::get_fragment_program_ucode_hash(program);
|
|
hash ^= program.ctrl;
|
|
hash ^= +program.two_sided_lighting;
|
|
hash ^= program.texture_state.texture_dimensions;
|
|
hash ^= program.texture_state.shadow_textures;
|
|
hash ^= program.texture_state.redirected_textures;
|
|
hash ^= program.texture_state.multisampled_textures;
|
|
hash ^= program.texcoord_control_mask;
|
|
|
|
return hash;
|
|
}
|
|
|
|
bool fragment_program_compare::operator()(const RSXFragmentProgram& binary1, const RSXFragmentProgram& binary2) const
|
|
{
|
|
if (binary1.ctrl != binary2.ctrl || binary1.texture_state != binary2.texture_state ||
|
|
binary1.texcoord_control_mask != binary2.texcoord_control_mask ||
|
|
binary1.two_sided_lighting != binary2.two_sided_lighting)
|
|
return false;
|
|
|
|
const void* instBuffer1 = binary1.get_data();
|
|
const void* instBuffer2 = binary2.get_data();
|
|
usz instIndex = 0;
|
|
while (true)
|
|
{
|
|
const auto inst1 = v128::loadu(instBuffer1, instIndex);
|
|
const auto inst2 = v128::loadu(instBuffer2, instIndex);
|
|
|
|
if (inst1._u ^ inst2._u)
|
|
return false;
|
|
|
|
instIndex++;
|
|
// Skip constants
|
|
if (fragment_program_utils::is_constant(inst1._u32[1]) ||
|
|
fragment_program_utils::is_constant(inst1._u32[2]) ||
|
|
fragment_program_utils::is_constant(inst1._u32[3]))
|
|
instIndex++;
|
|
|
|
bool end = ((inst1._u32[0] >> 8) & 0x1) && ((inst2._u32[0] >> 8) & 0x1);
|
|
if (end)
|
|
return true;
|
|
}
|
|
}
|