rpcs3/rpcs3/Emu/Cell/SPUInterpreter.h
Alexandro Sánchez Bach 1e53c7f244 Reverted 'Unimpl.' warning on some SPU instr.
I'm sorry. I deserve punishment and torture for this.
2014-03-01 20:29:26 +01:00

1521 lines
44 KiB
C++

#pragma once
#include "Emu/Cell/SPUOpcodes.h"
#include "Emu/Memory/Memory.h"
#include "Emu/Cell/SPUThread.h"
#include "Emu/SysCalls/SysCalls.h"
#define UNIMPLEMENTED() UNK(__FUNCTION__)
/* typedef union _CRT_ALIGN(16) __u32x4 {
u32 _u32[4];
__m128i m128i;
__m128 m128;
__m128d m128d;
} __u32x4; */
class SPUInterpreter : public SPUOpcodes
{
private:
SPUThread& CPU;
public:
SPUInterpreter(SPUThread& cpu) : CPU(cpu)
{
}
private:
void SysCall()
{
}
//0 - 10
void STOP(u32 code)
{
CPU.SetExitStatus(code); // exit code (not status)
switch (code)
{
case 0x110: /* ===== sys_spu_thread_receive_event ===== */
{
u32 spuq = 0;
if (!CPU.SPU.Out_MBox.Pop(spuq))
{
ConLog.Error("sys_spu_thread_receive_event: cannot read Out_MBox");
CPU.SPU.In_MBox.PushUncond(CELL_EINVAL); // ???
return;
}
if (CPU.SPU.In_MBox.GetCount())
{
ConLog.Error("sys_spu_thread_receive_event(spuq=0x%x): In_MBox is not empty", spuq);
CPU.SPU.In_MBox.PushUncond(CELL_EBUSY); // ???
return;
}
if (Ini.HLELogging.GetValue())
{
ConLog.Write("sys_spu_thread_receive_event(spuq=0x%x)", spuq);
}
EventQueue* eq;
if (!CPU.SPUQs.GetEventQueue(FIX_SPUQ(spuq), eq))
{
CPU.SPU.In_MBox.PushUncond(CELL_EINVAL); // TODO: check error value
return;
}
u32 tid = GetCurrentSPUThread().GetId();
eq->sq.push(tid); // add thread to sleep queue
while (true)
{
switch (eq->owner.trylock(tid))
{
case SMR_OK:
if (!eq->events.count())
{
eq->owner.unlock(tid);
break;
}
else
{
u32 next = (eq->protocol == SYS_SYNC_FIFO) ? eq->sq.pop() : eq->sq.pop_prio();
if (next != tid)
{
eq->owner.unlock(tid, next);
break;
}
}
case SMR_SIGNAL:
{
sys_event_data event;
eq->events.pop(event);
eq->owner.unlock(tid);
CPU.SPU.In_MBox.PushUncond(CELL_OK);
CPU.SPU.In_MBox.PushUncond(event.data1);
CPU.SPU.In_MBox.PushUncond(event.data2);
CPU.SPU.In_MBox.PushUncond(event.data3);
return;
}
case SMR_FAILED: break;
default: eq->sq.invalidate(tid); CPU.SPU.In_MBox.PushUncond(CELL_ECANCELED); return;
}
Sleep(1);
if (Emu.IsStopped())
{
ConLog.Warning("sys_spu_thread_receive_event(spuq=0x%x) aborted", spuq);
eq->sq.invalidate(tid);
return;
}
}
}
break;
case 0x102: default:
if (!CPU.SPU.Out_MBox.GetCount()) // the real exit status
{
ConLog.Warning("STOP: 0x%x (no message)", code);
}
else if (Ini.HLELogging.GetValue() || code != 0x102)
{
ConLog.Warning("STOP: 0x%x (message=0x%x)", code, CPU.SPU.Out_MBox.GetValue());
}
CPU.Stop();
break;
}
}
void LNOP()
{
}
void SYNC(u32 Cbit)
{
_mm_mfence();
}
void DSYNC()
{
_mm_mfence();
}
void MFSPR(u32 rt, u32 sa)
{
//If register is a dummy register (register labeled 0x0)
if(sa == 0x0)
{
CPU.GPR[rt]._u128.hi = 0x0;
CPU.GPR[rt]._u128.lo = 0x0;
}
else
{
CPU.GPR[rt]._u128.hi = CPU.SPR[sa]._u128.hi;
CPU.GPR[rt]._u128.lo = CPU.SPR[sa]._u128.lo;
}
}
void RDCH(u32 rt, u32 ra)
{
CPU.ReadChannel(CPU.GPR[rt], ra);
}
void RCHCNT(u32 rt, u32 ra)
{
CPU.GPR[rt].Reset();
CPU.GPR[rt]._u32[3] = CPU.GetChannelCount(ra);
}
void SF(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = CPU.GPR[rb]._u32[0] - CPU.GPR[ra]._u32[0];
CPU.GPR[rt]._u32[1] = CPU.GPR[rb]._u32[1] - CPU.GPR[ra]._u32[1];
CPU.GPR[rt]._u32[2] = CPU.GPR[rb]._u32[2] - CPU.GPR[ra]._u32[2];
CPU.GPR[rt]._u32[3] = CPU.GPR[rb]._u32[3] - CPU.GPR[ra]._u32[3];
}
void OR(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = CPU.GPR[ra]._u32[0] | CPU.GPR[rb]._u32[0];
CPU.GPR[rt]._u32[1] = CPU.GPR[ra]._u32[1] | CPU.GPR[rb]._u32[1];
CPU.GPR[rt]._u32[2] = CPU.GPR[ra]._u32[2] | CPU.GPR[rb]._u32[2];
CPU.GPR[rt]._u32[3] = CPU.GPR[ra]._u32[3] | CPU.GPR[rb]._u32[3];
}
void BG(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = CPU.GPR[ra]._u32[0] > CPU.GPR[rb]._u32[0] ? 0 : 1;
CPU.GPR[rt]._u32[1] = CPU.GPR[ra]._u32[1] > CPU.GPR[rb]._u32[1] ? 0 : 1;
CPU.GPR[rt]._u32[2] = CPU.GPR[ra]._u32[2] > CPU.GPR[rb]._u32[2] ? 0 : 1;
CPU.GPR[rt]._u32[3] = CPU.GPR[ra]._u32[3] > CPU.GPR[rb]._u32[3] ? 0 : 1;
}
void SFH(u32 rt, u32 ra, u32 rb)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = CPU.GPR[rb]._u16[h] - CPU.GPR[ra]._u16[h];
}
void NOR(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = ~(CPU.GPR[ra]._u32[0] | CPU.GPR[rb]._u32[0]);
CPU.GPR[rt]._u32[1] = ~(CPU.GPR[ra]._u32[1] | CPU.GPR[rb]._u32[1]);
CPU.GPR[rt]._u32[2] = ~(CPU.GPR[ra]._u32[2] | CPU.GPR[rb]._u32[2]);
CPU.GPR[rt]._u32[3] = ~(CPU.GPR[ra]._u32[3] | CPU.GPR[rb]._u32[3]);
}
void ABSDB(u32 rt, u32 ra, u32 rb)
{
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._u8[b] = CPU.GPR[rb]._u8[b] > CPU.GPR[ra]._u8[b] ? CPU.GPR[rb]._u8[b] - CPU.GPR[ra]._u8[b] : CPU.GPR[ra]._u8[b] - CPU.GPR[rb]._u8[b];
}
void ROT(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = (CPU.GPR[ra]._u32[0] << (CPU.GPR[rb]._u32[0] & 0x1f)) | (CPU.GPR[ra]._u32[0] >> (32 - (CPU.GPR[rb]._u32[0] & 0x1f)));
CPU.GPR[rt]._u32[1] = (CPU.GPR[ra]._u32[1] << (CPU.GPR[rb]._u32[1] & 0x1f)) | (CPU.GPR[ra]._u32[1] >> (32 - (CPU.GPR[rb]._u32[1] & 0x1f)));
CPU.GPR[rt]._u32[2] = (CPU.GPR[ra]._u32[2] << (CPU.GPR[rb]._u32[2] & 0x1f)) | (CPU.GPR[ra]._u32[2] >> (32 - (CPU.GPR[rb]._u32[2] & 0x1f)));
CPU.GPR[rt]._u32[3] = (CPU.GPR[ra]._u32[3] << (CPU.GPR[rb]._u32[3] & 0x1f)) | (CPU.GPR[ra]._u32[3] >> (32 - (CPU.GPR[rb]._u32[3] & 0x1f)));
}
void ROTM(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = ((0 - CPU.GPR[rb]._u32[0]) % 64) < 32 ? CPU.GPR[ra]._u32[0] >> ((0 - CPU.GPR[rb]._u32[0]) % 64) : 0;
CPU.GPR[rt]._u32[1] = ((0 - CPU.GPR[rb]._u32[1]) % 64) < 32 ? CPU.GPR[ra]._u32[1] >> ((0 - CPU.GPR[rb]._u32[1]) % 64) : 0;
CPU.GPR[rt]._u32[2] = ((0 - CPU.GPR[rb]._u32[2]) % 64) < 32 ? CPU.GPR[ra]._u32[2] >> ((0 - CPU.GPR[rb]._u32[2]) % 64) : 0;
CPU.GPR[rt]._u32[3] = ((0 - CPU.GPR[rb]._u32[3]) % 64) < 32 ? CPU.GPR[ra]._u32[3] >> ((0 - CPU.GPR[rb]._u32[3]) % 64) : 0;
}
void ROTMA(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._i32[0] = ((0 - CPU.GPR[rb]._i32[0]) % 64) < 32 ? CPU.GPR[ra]._i32[0] >> ((0 - CPU.GPR[rb]._i32[0]) % 64) : CPU.GPR[ra]._i32[0] >> 31;
CPU.GPR[rt]._i32[1] = ((0 - CPU.GPR[rb]._i32[1]) % 64) < 32 ? CPU.GPR[ra]._i32[1] >> ((0 - CPU.GPR[rb]._i32[1]) % 64) : CPU.GPR[ra]._i32[1] >> 31;
CPU.GPR[rt]._i32[2] = ((0 - CPU.GPR[rb]._i32[2]) % 64) < 32 ? CPU.GPR[ra]._i32[2] >> ((0 - CPU.GPR[rb]._i32[2]) % 64) : CPU.GPR[ra]._i32[2] >> 31;
CPU.GPR[rt]._i32[3] = ((0 - CPU.GPR[rb]._i32[3]) % 64) < 32 ? CPU.GPR[ra]._i32[3] >> ((0 - CPU.GPR[rb]._i32[3]) % 64) : CPU.GPR[ra]._i32[3] >> 31;
}
void SHL(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = (CPU.GPR[rb]._u32[0] & 0x3f) > 31 ? 0 : CPU.GPR[ra]._u32[0] << (CPU.GPR[rb]._u32[0] & 0x3f);
CPU.GPR[rt]._u32[1] = (CPU.GPR[rb]._u32[1] & 0x3f) > 31 ? 0 : CPU.GPR[ra]._u32[1] << (CPU.GPR[rb]._u32[1] & 0x3f);
CPU.GPR[rt]._u32[2] = (CPU.GPR[rb]._u32[2] & 0x3f) > 31 ? 0 : CPU.GPR[ra]._u32[2] << (CPU.GPR[rb]._u32[2] & 0x3f);
CPU.GPR[rt]._u32[3] = (CPU.GPR[rb]._u32[3] & 0x3f) > 31 ? 0 : CPU.GPR[ra]._u32[3] << (CPU.GPR[rb]._u32[3] & 0x3f);
}
void ROTH(u32 rt, u32 ra, u32 rb)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = (CPU.GPR[ra]._u16[h] << (CPU.GPR[rb]._u16[h] & 0xf)) | (CPU.GPR[ra]._u16[h] >> (16 - (CPU.GPR[rb]._u16[h] & 0xf)));
}
void ROTHM(u32 rt, u32 ra, u32 rb)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = ((0 - CPU.GPR[rb]._u16[h]) % 32) < 16 ? CPU.GPR[ra]._u16[h] >> ((0 - CPU.GPR[rb]._u16[h]) % 32) : 0;
}
void ROTMAH(u32 rt, u32 ra, u32 rb)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._i16[h] = ((0 - CPU.GPR[rb]._i16[h]) % 32) < 16 ? CPU.GPR[ra]._i16[h] >> ((0 - CPU.GPR[rb]._i16[h]) % 32) : CPU.GPR[ra]._i16[h] >> 15;
}
void SHLH(u32 rt, u32 ra, u32 rb)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = (CPU.GPR[rb]._u16[h] & 0x1f) > 15 ? 0 : CPU.GPR[ra]._u16[h] << (CPU.GPR[rb]._u16[h] & 0x1f);
}
void ROTI(u32 rt, u32 ra, s32 i7)
{
const int nRot = i7 & 0x1f;
CPU.GPR[rt]._u32[0] = (CPU.GPR[ra]._u32[0] << nRot) | (CPU.GPR[ra]._u32[0] >> (32 - nRot));
CPU.GPR[rt]._u32[1] = (CPU.GPR[ra]._u32[1] << nRot) | (CPU.GPR[ra]._u32[1] >> (32 - nRot));
CPU.GPR[rt]._u32[2] = (CPU.GPR[ra]._u32[2] << nRot) | (CPU.GPR[ra]._u32[2] >> (32 - nRot));
CPU.GPR[rt]._u32[3] = (CPU.GPR[ra]._u32[3] << nRot) | (CPU.GPR[ra]._u32[3] >> (32 - nRot));
}
void ROTMI(u32 rt, u32 ra, s32 i7)
{
const int nRot = (0 - i7) % 64;
CPU.GPR[rt]._u32[0] = nRot < 32 ? CPU.GPR[ra]._u32[0] >> nRot : 0;
CPU.GPR[rt]._u32[1] = nRot < 32 ? CPU.GPR[ra]._u32[1] >> nRot : 0;
CPU.GPR[rt]._u32[2] = nRot < 32 ? CPU.GPR[ra]._u32[2] >> nRot : 0;
CPU.GPR[rt]._u32[3] = nRot < 32 ? CPU.GPR[ra]._u32[3] >> nRot : 0;
}
void ROTMAI(u32 rt, u32 ra, s32 i7)
{
const int nRot = (0 - i7) % 64;
CPU.GPR[rt]._i32[0] = nRot < 32 ? CPU.GPR[ra]._i32[0] >> nRot : CPU.GPR[ra]._i32[0] >> 31;
CPU.GPR[rt]._i32[1] = nRot < 32 ? CPU.GPR[ra]._i32[1] >> nRot : CPU.GPR[ra]._i32[1] >> 31;
CPU.GPR[rt]._i32[2] = nRot < 32 ? CPU.GPR[ra]._i32[2] >> nRot : CPU.GPR[ra]._i32[2] >> 31;
CPU.GPR[rt]._i32[3] = nRot < 32 ? CPU.GPR[ra]._i32[3] >> nRot : CPU.GPR[ra]._i32[3] >> 31;
}
void SHLI(u32 rt, u32 ra, s32 i7)
{
const u32 s = i7 & 0x3f;
for (u32 j = 0; j < 4; ++j)
CPU.GPR[rt]._u32[j] = CPU.GPR[ra]._u32[j] << s;
}
void ROTHI(u32 rt, u32 ra, s32 i7)
{
const int nRot = i7 & 0xf;
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = (CPU.GPR[ra]._u16[h] << nRot) | (CPU.GPR[ra]._u16[h] >> (16 - nRot));
}
void ROTHMI(u32 rt, u32 ra, s32 i7)
{
const int nRot = (0 - i7) % 32;
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = nRot < 16 ? CPU.GPR[ra]._u16[h] >> nRot : 0;
}
void ROTMAHI(u32 rt, u32 ra, s32 i7)
{
const int nRot = (0 - i7) % 32;
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._i16[h] = nRot < 16 ? CPU.GPR[ra]._i16[h] >> nRot : CPU.GPR[ra]._i16[h] >> 15;
}
void SHLHI(u32 rt, u32 ra, s32 i7)
{
const int nRot = i7 & 0x1f;
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[0] = nRot > 15 ? 0 : CPU.GPR[ra]._u16[0] << nRot;
}
void A(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = CPU.GPR[ra]._u32[0] + CPU.GPR[rb]._u32[0];
CPU.GPR[rt]._u32[1] = CPU.GPR[ra]._u32[1] + CPU.GPR[rb]._u32[1];
CPU.GPR[rt]._u32[2] = CPU.GPR[ra]._u32[2] + CPU.GPR[rb]._u32[2];
CPU.GPR[rt]._u32[3] = CPU.GPR[ra]._u32[3] + CPU.GPR[rb]._u32[3];
}
void AND(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = CPU.GPR[ra]._u32[0] & CPU.GPR[rb]._u32[0];
CPU.GPR[rt]._u32[1] = CPU.GPR[ra]._u32[1] & CPU.GPR[rb]._u32[1];
CPU.GPR[rt]._u32[2] = CPU.GPR[ra]._u32[2] & CPU.GPR[rb]._u32[2];
CPU.GPR[rt]._u32[3] = CPU.GPR[ra]._u32[3] & CPU.GPR[rb]._u32[3];
}
void CG(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = ((CPU.GPR[ra]._u32[0] + CPU.GPR[rb]._u32[0]) < CPU.GPR[ra]._u32[0]) ? 1 : 0;
CPU.GPR[rt]._u32[1] = ((CPU.GPR[ra]._u32[1] + CPU.GPR[rb]._u32[1]) < CPU.GPR[ra]._u32[1]) ? 1 : 0;
CPU.GPR[rt]._u32[2] = ((CPU.GPR[ra]._u32[2] + CPU.GPR[rb]._u32[2]) < CPU.GPR[ra]._u32[2]) ? 1 : 0;
CPU.GPR[rt]._u32[3] = ((CPU.GPR[ra]._u32[3] + CPU.GPR[rb]._u32[3]) < CPU.GPR[ra]._u32[3]) ? 1 : 0;
}
void AH(u32 rt, u32 ra, u32 rb)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = CPU.GPR[ra]._u16[h] + CPU.GPR[rb]._u16[h];
}
void NAND(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = ~(CPU.GPR[ra]._u32[0] & CPU.GPR[rb]._u32[0]);
CPU.GPR[rt]._u32[1] = ~(CPU.GPR[ra]._u32[1] & CPU.GPR[rb]._u32[1]);
CPU.GPR[rt]._u32[2] = ~(CPU.GPR[ra]._u32[2] & CPU.GPR[rb]._u32[2]);
CPU.GPR[rt]._u32[3] = ~(CPU.GPR[ra]._u32[3] & CPU.GPR[rb]._u32[3]);
}
void AVGB(u32 rt, u32 ra, u32 rb)
{
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._u8[b] = (CPU.GPR[ra]._u8[b] + CPU.GPR[rb]._u8[b] + 1) >> 1;
}
void MTSPR(u32 rt, u32 sa)
{
if(sa != 0)
{
CPU.SPR[sa]._u128.hi = CPU.GPR[rt]._u128.hi;
CPU.SPR[sa]._u128.lo = CPU.GPR[rt]._u128.lo;
}
}
void WRCH(u32 ra, u32 rt)
{
CPU.WriteChannel(ra, CPU.GPR[rt]);
}
void BIZ(u32 rt, u32 ra)
{
if(CPU.GPR[rt]._u32[3] == 0)
CPU.SetBranch(branchTarget(CPU.GPR[ra]._u32[3], 0));
}
void BINZ(u32 rt, u32 ra)
{
if(CPU.GPR[rt]._u32[3] != 0)
CPU.SetBranch(branchTarget(CPU.GPR[ra]._u32[3], 0));
}
void BIHZ(u32 rt, u32 ra)
{
if(CPU.GPR[rt]._u16[6] == 0)
CPU.SetBranch(branchTarget(CPU.GPR[ra]._u32[3], 0));
}
void BIHNZ(u32 rt, u32 ra)
{
if(CPU.GPR[rt]._u16[6] != 0)
CPU.SetBranch(branchTarget(CPU.GPR[ra]._u32[3], 0));
}
void STOPD(u32 rc, u32 ra, u32 rb)
{
Emu.Pause();
}
void STQX(u32 rt, u32 ra, u32 rb)
{
u32 lsa = (CPU.GPR[ra]._u32[3] + CPU.GPR[rb]._u32[3]) & 0x3fff0;
if(!CPU.IsGoodLSA(lsa))
{
ConLog.Error("STQX: bad lsa (0x%x)", lsa);
Emu.Pause();
return;
}
CPU.WriteLS128(lsa, CPU.GPR[rt]._u128);
}
void BI(u32 ra)
{
CPU.SetBranch(branchTarget(CPU.GPR[ra]._u32[3], 0));
}
void BISL(u32 rt, u32 ra)
{
const u32 NewPC = CPU.GPR[ra]._u32[3];
CPU.GPR[rt].Reset();
CPU.GPR[rt]._u32[3] = CPU.PC + 4;
CPU.SetBranch(branchTarget(NewPC, 0));
}
void IRET(u32 ra)
{
UNIMPLEMENTED();
//SetBranch(SRR0);
}
void BISLED(u32 rt, u32 ra)
{
UNIMPLEMENTED();
}
void HBR(u32 p, u32 ro, u32 ra)
{
}
void GB(u32 rt, u32 ra)
{
CPU.GPR[rt]._u32[3] = (CPU.GPR[ra]._u32[0] & 1) |
((CPU.GPR[ra]._u32[1] & 1) << 1) |
((CPU.GPR[ra]._u32[2] & 1) << 2) |
((CPU.GPR[ra]._u32[3] & 1) << 3);
CPU.GPR[rt]._u32[2] = 0;
CPU.GPR[rt]._u64[0] = 0;
}
void GBH(u32 rt, u32 ra)
{
u32 temp = 0;
for (int h = 0; h < 8; h++)
temp |= (CPU.GPR[ra]._u16[h] & 1) << h;
CPU.GPR[rt]._u32[3] = temp;
CPU.GPR[rt]._u32[2] = 0;
CPU.GPR[rt]._u64[0] = 0;
}
void GBB(u32 rt, u32 ra)
{
u32 temp = 0;
for (int b = 0; b < 16; b++)
temp |= (CPU.GPR[ra]._u8[b] & 1) << b;
CPU.GPR[rt]._u32[3] = temp;
CPU.GPR[rt]._u32[2] = 0;
CPU.GPR[rt]._u64[0] = 0;
}
void FSM(u32 rt, u32 ra)
{
const u32 pref = CPU.GPR[ra]._u32[3];
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = (pref & (1 << w)) ? ~0 : 0;
}
void FSMH(u32 rt, u32 ra)
{
const u32 pref = CPU.GPR[ra]._u32[3];
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = (pref & (1 << h)) ? ~0 : 0;
}
void FSMB(u32 rt, u32 ra)
{
const u32 pref = CPU.GPR[ra]._u32[3];
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._u8[b] = (pref & (1 << b)) ? ~0 : 0;
}
void FREST(u32 rt, u32 ra)
{
//CPU.GPR[rt]._m128 = _mm_rcp_ps(CPU.GPR[ra]._m128);
for (int i = 0; i < 4; i++)
CPU.GPR[rt]._f[i] = 1 / CPU.GPR[ra]._f[i];
}
void FRSQEST(u32 rt, u32 ra)
{
//const __u32x4 FloatAbsMask = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff};
//CPU.GPR[rt]._m128 = _mm_rsqrt_ps(_mm_and_ps(CPU.GPR[ra]._m128, FloatAbsMask.m128));
for (int i = 0; i < 4; i++)
CPU.GPR[rt]._f[i] = 1 / sqrt(abs(CPU.GPR[ra]._f[i]));
}
void LQX(u32 rt, u32 ra, u32 rb)
{
u32 a = CPU.GPR[ra]._u32[3], b = CPU.GPR[rb]._u32[3];
u32 lsa = (a + b) & 0x3fff0;
if(!CPU.IsGoodLSA(lsa))
{
ConLog.Error("LQX: bad lsa (0x%x)", lsa);
Emu.Pause();
return;
}
CPU.GPR[rt]._u128 = CPU.ReadLS128(lsa);
}
void ROTQBYBI(u32 rt, u32 ra, u32 rb)
{
const int s = (CPU.GPR[rb]._u32[3] >> 3) & 0xf;
const SPU_GPR_hdr temp = CPU.GPR[ra];
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._u8[b] = temp._u8[(b - s) & 0xf];
}
void ROTQMBYBI(u32 rt, u32 ra, u32 rb)
{
const int s = (0 - (CPU.GPR[rb]._u32[3] >> 3)) & 0x1f;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt].Reset();
for (int b = 0; b < 16 - s; b++)
CPU.GPR[rt]._u8[b] = temp._u8[b + s];
}
void SHLQBYBI(u32 rt, u32 ra, u32 rb)
{
const int s = (CPU.GPR[rb]._u32[3] >> 3) & 0x1f;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt].Reset();
for (int b = s; b < 16; b++)
CPU.GPR[rt]._u8[b] = temp._u8[b - s];
}
void CBX(u32 rt, u32 ra, u32 rb)
{
const u32 t = (CPU.GPR[rb]._u32[3] + CPU.GPR[ra]._u32[3]) & 0xF;
CPU.GPR[rt]._u64[0] = (u64)0x18191A1B1C1D1E1F;
CPU.GPR[rt]._u64[1] = (u64)0x1011121314151617;
CPU.GPR[rt]._u8[15 - t] = 0x03;
}
void CHX(u32 rt, u32 ra, u32 rb)
{
const u32 t = (CPU.GPR[rb]._u32[3] + CPU.GPR[ra]._u32[3]) & 0xE;
CPU.GPR[rt]._u64[0] = (u64)0x18191A1B1C1D1E1F;
CPU.GPR[rt]._u64[1] = (u64)0x1011121314151617;
CPU.GPR[rt]._u16[7 - (t >> 1)] = 0x0203;
}
void CWX(u32 rt, u32 ra, u32 rb)
{
const u32 t = (CPU.GPR[ra]._u32[3] + CPU.GPR[rb]._u32[3]) & 0xC;
CPU.GPR[rt]._u64[0] = (u64)0x18191A1B1C1D1E1F;
CPU.GPR[rt]._u64[1] = (u64)0x1011121314151617;
CPU.GPR[rt]._u32[3 - (t >> 2)] = 0x00010203;
}
void CDX(u32 rt, u32 ra, u32 rb)
{
const u32 t = (CPU.GPR[rb]._u32[3] + CPU.GPR[ra]._u32[3]) & 0x8;
CPU.GPR[rt]._u64[0] = (u64)0x18191A1B1C1D1E1F;
CPU.GPR[rt]._u64[1] = (u64)0x1011121314151617;
CPU.GPR[rt]._u64[1 - (t >> 3)] = (u64)0x0001020304050607;
}
void ROTQBI(u32 rt, u32 ra, u32 rb)
{
const int t = CPU.GPR[rb]._u32[3] & 0x7;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt]._u32[0] = (temp._u32[0] << t) | (temp._u32[3] >> (32 - t));
CPU.GPR[rt]._u32[1] = (temp._u32[1] << t) | (temp._u32[0] >> (32 - t));
CPU.GPR[rt]._u32[2] = (temp._u32[2] << t) | (temp._u32[1] >> (32 - t));
CPU.GPR[rt]._u32[3] = (temp._u32[3] << t) | (temp._u32[2] >> (32 - t));
}
void ROTQMBI(u32 rt, u32 ra, u32 rb)
{
const int t = (0 - CPU.GPR[rb]._u32[3]) & 0x7;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt]._u32[0] = (temp._u32[0] >> t) | (temp._u32[1] << (32 - t));
CPU.GPR[rt]._u32[1] = (temp._u32[1] >> t) | (temp._u32[2] << (32 - t));
CPU.GPR[rt]._u32[2] = (temp._u32[2] >> t) | (temp._u32[3] << (32 - t));
CPU.GPR[rt]._u32[3] = (temp._u32[3] >> t);
}
void SHLQBI(u32 rt, u32 ra, u32 rb)
{
const int t = CPU.GPR[rb]._u32[3] & 0x7;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt]._u32[0] = (temp._u32[0] << t);
CPU.GPR[rt]._u32[1] = (temp._u32[1] << t) | (temp._u32[0] >> (32 - t));
CPU.GPR[rt]._u32[2] = (temp._u32[2] << t) | (temp._u32[1] >> (32 - t));
CPU.GPR[rt]._u32[3] = (temp._u32[3] << t) | (temp._u32[2] >> (32 - t));
}
void ROTQBY(u32 rt, u32 ra, u32 rb)
{
const int s = CPU.GPR[rb]._u32[3] & 0xf;
const SPU_GPR_hdr temp = CPU.GPR[ra];
for (int b = 0; b < 16; ++b)
CPU.GPR[rt]._u8[b] = temp._u8[(b - s) & 0xf];
}
void ROTQMBY(u32 rt, u32 ra, u32 rb)
{
const int s = (0 - CPU.GPR[rb]._u32[3]) & 0x1f;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt].Reset();
for (int b = 0; b < 16 - s; b++)
CPU.GPR[rt]._u8[b] = temp._u8[b + s];
}
void SHLQBY(u32 rt, u32 ra, u32 rb)
{
const int s = CPU.GPR[rb]._u32[3] & 0x1f;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt].Reset();
for (int b = s; b < 16; b++)
CPU.GPR[rt]._u8[b] = temp._u8[b - s];
}
void ORX(u32 rt, u32 ra)
{
CPU.GPR[rt]._u32[3] = CPU.GPR[ra]._u32[0] | CPU.GPR[ra]._u32[1] | CPU.GPR[ra]._u32[2] | CPU.GPR[ra]._u32[3];
CPU.GPR[rt]._u32[2] = 0;
CPU.GPR[rt]._u64[0] = 0;
}
void CBD(u32 rt, u32 ra, s32 i7)
{
const int t = (CPU.GPR[ra]._u32[3] + i7) & 0xF;
CPU.GPR[rt]._u64[0] = (u64)0x18191A1B1C1D1E1F;
CPU.GPR[rt]._u64[1] = (u64)0x1011121314151617;
CPU.GPR[rt]._u8[15 - t] = 0x03;
}
void CHD(u32 rt, u32 ra, s32 i7)
{
const int t = (CPU.GPR[ra]._u32[3] + i7) & 0xE;
CPU.GPR[rt]._u64[0] = (u64)0x18191A1B1C1D1E1F;
CPU.GPR[rt]._u64[1] = (u64)0x1011121314151617;
CPU.GPR[rt]._u16[7 - (t >> 1)] = 0x0203;
}
void CWD(u32 rt, u32 ra, s32 i7)
{
const int t = (CPU.GPR[ra]._u32[3] + i7) & 0xC;
CPU.GPR[rt]._u64[0] = (u64)0x18191A1B1C1D1E1F;
CPU.GPR[rt]._u64[1] = (u64)0x1011121314151617;
CPU.GPR[rt]._u32[3 - (t >> 2)] = 0x00010203;
}
void CDD(u32 rt, u32 ra, s32 i7)
{
const int t = (CPU.GPR[ra]._u32[3] + i7) & 0x8;
CPU.GPR[rt]._u64[0] = (u64)0x18191A1B1C1D1E1F;
CPU.GPR[rt]._u64[1] = (u64)0x1011121314151617;
CPU.GPR[rt]._u64[1 - (t >> 3)] = (u64)0x0001020304050607;
}
void ROTQBII(u32 rt, u32 ra, s32 i7)
{
const int s = i7 & 0x7;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt]._u32[0] = (temp._u32[0] << s) | (temp._u32[3] >> (32 - s));
CPU.GPR[rt]._u32[1] = (temp._u32[1] << s) | (temp._u32[0] >> (32 - s));
CPU.GPR[rt]._u32[2] = (temp._u32[2] << s) | (temp._u32[1] >> (32 - s));
CPU.GPR[rt]._u32[3] = (temp._u32[3] << s) | (temp._u32[2] >> (32 - s));
}
void ROTQMBII(u32 rt, u32 ra, s32 i7)
{
const int s = (0 - i7) & 0x7;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt]._u32[0] = (temp._u32[0] >> s) | (temp._u32[1] << (32 - s));
CPU.GPR[rt]._u32[1] = (temp._u32[1] >> s) | (temp._u32[2] << (32 - s));
CPU.GPR[rt]._u32[2] = (temp._u32[2] >> s) | (temp._u32[3] << (32 - s));
CPU.GPR[rt]._u32[3] = (temp._u32[3] >> s);
}
void SHLQBII(u32 rt, u32 ra, s32 i7)
{
const int s = i7 & 0x7;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt]._u32[0] = (temp._u32[0] << s);
CPU.GPR[rt]._u32[1] = (temp._u32[1] << s) | (temp._u32[0] >> (32 - s));
CPU.GPR[rt]._u32[2] = (temp._u32[2] << s) | (temp._u32[1] >> (32 - s));
CPU.GPR[rt]._u32[3] = (temp._u32[3] << s) | (temp._u32[2] >> (32 - s));
}
void ROTQBYI(u32 rt, u32 ra, s32 i7)
{
const int s = i7 & 0xf;
const SPU_GPR_hdr temp = CPU.GPR[ra];
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._u8[b] = temp._u8[(b - s) & 0xf];
}
void ROTQMBYI(u32 rt, u32 ra, s32 i7)
{
const int s = (0 - i7) & 0x1f;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt].Reset();
for (int b = 0; b < 16 - s; b++)
CPU.GPR[rt]._u8[b] = temp._u8[b + s];
}
void SHLQBYI(u32 rt, u32 ra, s32 i7)
{
const int s = i7 & 0x1f;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt].Reset();
for (int b = s; b < 16; b++)
CPU.GPR[rt]._u8[b] = temp._u8[b - s];
}
void NOP(u32 rt)
{
}
void CGT(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = CPU.GPR[ra]._i32[w] > CPU.GPR[rb]._i32[w] ? 0xffffffff : 0;
}
void XOR(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = CPU.GPR[ra]._u32[w] ^ CPU.GPR[rb]._u32[w];
}
void CGTH(u32 rt, u32 ra, u32 rb)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = CPU.GPR[ra]._i16[h] > CPU.GPR[rb]._i16[h] ? 0xffff : 0;
}
void EQV(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = CPU.GPR[ra]._u32[w] ^ (~CPU.GPR[rb]._u32[w]);
}
void CGTB(u32 rt, u32 ra, u32 rb)
{
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._u8[b] = CPU.GPR[ra]._i8[b] > CPU.GPR[rb]._i8[b] ? 0xff : 0;
}
void SUMB(u32 rt, u32 ra, u32 rb)
{
const SPU_GPR_hdr _a = CPU.GPR[ra];
const SPU_GPR_hdr _b = CPU.GPR[rb];
for (int w = 0; w < 4; w++)
{
CPU.GPR[rt]._u16[w*2] = _a._u8[w*4] + _a._u8[w*4 + 1] + _a._u8[w*4 + 2] + _a._u8[w*4 + 3];
CPU.GPR[rt]._u16[w*2 + 1] = _b._u8[w*4] + _b._u8[w*4 + 1] + _b._u8[w*4 + 2] + _b._u8[w*4 + 3];
}
}
//HGT uses signed values. HLGT uses unsigned values
void HGT(u32 rt, s32 ra, s32 rb)
{
if(CPU.GPR[ra]._i32[3] > CPU.GPR[rb]._i32[3]) CPU.Stop();
}
void CLZ(u32 rt, u32 ra)
{
for (int w = 0; w < 4; w++)
{
int nPos;
for (nPos = 0; nPos < 32; nPos++)
if (CPU.GPR[ra]._u32[w] & (1 << (31 - nPos)))
break;
CPU.GPR[rt]._u32[w] = nPos;
}
}
void XSWD(u32 rt, u32 ra)
{
CPU.GPR[rt]._i64[0] = (s64)CPU.GPR[ra]._i32[0];
CPU.GPR[rt]._i64[1] = (s64)CPU.GPR[ra]._i32[2];
}
void XSHW(u32 rt, u32 ra)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] = (s32)CPU.GPR[ra]._i16[w*2];
}
void CNTB(u32 rt, u32 ra)
{
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt].Reset();
for (int b = 0; b < 16; b++)
for (int i = 0; i < 8; i++)
CPU.GPR[rt]._u8[b] += (temp._u8[b] & (1 << i)) ? 1 : 0;
}
void XSBH(u32 rt, u32 ra)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._i16[h] = (s16)CPU.GPR[ra]._i8[h*2];
}
void CLGT(u32 rt, u32 ra, u32 rb)
{
for(u32 i = 0; i < 4; ++i)
{
CPU.GPR[rt]._u32[i] = (CPU.GPR[ra]._u32[i] > CPU.GPR[rb]._u32[i]) ? 0xffffffff : 0x00000000;
}
}
void ANDC(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = CPU.GPR[ra]._u32[w] & (~CPU.GPR[rb]._u32[w]);
}
void FCGT(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = CPU.GPR[ra]._f[0] > CPU.GPR[rb]._f[0] ? 0xffffffff : 0;
CPU.GPR[rt]._u32[1] = CPU.GPR[ra]._f[1] > CPU.GPR[rb]._f[1] ? 0xffffffff : 0;
CPU.GPR[rt]._u32[2] = CPU.GPR[ra]._f[2] > CPU.GPR[rb]._f[2] ? 0xffffffff : 0;
CPU.GPR[rt]._u32[3] = CPU.GPR[ra]._f[3] > CPU.GPR[rb]._f[3] ? 0xffffffff : 0;
}
void DFCGT(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u64[0] = CPU.GPR[ra]._d[0] > CPU.GPR[rb]._d[0] ? 0xffffffffffffffff : 0;
CPU.GPR[rt]._u64[1] = CPU.GPR[ra]._d[1] > CPU.GPR[rb]._d[1] ? 0xffffffffffffffff : 0;
}
void FA(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._f[0] = CPU.GPR[ra]._f[0] + CPU.GPR[rb]._f[0];
CPU.GPR[rt]._f[1] = CPU.GPR[ra]._f[1] + CPU.GPR[rb]._f[1];
CPU.GPR[rt]._f[2] = CPU.GPR[ra]._f[2] + CPU.GPR[rb]._f[2];
CPU.GPR[rt]._f[3] = CPU.GPR[ra]._f[3] + CPU.GPR[rb]._f[3];
}
void FS(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._f[0] = CPU.GPR[ra]._f[0] - CPU.GPR[rb]._f[0];
CPU.GPR[rt]._f[1] = CPU.GPR[ra]._f[1] - CPU.GPR[rb]._f[1];
CPU.GPR[rt]._f[2] = CPU.GPR[ra]._f[2] - CPU.GPR[rb]._f[2];
CPU.GPR[rt]._f[3] = CPU.GPR[ra]._f[3] - CPU.GPR[rb]._f[3];
}
void FM(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._f[0] = CPU.GPR[ra]._f[0] * CPU.GPR[rb]._f[0];
CPU.GPR[rt]._f[1] = CPU.GPR[ra]._f[1] * CPU.GPR[rb]._f[1];
CPU.GPR[rt]._f[2] = CPU.GPR[ra]._f[2] * CPU.GPR[rb]._f[2];
CPU.GPR[rt]._f[3] = CPU.GPR[ra]._f[3] * CPU.GPR[rb]._f[3];
}
void CLGTH(u32 rt, u32 ra, u32 rb)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = CPU.GPR[ra]._u16[h] > CPU.GPR[rb]._u16[h] ? 0xffff : 0;
}
void ORC(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = CPU.GPR[ra]._u32[w] | (~CPU.GPR[rb]._u32[w]);
}
void FCMGT(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = fabs(CPU.GPR[ra]._f[0]) > fabs(CPU.GPR[rb]._f[0]) ? 0xffffffff : 0;
CPU.GPR[rt]._u32[1] = fabs(CPU.GPR[ra]._f[1]) > fabs(CPU.GPR[rb]._f[1]) ? 0xffffffff : 0;
CPU.GPR[rt]._u32[2] = fabs(CPU.GPR[ra]._f[2]) > fabs(CPU.GPR[rb]._f[2]) ? 0xffffffff : 0;
CPU.GPR[rt]._u32[3] = fabs(CPU.GPR[ra]._f[3]) > fabs(CPU.GPR[rb]._f[3]) ? 0xffffffff : 0;
}
void DFCMGT(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u64[0] = fabs(CPU.GPR[ra]._d[0]) > fabs(CPU.GPR[rb]._d[0]) ? 0xffffffffffffffff : 0;
CPU.GPR[rt]._u64[1] = fabs(CPU.GPR[ra]._d[1]) > fabs(CPU.GPR[rb]._d[1]) ? 0xffffffffffffffff : 0;
}
void DFA(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._d[0] = CPU.GPR[ra]._d[0] + CPU.GPR[rb]._d[0];
CPU.GPR[rt]._d[1] = CPU.GPR[ra]._d[1] + CPU.GPR[rb]._d[1];
}
void DFS(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._d[0] = CPU.GPR[ra]._d[0] - CPU.GPR[rb]._d[0];
CPU.GPR[rt]._d[1] = CPU.GPR[ra]._d[1] - CPU.GPR[rb]._d[1];
}
void DFM(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._d[0] = CPU.GPR[ra]._d[0] * CPU.GPR[rb]._d[0];
CPU.GPR[rt]._d[1] = CPU.GPR[ra]._d[1] * CPU.GPR[rb]._d[1];
}
void CLGTB(u32 rt, u32 ra, u32 rb)
{
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._u8[b] = CPU.GPR[ra]._u8[b] > CPU.GPR[rb]._u8[b] ? 0xff : 0;
}
void HLGT(u32 rt, u32 ra, u32 rb)
{
if(CPU.GPR[ra]._u32[3] > CPU.GPR[rb]._u32[3]) CPU.Stop();
}
void DFMA(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._d[0] += CPU.GPR[ra]._d[0] * CPU.GPR[rb]._d[0];
CPU.GPR[rt]._d[1] += CPU.GPR[ra]._d[1] * CPU.GPR[rb]._d[1];
}
void DFMS(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._d[0] = CPU.GPR[ra]._d[0] * CPU.GPR[rb]._d[0] - CPU.GPR[rt]._d[0];
CPU.GPR[rt]._d[1] = CPU.GPR[ra]._d[1] * CPU.GPR[rb]._d[1] - CPU.GPR[rt]._d[1];
}
void DFNMS(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._d[0] -= CPU.GPR[ra]._d[0] * CPU.GPR[rb]._d[0];
CPU.GPR[rt]._d[1] -= CPU.GPR[ra]._d[1] * CPU.GPR[rb]._d[1];
}
void DFNMA(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._d[0] = -(CPU.GPR[ra]._d[0] * CPU.GPR[rb]._d[0] + CPU.GPR[rt]._d[0]);
CPU.GPR[rt]._d[1] = -(CPU.GPR[ra]._d[1] * CPU.GPR[rb]._d[1] + CPU.GPR[rt]._d[1]);
}
void CEQ(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = CPU.GPR[ra]._i32[w] == CPU.GPR[rb]._i32[w] ? 0xffffffff : 0;
}
void MPYHHU(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = CPU.GPR[ra]._u16[w*2+1] * CPU.GPR[rb]._u16[w*2+1];
}
void ADDX(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = CPU.GPR[ra]._u32[w] + CPU.GPR[rb]._u32[w] + (CPU.GPR[rt]._u32[w] & 1);
}
void SFX(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = CPU.GPR[rb]._u32[w] - CPU.GPR[ra]._u32[w] - (1 - (CPU.GPR[rt]._u32[w] & 1));
}
void CGX(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = ((u64)CPU.GPR[ra]._u32[w] + (u64)CPU.GPR[rb]._u32[w] + (u64)(CPU.GPR[rt]._u32[w] & 1)) >> 32;
}
void BGX(u32 rt, u32 ra, u32 rb)
{
s64 nResult;
for (int w = 0; w < 4; w++)
{
nResult = (u64)CPU.GPR[rb]._u32[w] - (u64)CPU.GPR[ra]._u32[w] - (u64)(1 - (CPU.GPR[rt]._u32[w] & 1));
CPU.GPR[rt]._u32[w] = nResult < 0 ? 0 : 1;
}
}
void MPYHHA(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] += CPU.GPR[ra]._i16[w*2+1] * CPU.GPR[rb]._i16[w*2+1];
}
void MPYHHAU(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] += CPU.GPR[ra]._u16[w*2+1] * CPU.GPR[rb]._u16[w*2+1];
}
//Forced bits to 0, hence the shift:
void FSCRRD(u32 rt)
{
/*CPU.GPR[rt]._u128.lo =
CPU.FPSCR.Exception0 << 20 &
CPU.FPSCR.*/
UNIMPLEMENTED();
}
void FESD(u32 rt, u32 ra)
{
CPU.GPR[rt]._d[0] = (double)CPU.GPR[ra]._f[1];
CPU.GPR[rt]._d[1] = (double)CPU.GPR[ra]._f[3];
}
void FRDS(u32 rt, u32 ra)
{
CPU.GPR[rt]._f[1] = (float)CPU.GPR[ra]._d[0];
CPU.GPR[rt]._u32[0] = 0x00000000;
CPU.GPR[rt]._f[3] = (float)CPU.GPR[ra]._d[1];
CPU.GPR[rt]._u32[2] = 0x00000000;
}
void FSCRWR(u32 rt, u32 ra)
{
UNIMPLEMENTED();
}
void DFTSV(u32 rt, u32 ra, s32 i7)
{
const u64 DoubleExpMask = 0x7ff0000000000000;
const u64 DoubleFracMask = 0x000fffffffffffff;
const u64 DoubleSignMask = 0x8000000000000000;
const SPU_GPR_hdr temp = CPU.GPR[ra];
CPU.GPR[rt].Reset();
if (i7 & 1) //Negative Denorm Check (-, exp is zero, frac is non-zero)
for (int i = 0; i < 2; i++)
{
if (temp._u64[i] & DoubleFracMask)
if ((temp._u64[i] & (DoubleSignMask | DoubleExpMask)) == DoubleSignMask)
CPU.GPR[rt]._u64[i] = 0xffffffffffffffff;
}
if (i7 & 2) //Positive Denorm Check (+, exp is zero, frac is non-zero)
for (int i = 0; i < 2; i++)
{
if (temp._u64[i] & DoubleFracMask)
if ((temp._u64[i] & (DoubleSignMask | DoubleExpMask)) == 0)
CPU.GPR[rt]._u64[i] = 0xffffffffffffffff;
}
if (i7 & 4) //Negative Zero Check (-, exp is zero, frac is zero)
for (int i = 0; i < 2; i++)
{
if (temp._u64[i] == DoubleSignMask)
CPU.GPR[rt]._u64[i] = 0xffffffffffffffff;
}
if (i7 & 8) //Positive Zero Check (+, exp is zero, frac is zero)
for (int i = 0; i < 2; i++)
{
if (temp._u64[i] == 0)
CPU.GPR[rt]._u64[i] = 0xffffffffffffffff;
}
if (i7 & 16) //Negative Infinity Check (-, exp is 0x7ff, frac is zero)
for (int i = 0; i < 2; i++)
{
if (temp._u64[i] == (DoubleSignMask | DoubleExpMask))
CPU.GPR[rt]._u64[i] = 0xffffffffffffffff;
}
if (i7 & 32) //Positive Infinity Check (+, exp is 0x7ff, frac is zero)
for (int i = 0; i < 2; i++)
{
if (temp._u64[i] == DoubleExpMask)
CPU.GPR[rt]._u64[i] = 0xffffffffffffffff;
}
if (i7 & 64) //Not-a-Number Check (any sign, exp is 0x7ff, frac is non-zero)
for (int i = 0; i < 2; i++)
{
if (temp._u64[i] & DoubleFracMask)
if ((temp._u64[i] & DoubleExpMask) == DoubleExpMask)
CPU.GPR[rt]._u64[i] = 0xffffffffffffffff;
}
}
void FCEQ(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = CPU.GPR[ra]._f[0] == CPU.GPR[rb]._f[0] ? 0xffffffff : 0;
CPU.GPR[rt]._u32[1] = CPU.GPR[ra]._f[1] == CPU.GPR[rb]._f[1] ? 0xffffffff : 0;
CPU.GPR[rt]._u32[2] = CPU.GPR[ra]._f[2] == CPU.GPR[rb]._f[2] ? 0xffffffff : 0;
CPU.GPR[rt]._u32[3] = CPU.GPR[ra]._f[3] == CPU.GPR[rb]._f[3] ? 0xffffffff : 0;
}
void DFCEQ(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u64[0] = CPU.GPR[ra]._d[0] == CPU.GPR[rb]._d[0] ? 0xffffffffffffffff : 0;
CPU.GPR[rt]._u64[1] = CPU.GPR[ra]._d[1] == CPU.GPR[rb]._d[1] ? 0xffffffffffffffff : 0;
}
void MPY(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] = CPU.GPR[ra]._i16[w*2] * CPU.GPR[rb]._i16[w*2];
}
void MPYH(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] = (CPU.GPR[ra]._i16[w*2+1] * CPU.GPR[rb]._i16[w*2]) << 16;
}
void MPYHH(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] = CPU.GPR[ra]._i16[w*2+1] * CPU.GPR[rb]._i16[w*2+1];
}
void MPYS(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] = (CPU.GPR[ra]._i16[w*2] * CPU.GPR[rb]._i16[w*2]) >> 16;
}
void CEQH(u32 rt, u32 ra, u32 rb)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = CPU.GPR[ra]._u16[h] == CPU.GPR[rb]._u16[h] ? 0xffff : 0;
}
void FCMEQ(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u32[0] = fabs(CPU.GPR[ra]._f[0]) == fabs(CPU.GPR[rb]._f[0]) ? 0xffffffff : 0;
CPU.GPR[rt]._u32[1] = fabs(CPU.GPR[ra]._f[1]) == fabs(CPU.GPR[rb]._f[1]) ? 0xffffffff : 0;
CPU.GPR[rt]._u32[2] = fabs(CPU.GPR[ra]._f[2]) == fabs(CPU.GPR[rb]._f[2]) ? 0xffffffff : 0;
CPU.GPR[rt]._u32[3] = fabs(CPU.GPR[ra]._f[3]) == fabs(CPU.GPR[rb]._f[3]) ? 0xffffffff : 0;
}
void DFCMEQ(u32 rt, u32 ra, u32 rb)
{
CPU.GPR[rt]._u64[0] = fabs(CPU.GPR[ra]._d[0]) == fabs(CPU.GPR[rb]._d[0]) ? 0xffffffffffffffff : 0;
CPU.GPR[rt]._u64[1] = fabs(CPU.GPR[ra]._d[1]) == fabs(CPU.GPR[rb]._d[1]) ? 0xffffffffffffffff : 0;
}
void MPYU(u32 rt, u32 ra, u32 rb)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = CPU.GPR[ra]._u16[w*2] * CPU.GPR[rb]._u16[w*2];
}
void CEQB(u32 rt, u32 ra, u32 rb)
{
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._u8[b] = CPU.GPR[ra]._u8[b] == CPU.GPR[rb]._u8[b] ? 0xff : 0;
}
void FI(u32 rt, u32 ra, u32 rb)
{
//Floating Interpolation: ra will be ignored.
//It should work correctly if result of preceding FREST or FRSQEST is sufficiently exact
CPU.GPR[rt] = CPU.GPR[rb];
}
void HEQ(u32 rt, u32 ra, u32 rb)
{
if(CPU.GPR[ra]._i32[3] == CPU.GPR[rb]._i32[3]) CPU.Stop();
}
//0 - 9
void CFLTS(u32 rt, u32 ra, s32 i8)
{
const u32 scale = 173 - (i8 & 0xff); //unsigned immediate
for (int i = 0; i < 4; i++)
{
u32 exp = ((CPU.GPR[ra]._u32[i] >> 23) & 0xff) + scale;
if (exp > 255)
exp = 255;
CPU.GPR[rt]._u32[i] = (CPU.GPR[ra]._u32[i] & 0x807fffff) | (exp << 23);
CPU.GPR[rt]._u32[i] = (u32)CPU.GPR[rt]._f[i]; //trunc
}
//CPU.GPR[rt]._m128i = _mm_cvttps_epi32(CPU.GPR[rt]._m128);
}
void CFLTU(u32 rt, u32 ra, s32 i8)
{
const u32 scale = 173 - (i8 & 0xff); //unsigned immediate
for (int i = 0; i < 4; i++)
{
u32 exp = ((CPU.GPR[ra]._u32[i] >> 23) & 0xff) + scale;
if (exp > 255)
exp = 255;
if (CPU.GPR[ra]._u32[i] & 0x80000000) //if negative, result = 0
CPU.GPR[rt]._u32[i] = 0;
else
{
CPU.GPR[rt]._u32[i] = (CPU.GPR[ra]._u32[i] & 0x807fffff) | (exp << 23);
if (CPU.GPR[rt]._f[i] > 0xffffffff) //if big, result = max
CPU.GPR[rt]._u32[i] = 0xffffffff;
else
CPU.GPR[rt]._u32[i] = floor(CPU.GPR[rt]._f[i]);
}
}
}
void CSFLT(u32 rt, u32 ra, s32 i8)
{
//CPU.GPR[rt]._m128 = _mm_cvtepi32_ps(CPU.GPR[ra]._m128i);
const u32 scale = 155 - (i8 & 0xff); //unsigned immediate
for (int i = 0; i < 4; i++)
{
CPU.GPR[rt]._f[i] = (s32)CPU.GPR[ra]._i32[i];
u32 exp = ((CPU.GPR[rt]._u32[i] >> 23) & 0xff) - scale;
if (exp > 255) //< 0
exp = 0;
CPU.GPR[rt]._u32[i] = (CPU.GPR[rt]._u32[i] & 0x807fffff) | (exp << 23);
}
}
void CUFLT(u32 rt, u32 ra, s32 i8)
{
const u32 scale = 155 - (i8 & 0xff); //unsigned immediate
for (int i = 0; i < 4; i++)
{
CPU.GPR[rt]._f[i] = (float)CPU.GPR[ra]._u32[i];
u32 exp = ((CPU.GPR[rt]._u32[i] >> 23) & 0xff) - scale;
if (exp > 255) //< 0
exp = 0;
CPU.GPR[rt]._u32[i] = (CPU.GPR[rt]._u32[i] & 0x807fffff) | (exp << 23);
}
}
//0 - 8
void BRZ(u32 rt, s32 i16)
{
if (CPU.GPR[rt]._u32[3] == 0)
CPU.SetBranch(branchTarget(CPU.PC, i16));
}
void STQA(u32 rt, s32 i16)
{
u32 lsa = (i16 << 2) & 0x3fff0;
if(!CPU.IsGoodLSA(lsa))
{
ConLog.Error("STQA: bad lsa (0x%x)", lsa);
Emu.Pause();
return;
}
CPU.WriteLS128(lsa, CPU.GPR[rt]._u128);
}
void BRNZ(u32 rt, s32 i16)
{
if (CPU.GPR[rt]._u32[3] != 0)
CPU.SetBranch(branchTarget(CPU.PC, i16));
}
void BRHZ(u32 rt, s32 i16)
{
if (CPU.GPR[rt]._u16[6] == 0)
CPU.SetBranch(branchTarget(CPU.PC, i16));
}
void BRHNZ(u32 rt, s32 i16)
{
if (CPU.GPR[rt]._u16[6] != 0)
CPU.SetBranch(branchTarget(CPU.PC, i16));
}
void STQR(u32 rt, s32 i16)
{
u32 lsa = branchTarget(CPU.PC, i16) & 0x3fff0;
if(!CPU.IsGoodLSA(lsa))
{
ConLog.Error("STQR: bad lsa (0x%x)", lsa);
Emu.Pause();
return;
}
CPU.WriteLS128(lsa, CPU.GPR[rt]._u128);
}
void BRA(s32 i16)
{
CPU.SetBranch(branchTarget(0, i16));
}
void LQA(u32 rt, s32 i16)
{
u32 lsa = (i16 << 2) & 0x3fff0;
if(!CPU.IsGoodLSA(lsa))
{
ConLog.Error("LQA: bad lsa (0x%x)", lsa);
Emu.Pause();
return;
}
CPU.GPR[rt]._u128 = CPU.ReadLS128(lsa);
}
void BRASL(u32 rt, s32 i16)
{
CPU.GPR[rt].Reset();
CPU.GPR[rt]._u32[3] = CPU.PC + 4;
CPU.SetBranch(branchTarget(0, i16));
}
void BR(s32 i16)
{
CPU.SetBranch(branchTarget(CPU.PC, i16));
}
void FSMBI(u32 rt, s32 i16)
{
const u32 s = i16;
for(u32 j = 0; j < 16; ++j)
{
if((s >> j) & 0x1)
{
CPU.GPR[rt]._u8[j] = 0xFF;
}
else
{
CPU.GPR[rt]._u8[j] = 0x00;
}
}
}
void BRSL(u32 rt, s32 i16)
{
CPU.GPR[rt].Reset();
CPU.GPR[rt]._u32[3] = CPU.PC + 4;
CPU.SetBranch(branchTarget(CPU.PC, i16));
}
void LQR(u32 rt, s32 i16)
{
u32 lsa = branchTarget(CPU.PC, i16) & 0x3fff0;
if(!CPU.IsGoodLSA(lsa))
{
ConLog.Error("LQR: bad lsa (0x%x)", lsa);
Emu.Pause();
return;
}
CPU.GPR[rt]._u128 = CPU.ReadLS128(lsa);
}
void IL(u32 rt, s32 i16)
{
CPU.GPR[rt]._i32[0] =
CPU.GPR[rt]._i32[1] =
CPU.GPR[rt]._i32[2] =
CPU.GPR[rt]._i32[3] = i16;
}
void ILHU(u32 rt, s32 i16)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] = i16 << 16;
}
void ILH(u32 rt, s32 i16)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._i16[h] = i16;
}
void IOHL(u32 rt, s32 i16)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] |= (i16 & 0xFFFF);
}
//0 - 7
void ORI(u32 rt, u32 ra, s32 i10)
{
for(u32 i = 0; i < 4; ++i)
CPU.GPR[rt]._i32[i] = CPU.GPR[ra]._i32[i] | i10;
}
void ORHI(u32 rt, u32 ra, s32 i10)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._i16[h] = CPU.GPR[ra]._i16[h] | i10;
}
void ORBI(u32 rt, u32 ra, s32 i10)
{
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._i8[b] = CPU.GPR[ra]._i8[b] | i10;
}
void SFI(u32 rt, u32 ra, s32 i10)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] = i10 - CPU.GPR[ra]._i32[w];
}
void SFHI(u32 rt, u32 ra, s32 i10)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._i16[h] = i10 - CPU.GPR[ra]._i16[h];
}
void ANDI(u32 rt, u32 ra, s32 i10)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] = CPU.GPR[ra]._i32[w] & i10;
}
void ANDHI(u32 rt, u32 ra, s32 i10)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._i16[h] = CPU.GPR[ra]._i16[h] & i10;
}
void ANDBI(u32 rt, u32 ra, s32 i10)
{
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._i8[b] = CPU.GPR[ra]._i8[b] & i10;
}
void AI(u32 rt, u32 ra, s32 i10)
{
CPU.GPR[rt]._i32[0] = CPU.GPR[ra]._i32[0] + i10;
CPU.GPR[rt]._i32[1] = CPU.GPR[ra]._i32[1] + i10;
CPU.GPR[rt]._i32[2] = CPU.GPR[ra]._i32[2] + i10;
CPU.GPR[rt]._i32[3] = CPU.GPR[ra]._i32[3] + i10;
}
void AHI(u32 rt, u32 ra, s32 i10)
{
for(u32 h = 0; h < 8; ++h)
CPU.GPR[rt]._i16[h] = CPU.GPR[ra]._i16[h] + i10;
}
void STQD(u32 rt, s32 i10, u32 ra) //i10 is shifted left by 4 while decoding
{
const u32 lsa = (CPU.GPR[ra]._i32[3] + i10) & 0x3fff0;
if(!CPU.IsGoodLSA(lsa))
{
ConLog.Error("STQD: bad lsa (0x%x)", lsa);
Emu.Pause();
return;
}
CPU.WriteLS128(lsa, CPU.GPR[rt]._u128);
}
void LQD(u32 rt, s32 i10, u32 ra) //i10 is shifted left by 4 while decoding
{
const u32 lsa = (CPU.GPR[ra]._i32[3] + i10) & 0x3fff0;
if(!CPU.IsGoodLSA(lsa))
{
ConLog.Error("LQD: bad lsa (0x%x)", lsa);
Emu.Pause();
return;
}
CPU.GPR[rt]._u128 = CPU.ReadLS128(lsa);
}
void XORI(u32 rt, u32 ra, s32 i10)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] = CPU.GPR[ra]._i32[w] ^ i10;
}
void XORHI(u32 rt, u32 ra, s32 i10)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._i16[h] = CPU.GPR[ra]._i16[h] ^ i10;
}
void XORBI(u32 rt, u32 ra, s32 i10)
{
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._i8[b] = CPU.GPR[ra]._i8[b] ^ i10;
}
void CGTI(u32 rt, u32 ra, s32 i10)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = CPU.GPR[ra]._i32[w] > i10 ? 0xffffffff : 0;
}
void CGTHI(u32 rt, u32 ra, s32 i10)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = CPU.GPR[ra]._i16[h] > i10 ? 0xffff : 0;
}
void CGTBI(u32 rt, u32 ra, s32 i10)
{
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._u8[b] = CPU.GPR[ra]._i8[b] > (s8)(i10 & 0xff) ? 0xff : 0;
}
void HGTI(u32 rt, u32 ra, s32 i10)
{
if(CPU.GPR[ra]._i32[3] > i10) CPU.Stop();
}
void CLGTI(u32 rt, u32 ra, s32 i10)
{
for(u32 i = 0; i < 4; ++i)
{
CPU.GPR[rt]._u32[i] = (CPU.GPR[ra]._u32[i] > (u32)i10) ? 0xffffffff : 0x00000000;
}
}
void CLGTHI(u32 rt, u32 ra, s32 i10)
{
for(u32 i = 0; i < 8; ++i)
{
CPU.GPR[rt]._u16[i] = (CPU.GPR[ra]._u16[i] > (u16)i10) ? 0xffff : 0x0000;
}
}
void CLGTBI(u32 rt, u32 ra, s32 i10)
{
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._u8[b] = CPU.GPR[ra]._u8[b] > (u8)(i10 & 0xff) ? 0xff : 0;
}
void HLGTI(u32 rt, u32 ra, s32 i10)
{
if(CPU.GPR[ra]._u32[3] > (u32)i10) CPU.Stop();
}
void MPYI(u32 rt, u32 ra, s32 i10)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] = CPU.GPR[ra]._i16[w*2] * i10;
}
void MPYUI(u32 rt, u32 ra, s32 i10)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._u32[w] = CPU.GPR[ra]._u16[w*2] * (u16)(i10 & 0xffff);
}
void CEQI(u32 rt, u32 ra, s32 i10)
{
for(u32 i = 0; i < 4; ++i)
CPU.GPR[rt]._u32[i] = (CPU.GPR[ra]._i32[i] == i10) ? 0xffffffff : 0x00000000;
}
void CEQHI(u32 rt, u32 ra, s32 i10)
{
for (int h = 0; h < 8; h++)
CPU.GPR[rt]._u16[h] = (CPU.GPR[ra]._i16[h] == (s16)i10) ? 0xffff : 0;
}
void CEQBI(u32 rt, u32 ra, s32 i10)
{
for (int b = 0; b < 16; b++)
CPU.GPR[rt]._i8[b] = (CPU.GPR[ra]._i8[b] == (s8)(i10 & 0xff)) ? 0xff : 0;
}
void HEQI(u32 rt, u32 ra, s32 i10)
{
if(CPU.GPR[ra]._i32[3] == i10) CPU.Stop();
}
//0 - 6
void HBRA(s32 ro, s32 i16)
{ //i16 is shifted left by 2 while decoding
}
void HBRR(s32 ro, s32 i16)
{
}
void ILA(u32 rt, u32 i18)
{
CPU.GPR[rt]._u32[0] =
CPU.GPR[rt]._u32[1] =
CPU.GPR[rt]._u32[2] =
CPU.GPR[rt]._u32[3] = i18 & 0x3FFFF;
}
//0 - 3
void SELB(u32 rt, u32 ra, u32 rb, u32 rc)
{
for(u64 i = 0; i < 2; ++i)
{
CPU.GPR[rt]._u64[i] =
( CPU.GPR[rc]._u64[i] & CPU.GPR[rb]._u64[i]) |
(~CPU.GPR[rc]._u64[i] & CPU.GPR[ra]._u64[i]);
}
}
void SHUFB(u32 rt, u32 ra, u32 rb, u32 rc)
{
const SPU_GPR_hdr _a = CPU.GPR[ra];
const SPU_GPR_hdr _b = CPU.GPR[rb];
for (int i = 0; i < 16; i++)
{
u8 b = CPU.GPR[rc]._u8[i];
if(b & 0x80)
{
if(b & 0x40)
{
if(b & 0x20)
CPU.GPR[rt]._u8[i] = 0x80;
else
CPU.GPR[rt]._u8[i] = 0xFF;
}
else
CPU.GPR[rt]._u8[i] = 0x00;
}
else
{
if(b & 0x10)
CPU.GPR[rt]._u8[i] = _b._u8[15 - (b & 0x0F)];
else
CPU.GPR[rt]._u8[i] = _a._u8[15 - (b & 0x0F)];
}
}
}
void MPYA(u32 rt, u32 ra, u32 rb, u32 rc)
{
for (int w = 0; w < 4; w++)
CPU.GPR[rt]._i32[w] = CPU.GPR[ra]._i16[w*2] * CPU.GPR[rb]._i16[w*2] + CPU.GPR[rc]._i32[w];
}
void FNMS(u32 rt, u32 ra, u32 rb, u32 rc)
{
CPU.GPR[rt]._f[0] = CPU.GPR[rc]._f[0] - CPU.GPR[ra]._f[0] * CPU.GPR[rb]._f[0];
CPU.GPR[rt]._f[1] = CPU.GPR[rc]._f[1] - CPU.GPR[ra]._f[1] * CPU.GPR[rb]._f[1];
CPU.GPR[rt]._f[2] = CPU.GPR[rc]._f[2] - CPU.GPR[ra]._f[2] * CPU.GPR[rb]._f[2];
CPU.GPR[rt]._f[3] = CPU.GPR[rc]._f[3] - CPU.GPR[ra]._f[3] * CPU.GPR[rb]._f[3];
}
void FMA(u32 rt, u32 ra, u32 rb, u32 rc)
{
CPU.GPR[rt]._f[0] = CPU.GPR[ra]._f[0] * CPU.GPR[rb]._f[0] + CPU.GPR[rc]._f[0];
CPU.GPR[rt]._f[1] = CPU.GPR[ra]._f[1] * CPU.GPR[rb]._f[1] + CPU.GPR[rc]._f[1];
CPU.GPR[rt]._f[2] = CPU.GPR[ra]._f[2] * CPU.GPR[rb]._f[2] + CPU.GPR[rc]._f[2];
CPU.GPR[rt]._f[3] = CPU.GPR[ra]._f[3] * CPU.GPR[rb]._f[3] + CPU.GPR[rc]._f[3];
}
void FMS(u32 rt, u32 ra, u32 rb, u32 rc)
{
CPU.GPR[rt]._f[0] = CPU.GPR[ra]._f[0] * CPU.GPR[rb]._f[0] - CPU.GPR[rc]._f[0];
CPU.GPR[rt]._f[1] = CPU.GPR[ra]._f[1] * CPU.GPR[rb]._f[1] - CPU.GPR[rc]._f[1];
CPU.GPR[rt]._f[2] = CPU.GPR[ra]._f[2] * CPU.GPR[rb]._f[2] - CPU.GPR[rc]._f[2];
CPU.GPR[rt]._f[3] = CPU.GPR[ra]._f[3] * CPU.GPR[rb]._f[3] - CPU.GPR[rc]._f[3];
}
void UNK(u32 code, u32 opcode, u32 gcode)
{
UNK(wxString::Format("Unknown/Illegal opcode! (0x%08x, 0x%x, 0x%x)", code, opcode, gcode));
}
void UNK(const wxString& err)
{
ConLog.Error(err + wxString::Format(" #pc: 0x%x", CPU.PC));
Emu.Pause();
for(uint i=0; i<128; ++i) ConLog.Write("r%d = 0x%s", i, CPU.GPR[i].ToString().wx_str());
}
};