rpcs3/rpcs3/Emu/IdManager.h
gidan80 9aa08313e3 Qt: Add custom pad configs
Add a custom pad config for every game.
2019-05-16 20:37:41 +02:00

777 lines
18 KiB
C++

#pragma once
#include "Utilities/types.h"
#include "Utilities/mutex.h"
#include <memory>
#include <vector>
// Helper namespace
namespace id_manager
{
// Common global mutex
extern shared_mutex g_mutex;
// ID traits
template <typename T, typename = void>
struct id_traits
{
static_assert(sizeof(T) == 0, "ID object must specify: id_base, id_step, id_count");
static const u32 base = 1; // First ID (N = 0)
static const u32 step = 1; // Any ID: N * id_step + id_base
static const u32 count = 65535; // Limit: N < id_count
static const u32 invalid = 0;
};
template <typename T>
struct id_traits<T, std::void_t<decltype(&T::id_base), decltype(&T::id_step), decltype(&T::id_count)>>
{
static const u32 base = T::id_base;
static const u32 step = T::id_step;
static const u32 count = T::id_count;
static const u32 invalid = base > 0 ? 0 : -1;
static_assert(u64{step} * count + base < UINT32_MAX, "ID traits: invalid object range");
};
// Correct usage testing
template <typename T, typename T2, typename = void>
struct id_verify : std::integral_constant<bool, std::is_base_of<T, T2>::value>
{
// If common case, T2 shall be derived from or equal to T
};
template <typename T, typename T2>
struct id_verify<T, T2, std::void_t<typename T2::id_type>> : std::integral_constant<bool, std::is_same<T, typename T2::id_type>::value>
{
// If T2 contains id_type type, T must be equal to it
};
class typeinfo
{
// Global variable for each registered type
template <typename T>
struct registered
{
static const u32 index;
};
// Increment type counter
static u32 add_type(u32 i)
{
static atomic_t<u32> g_next{0};
return g_next.fetch_add(i);
}
public:
// Get type index
template <typename T>
static inline u32 get_index()
{
return registered<T>::index;
}
// Get type count
static inline u32 get_count()
{
return add_type(0);
}
};
template <typename T>
const u32 typeinfo::registered<T>::index = typeinfo::add_type(1);
// ID value with additional type stored
class id_key
{
u32 m_value; // ID value
u32 m_type; // True object type
public:
id_key() = default;
id_key(u32 value, u32 type)
: m_value(value)
, m_type(type)
{
}
u32 value() const
{
return m_value;
}
u32 type() const
{
return m_type;
}
operator u32() const
{
return m_value;
}
};
using id_map = std::vector<std::pair<id_key, std::shared_ptr<void>>>;
}
// Object manager for emulated process. Multiple objects of specified arbitrary type are given unique IDs.
class idm
{
// Last allocated ID for constructors
static thread_local u32 g_id;
// Type Index -> ID -> Object. Use global since only one process is supported atm.
static std::vector<id_manager::id_map> g_map;
template <typename T>
static inline u32 get_type()
{
return id_manager::typeinfo::get_index<T>();
}
template <typename T>
static constexpr u32 get_index(u32 id)
{
return (id - id_manager::id_traits<T>::base) / id_manager::id_traits<T>::step;
}
// Helper
template <typename F>
struct function_traits;
template <typename F, typename R, typename A1, typename A2>
struct function_traits<R (F::*)(A1, A2&) const>
{
using object_type = A2;
using result_type = R;
};
template <typename F, typename R, typename A1, typename A2>
struct function_traits<R (F::*)(A1, A2&)>
{
using object_type = A2;
using result_type = R;
};
template <typename F, typename A1, typename A2>
struct function_traits<void (F::*)(A1, A2&) const>
{
using object_type = A2;
using void_type = void;
};
template <typename F, typename A1, typename A2>
struct function_traits<void (F::*)(A1, A2&)>
{
using object_type = A2;
using void_type = void;
};
// Helper type: pointer + return value propagated
template <typename T, typename RT>
struct return_pair
{
std::shared_ptr<T> ptr;
RT ret;
explicit operator bool() const
{
return ptr.operator bool();
}
T* operator->() const
{
return ptr.get();
}
};
// Unsafe specialization (not refcounted)
template <typename T, typename RT>
struct return_pair<T*, RT>
{
T* ptr;
RT ret;
explicit operator bool() const
{
return ptr != nullptr;
}
T* operator->() const
{
return ptr;
}
};
// Prepare new ID (returns nullptr if out of resources)
static id_manager::id_map::pointer allocate_id(const id_manager::id_key& info, u32 base, u32 step, u32 count);
// Find ID (additionally check type if types are not equal)
template <typename T, typename Type>
static id_manager::id_map::pointer find_id(u32 id)
{
static_assert(id_manager::id_verify<T, Type>::value, "Invalid ID type combination");
const u32 index = get_index<Type>(id);
auto& vec = g_map[get_type<T>()];
if (index >= vec.size() || index >= id_manager::id_traits<Type>::count)
{
return nullptr;
}
auto& data = vec[index];
if (data.second)
{
if (std::is_same<T, Type>::value || data.first.type() == get_type<Type>())
{
return &data;
}
}
return nullptr;
}
// Allocate new ID and assign the object from the provider()
template <typename T, typename Type, typename F>
static id_manager::id_map::pointer create_id(F&& provider)
{
static_assert(id_manager::id_verify<T, Type>::value, "Invalid ID type combination");
// ID info
const id_manager::id_key info{get_type<T>(), get_type<Type>()};
// ID traits
using traits = id_manager::id_traits<Type>;
// Allocate new id
std::lock_guard lock(id_manager::g_mutex);
if (auto* place = allocate_id(info, traits::base, traits::step, traits::count))
{
// Get object, store it
place->second = provider();
if (place->second)
{
return place;
}
}
return nullptr;
}
public:
// Initialize object manager
static void init();
// Remove all objects
static void clear();
// Get last ID (updated in create_id/allocate_id)
static inline u32 last_id()
{
return g_id;
}
// Add a new ID of specified type with specified constructor arguments (returns object or nullptr)
template <typename T, typename Make = T, typename... Args>
static inline std::enable_if_t<std::is_constructible<Make, Args...>::value, std::shared_ptr<Make>> make_ptr(Args&&... args)
{
if (auto pair = create_id<T, Make>([&] { return std::make_shared<Make>(std::forward<Args>(args)...); }))
{
return {pair->second, static_cast<Make*>(pair->second.get())};
}
return nullptr;
}
// Add a new ID of specified type with specified constructor arguments (returns id)
template <typename T, typename Make = T, typename... Args>
static inline std::enable_if_t<std::is_constructible<Make, Args...>::value, u32> make(Args&&... args)
{
if (auto pair = create_id<T, Make>([&] { return std::make_shared<Make>(std::forward<Args>(args)...); }))
{
return pair->first;
}
return id_manager::id_traits<Make>::invalid;
}
// Add a new ID for an existing object provided (returns new id)
template <typename T, typename Made = T>
static inline u32 import_existing(const std::shared_ptr<T>& ptr)
{
if (auto pair = create_id<T, Made>([&] { return ptr; }))
{
return pair->first;
}
return id_manager::id_traits<Made>::invalid;
}
// Add a new ID for an object returned by provider()
template <typename T, typename Made = T, typename F, typename = std::invoke_result_t<F>>
static inline u32 import(F&& provider)
{
if (auto pair = create_id<T, Made>(std::forward<F>(provider)))
{
return pair->first;
}
return id_manager::id_traits<Made>::invalid;
}
// Access the ID record without locking (unsafe)
template <typename T, typename Get = T>
static inline id_manager::id_map::pointer find_unlocked(u32 id)
{
return find_id<T, Get>(id);
}
// Check the ID without locking (can be called from other method)
template <typename T, typename Get = T>
static inline Get* check_unlocked(u32 id)
{
if (const auto found = find_id<T, Get>(id))
{
return static_cast<Get*>(found->second.get());
}
return nullptr;
}
// Check the ID
template <typename T, typename Get = T>
static inline Get* check(u32 id)
{
reader_lock lock(id_manager::g_mutex);
return check_unlocked<T, Get>(id);
}
// Check the ID, access object under shared lock
template <typename T, typename Get = T, typename F, typename FRT = std::invoke_result_t<F, Get&>>
static inline auto check(u32 id, F&& func)
{
reader_lock lock(id_manager::g_mutex);
if (const auto ptr = check_unlocked<T, Get>(id))
{
if constexpr (!std::is_void_v<FRT>)
{
return return_pair<Get*, FRT>{ptr, func(*ptr)};
}
else
{
func(*ptr);
return ptr;
}
}
if constexpr (!std::is_void_v<FRT>)
{
return return_pair<Get*, FRT>{nullptr};
}
else
{
return static_cast<Get*>(nullptr);
}
}
// Get the object without locking (can be called from other method)
template <typename T, typename Get = T>
static inline std::shared_ptr<Get> get_unlocked(u32 id)
{
const auto found = find_id<T, Get>(id);
if (UNLIKELY(found == nullptr))
{
return nullptr;
}
return {found->second, static_cast<Get*>(found->second.get())};
}
// Get the object
template <typename T, typename Get = T>
static inline std::shared_ptr<Get> get(u32 id)
{
reader_lock lock(id_manager::g_mutex);
const auto found = find_id<T, Get>(id);
if (UNLIKELY(found == nullptr))
{
return nullptr;
}
return {found->second, static_cast<Get*>(found->second.get())};
}
// Get the object, access object under reader lock
template <typename T, typename Get = T, typename F, typename FRT = std::invoke_result_t<F, Get&>>
static inline std::conditional_t<std::is_void_v<FRT>, std::shared_ptr<Get>, return_pair<Get, FRT>> get(u32 id, F&& func)
{
reader_lock lock(id_manager::g_mutex);
const auto found = find_id<T, Get>(id);
if (UNLIKELY(found == nullptr))
{
return {nullptr};
}
const auto ptr = static_cast<Get*>(found->second.get());
if constexpr (std::is_void_v<FRT>)
{
func(*ptr);
return {found->second, ptr};
}
else
{
return {{found->second, ptr}, func(*ptr)};
}
}
// Access all objects of specified type. Returns the number of objects processed.
template <typename T, typename Get = T, typename F, typename FT = decltype(&std::decay_t<F>::operator()), typename FRT = typename function_traits<FT>::void_type>
static inline u32 select(F&& func, int = 0)
{
static_assert(id_manager::id_verify<T, Get>::value, "Invalid ID type combination");
reader_lock lock(id_manager::g_mutex);
u32 result = 0;
for (auto& id : g_map[get_type<T>()])
{
if (id.second)
{
if (std::is_same<T, Get>::value || id.first.type() == get_type<Get>())
{
func(id.first, *static_cast<typename function_traits<FT>::object_type*>(id.second.get()));
result++;
}
}
}
return result;
}
// Access all objects of specified type. If function result evaluates to true, stop and return the object and the value.
template <typename T, typename Get = T, typename F, typename FT = decltype(&std::decay_t<F>::operator()), typename FRT = typename function_traits<FT>::result_type>
static inline auto select(F&& func)
{
static_assert(id_manager::id_verify<T, Get>::value, "Invalid ID type combination");
using object_type = typename function_traits<FT>::object_type;
using result_type = return_pair<object_type, FRT>;
reader_lock lock(id_manager::g_mutex);
for (auto& id : g_map[get_type<T>()])
{
if (auto ptr = static_cast<object_type*>(id.second.get()))
{
if (std::is_same<T, Get>::value || id.first.type() == get_type<Get>())
{
if (FRT result = func(id.first, *ptr))
{
return result_type{{id.second, ptr}, std::move(result)};
}
}
}
}
return result_type{nullptr};
}
// Remove the ID
template <typename T, typename Get = T>
static inline bool remove(u32 id)
{
std::shared_ptr<void> ptr;
{
std::lock_guard lock(id_manager::g_mutex);
if (const auto found = find_id<T, Get>(id))
{
ptr = std::move(found->second);
}
else
{
return false;
}
}
return true;
}
// Remove the ID and return the object
template <typename T, typename Get = T>
static inline std::shared_ptr<Get> withdraw(u32 id)
{
std::shared_ptr<void> ptr;
{
std::lock_guard lock(id_manager::g_mutex);
if (const auto found = find_id<T, Get>(id))
{
ptr = std::move(found->second);
}
else
{
return nullptr;
}
}
return {ptr, static_cast<Get*>(ptr.get())};
}
// Remove the ID after accessing the object under writer lock, return the object and propagate return value
template <typename T, typename Get = T, typename F, typename FRT = std::invoke_result_t<F, Get&>>
static inline std::conditional_t<std::is_void_v<FRT>, std::shared_ptr<Get>, return_pair<Get, FRT>> withdraw(u32 id, F&& func)
{
std::unique_lock lock(id_manager::g_mutex);
if (const auto found = find_id<T, Get>(id))
{
const auto _ptr = static_cast<Get*>(found->second.get());
if constexpr (std::is_void_v<FRT>)
{
func(*_ptr);
std::shared_ptr<void> ptr = std::move(found->second);
return {ptr, static_cast<Get*>(ptr.get())};
}
else
{
FRT ret = func(*_ptr);
if (ret)
{
// If return value evaluates to true, don't delete the object (error code)
return {{found->second, _ptr}, std::move(ret)};
}
std::shared_ptr<void> ptr = std::move(found->second);
return {{ptr, static_cast<Get*>(ptr.get())}, std::move(ret)};
}
}
return {nullptr};
}
};
// Object manager for emulated process. One unique object per type, or zero.
class fxm
{
// Type Index -> Object. Use global since only one process is supported atm.
static std::vector<std::shared_ptr<void>> g_vec;
template <typename T>
static inline u32 get_type()
{
return id_manager::typeinfo::get_index<T>();
}
public:
// Initialize object manager
static void init();
// Remove all objects
static void clear();
// Create the object (returns nullptr if it already exists)
template <typename T, typename Make = T, typename... Args>
static std::enable_if_t<std::is_constructible<Make, Args...>::value, std::shared_ptr<T>> make(Args&&... args)
{
std::shared_ptr<T> ptr;
{
std::lock_guard lock(id_manager::g_mutex);
auto& cur = g_vec[get_type<T>()];
if (!cur)
{
ptr = std::make_shared<Make>(std::forward<Args>(args)...);
cur = ptr;
}
else
{
return nullptr;
}
}
return ptr;
}
// Create the object unconditionally (old object will be removed if it exists)
template <typename T, typename Make = T, typename... Args>
static std::enable_if_t<std::is_constructible<Make, Args...>::value, std::shared_ptr<T>> make_always(Args&&... args)
{
std::shared_ptr<T> ptr;
std::shared_ptr<void> old;
{
std::lock_guard lock(id_manager::g_mutex);
auto& cur = g_vec[get_type<T>()];
ptr = std::make_shared<Make>(std::forward<Args>(args)...);
old = std::move(cur);
cur = ptr;
}
return ptr;
}
// Emplace the object returned by provider() and return it if no object exists
template <typename T, typename F, typename... Args>
static auto import(F&& provider, Args&&... args) -> decltype(static_cast<std::shared_ptr<T>>(provider(std::forward<Args>(args)...)))
{
std::shared_ptr<T> ptr;
{
std::lock_guard lock(id_manager::g_mutex);
auto& cur = g_vec[get_type<T>()];
if (!cur)
{
ptr = provider(std::forward<Args>(args)...);
if (ptr)
{
cur = ptr;
}
}
if (!ptr)
{
return nullptr;
}
}
return ptr;
}
// Emplace the object return by provider() (old object will be removed if it exists)
template <typename T, typename F, typename... Args>
static auto import_always(F&& provider, Args&&... args) -> decltype(static_cast<std::shared_ptr<T>>(provider(std::forward<Args>(args)...)))
{
std::shared_ptr<T> ptr;
std::shared_ptr<void> old;
{
std::lock_guard lock(id_manager::g_mutex);
auto& cur = g_vec[get_type<T>()];
ptr = provider(std::forward<Args>(args)...);
if (ptr)
{
old = std::move(cur);
cur = ptr;
}
else
{
return nullptr;
}
}
return ptr;
}
// Get the object unconditionally (create an object if it doesn't exist)
template <typename T, typename Make = T, typename... Args>
static std::enable_if_t<std::is_constructible<Make, Args...>::value, std::shared_ptr<T>> get_always(Args&&... args)
{
std::shared_ptr<T> ptr;
{
std::lock_guard lock(id_manager::g_mutex);
auto& old = g_vec[get_type<T>()];
if (old)
{
return {old, static_cast<T*>(old.get())};
}
else
{
ptr = std::make_shared<Make>(std::forward<Args>(args)...);
old = ptr;
}
}
return ptr;
}
// Unsafe version of check(), can be used in some cases
template <typename T>
static inline T* check_unlocked()
{
return static_cast<T*>(g_vec[get_type<T>()].get());
}
// Check whether the object exists
template <typename T>
static inline T* check()
{
reader_lock lock(id_manager::g_mutex);
return check_unlocked<T>();
}
// Get the object (returns nullptr if it doesn't exist)
template <typename T>
static inline std::shared_ptr<T> get()
{
reader_lock lock(id_manager::g_mutex);
auto& ptr = g_vec[get_type<T>()];
return {ptr, static_cast<T*>(ptr.get())};
}
// Delete the object
template <typename T>
static inline bool remove()
{
std::shared_ptr<void> ptr;
{
std::lock_guard lock(id_manager::g_mutex);
ptr = std::move(g_vec[get_type<T>()]);
}
return ptr.operator bool();
}
// Delete the object and return it
template <typename T>
static inline std::shared_ptr<T> withdraw()
{
std::shared_ptr<void> ptr;
{
std::lock_guard lock(id_manager::g_mutex);
ptr = std::move(g_vec[get_type<T>()]);
}
return {ptr, static_cast<T*>(ptr.get())};
}
};
#include "Utilities/typemap.h"
extern utils::typemap g_typemap;
constexpr utils::typemap* g_idm = &g_typemap;
using utils::id_new;
using utils::id_any;
using utils::id_always;