rpcs3/rpcs3/Emu/RSX/VK/VKHelpers.h
kd-11 a8b989b51d vk: Improve window resize handling
- Be careful not to request images not available
- Request a triple buffer at all times if available to keep acquisition from locking up
2017-08-18 16:51:38 +03:00

1479 lines
39 KiB
C++

#pragma once
#include "stdafx.h"
#include <exception>
#include <string>
#include <functional>
#include <vector>
#include <memory>
#include <unordered_map>
#ifdef __linux__
#include <X11/Xlib.h>
#endif
#include "Emu/System.h"
#include "VulkanAPI.h"
#include "../GCM.h"
#include "../Common/TextureUtils.h"
#include "../Common/ring_buffer_helper.h"
#include "../Common/GLSLCommon.h"
#include "../rsx_cache.h"
#define DESCRIPTOR_MAX_DRAW_CALLS 4096
#define VERTEX_BUFFERS_FIRST_BIND_SLOT 3
#define FRAGMENT_CONSTANT_BUFFERS_BIND_SLOT 2
#define VERTEX_CONSTANT_BUFFERS_BIND_SLOT 1
#define SCALE_OFFSET_BIND_SLOT 0
#define TEXTURES_FIRST_BIND_SLOT 19
#define VERTEX_TEXTURES_FIRST_BIND_SLOT 35 //19+16
namespace rsx
{
class fragment_texture;
}
namespace vk
{
#define CHECK_RESULT(expr) { VkResult _res = (expr); if (_res != VK_SUCCESS) fmt::throw_exception("Assertion failed! Result is %Xh" HERE, (s32)_res); }
VKAPI_ATTR void *VKAPI_CALL mem_realloc(void *pUserData, void *pOriginal, size_t size, size_t alignment, VkSystemAllocationScope allocationScope);
VKAPI_ATTR void *VKAPI_CALL mem_alloc(void *pUserData, size_t size, size_t alignment, VkSystemAllocationScope allocationScope);
VKAPI_ATTR void VKAPI_CALL mem_free(void *pUserData, void *pMemory);
VKAPI_ATTR VkBool32 VKAPI_CALL dbgFunc(VkFlags msgFlags, VkDebugReportObjectTypeEXT objType,
uint64_t srcObject, size_t location, int32_t msgCode,
const char *pLayerPrefix, const char *pMsg, void *pUserData);
VkBool32 BreakCallback(VkFlags msgFlags, VkDebugReportObjectTypeEXT objType,
uint64_t srcObject, size_t location, int32_t msgCode,
const char *pLayerPrefix, const char *pMsg,
void *pUserData);
//VkAllocationCallbacks default_callbacks();
class context;
class render_device;
class swap_chain_image;
class physical_device;
class command_buffer;
struct image;
vk::context *get_current_thread_ctx();
void set_current_thread_ctx(const vk::context &ctx);
vk::render_device *get_current_renderer();
void set_current_renderer(const vk::render_device &device);
VkComponentMapping default_component_map();
VkImageSubresource default_image_subresource();
VkImageSubresourceRange get_image_subresource_range(uint32_t base_layer, uint32_t base_mip, uint32_t layer_count, uint32_t level_count, VkImageAspectFlags aspect);
VkSampler null_sampler();
VkImageView null_image_view();
void destroy_global_resources();
void change_image_layout(VkCommandBuffer cmd, VkImage image, VkImageLayout current_layout, VkImageLayout new_layout, VkImageSubresourceRange range);
void change_image_layout(VkCommandBuffer cmd, vk::image *image, VkImageLayout new_layout, VkImageSubresourceRange range);
void copy_image(VkCommandBuffer cmd, VkImage &src, VkImage &dst, VkImageLayout srcLayout, VkImageLayout dstLayout, u32 width, u32 height, u32 mipmaps, VkImageAspectFlagBits aspect);
void copy_scaled_image(VkCommandBuffer cmd, VkImage &src, VkImage &dst, VkImageLayout srcLayout, VkImageLayout dstLayout, u32 src_x_offset, u32 src_y_offset, u32 src_width, u32 src_height, u32 dst_x_offset, u32 dst_y_offset, u32 dst_width, u32 dst_height, u32 mipmaps, VkImageAspectFlagBits aspect);
VkFormat get_compatible_sampler_format(u32 format);
std::pair<VkFormat, VkComponentMapping> get_compatible_surface_format(rsx::surface_color_format color_format);
size_t get_render_pass_location(VkFormat color_surface_format, VkFormat depth_stencil_format, u8 color_surface_count);
void enter_uninterruptible();
void leave_uninterruptible();
bool is_uninterruptible();
struct memory_type_mapping
{
uint32_t host_visible_coherent;
uint32_t device_local;
};
memory_type_mapping get_memory_mapping(VkPhysicalDevice pdev);
class physical_device
{
VkPhysicalDevice dev = nullptr;
VkPhysicalDeviceProperties props;
VkPhysicalDeviceMemoryProperties memory_properties;
std::vector<VkQueueFamilyProperties> queue_props;
public:
physical_device() {}
~physical_device() {}
void set_device(VkPhysicalDevice pdev)
{
dev = pdev;
vkGetPhysicalDeviceProperties(pdev, &props);
vkGetPhysicalDeviceMemoryProperties(pdev, &memory_properties);
}
std::string name()
{
return props.deviceName;
}
uint32_t get_queue_count()
{
if (queue_props.size())
return (u32)queue_props.size();
uint32_t count = 0;
vkGetPhysicalDeviceQueueFamilyProperties(dev, &count, nullptr);
return count;
}
VkQueueFamilyProperties get_queue_properties(uint32_t queue)
{
if (!queue_props.size())
{
uint32_t count = 0;
vkGetPhysicalDeviceQueueFamilyProperties(dev, &count, nullptr);
queue_props.resize(count);
vkGetPhysicalDeviceQueueFamilyProperties(dev, &count, queue_props.data());
}
if (queue >= queue_props.size()) fmt::throw_exception("Bad queue index passed to get_queue_properties (%u)" HERE, queue);
return queue_props[queue];
}
VkPhysicalDeviceMemoryProperties get_memory_properties()
{
return memory_properties;
}
operator VkPhysicalDevice()
{
return dev;
}
};
class render_device
{
vk::physical_device *pgpu;
VkDevice dev;
public:
render_device()
{
dev = nullptr;
pgpu = nullptr;
}
render_device(vk::physical_device &pdev, uint32_t graphics_queue_idx)
{
float queue_priorities[1] = { 0.f };
pgpu = &pdev;
VkDeviceQueueCreateInfo queue = {};
queue.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queue.pNext = NULL;
queue.queueFamilyIndex = graphics_queue_idx;
queue.queueCount = 1;
queue.pQueuePriorities = queue_priorities;
//Set up instance information
const char *requested_extensions[] =
{
"VK_KHR_swapchain"
};
std::vector<const char *> layers;
if (g_cfg.video.debug_output)
layers.push_back("VK_LAYER_LUNARG_standard_validation");
//Enable hardware features manually
//Currently we require:
//1. Anisotropic sampling
//2. DXT support
VkPhysicalDeviceFeatures available_features;
vkGetPhysicalDeviceFeatures(*pgpu, &available_features);
available_features.samplerAnisotropy = VK_TRUE;
available_features.textureCompressionBC = VK_TRUE;
VkDeviceCreateInfo device = {};
device.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
device.pNext = NULL;
device.queueCreateInfoCount = 1;
device.pQueueCreateInfos = &queue;
device.enabledLayerCount = static_cast<uint32_t>(layers.size());
device.ppEnabledLayerNames = layers.data();
device.enabledExtensionCount = 1;
device.ppEnabledExtensionNames = requested_extensions;
device.pEnabledFeatures = &available_features;
CHECK_RESULT(vkCreateDevice(*pgpu, &device, nullptr, &dev));
}
~render_device()
{
}
void destroy()
{
if (dev && pgpu)
{
vkDestroyDevice(dev, nullptr);
dev = nullptr;
}
}
bool get_compatible_memory_type(u32 typeBits, u32 desired_mask, u32 *type_index)
{
VkPhysicalDeviceMemoryProperties mem_infos = pgpu->get_memory_properties();
for (uint32_t i = 0; i < 32; i++)
{
if ((typeBits & 1) == 1)
{
if ((mem_infos.memoryTypes[i].propertyFlags & desired_mask) == desired_mask)
{
*type_index = i;
return true;
}
}
typeBits >>= 1;
}
return false;
}
vk::physical_device& gpu()
{
return *pgpu;
}
operator VkDevice()
{
return dev;
}
};
struct memory_block
{
VkMemoryAllocateInfo info = {};
VkDeviceMemory memory;
memory_block(VkDevice dev, u64 block_sz, uint32_t memory_type_index) : m_device(dev)
{
info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
info.allocationSize = block_sz;
info.memoryTypeIndex = memory_type_index;
CHECK_RESULT(vkAllocateMemory(m_device, &info, nullptr, &memory));
}
~memory_block()
{
vkFreeMemory(m_device, memory, nullptr);
}
memory_block(const memory_block&) = delete;
memory_block(memory_block&&) = delete;
private:
VkDevice m_device;
};
class memory_block_deprecated
{
VkDeviceMemory vram = nullptr;
vk::render_device *owner = nullptr;
u64 vram_block_sz = 0;
bool mappable = false;
public:
memory_block_deprecated() {}
~memory_block_deprecated() {}
void allocate_from_pool(vk::render_device &device, u64 block_sz, bool host_visible, u32 typeBits)
{
if (vram)
destroy();
u32 typeIndex = 0;
owner = (vk::render_device*)&device;
VkDevice dev = (VkDevice)(*owner);
u32 access_mask = 0;
if (host_visible)
access_mask |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
if (!owner->get_compatible_memory_type(typeBits, access_mask, &typeIndex))
fmt::throw_exception("Could not find suitable memory type!" HERE);
VkMemoryAllocateInfo infos;
infos.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
infos.pNext = nullptr;
infos.allocationSize = block_sz;
infos.memoryTypeIndex = typeIndex;
CHECK_RESULT(vkAllocateMemory(dev, &infos, nullptr, &vram));
vram_block_sz = block_sz;
mappable = host_visible;
}
void allocate_from_pool(vk::render_device &device, u64 block_sz, u32 typeBits)
{
allocate_from_pool(device, block_sz, true, typeBits);
}
void destroy()
{
VkDevice dev = (VkDevice)(*owner);
vkFreeMemory(dev, vram, nullptr);
owner = nullptr;
vram = nullptr;
vram_block_sz = 0;
}
bool is_mappable()
{
return mappable;
}
vk::render_device& get_owner()
{
return (*owner);
}
operator VkDeviceMemory()
{
return vram;
}
};
struct image
{
VkImage value;
VkComponentMapping native_component_map = {VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A};
VkImageLayout current_layout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageCreateInfo info = {};
std::shared_ptr<vk::memory_block> memory;
image(vk::render_device &dev,
uint32_t memory_type_index,
uint32_t access_flags,
VkImageType image_type,
VkFormat format,
uint32_t width, uint32_t height, uint32_t depth,
uint32_t mipmaps, uint32_t layers,
VkSampleCountFlagBits samples,
VkImageLayout initial_layout,
VkImageTiling tiling,
VkImageUsageFlags usage,
VkImageCreateFlags image_flags)
: m_device(dev)
{
info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
info.imageType = image_type;
info.format = format;
info.extent = { width, height, depth };
info.mipLevels = mipmaps;
info.arrayLayers = layers;
info.samples = samples;
info.tiling = tiling;
info.usage = usage;
info.flags = image_flags;
info.initialLayout = initial_layout;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
CHECK_RESULT(vkCreateImage(m_device, &info, nullptr, &value));
VkMemoryRequirements memory_req;
vkGetImageMemoryRequirements(m_device, value, &memory_req);
if (!(memory_req.memoryTypeBits & (1 << memory_type_index)))
{
//Suggested memory type is incompatible with this memory type.
//Go through the bitset and test for requested props.
if (!dev.get_compatible_memory_type(memory_req.memoryTypeBits, access_flags, &memory_type_index))
fmt::throw_exception("No compatible memory type was found!" HERE);
}
memory = std::make_shared<vk::memory_block>(m_device, memory_req.size, memory_type_index);
CHECK_RESULT(vkBindImageMemory(m_device, value, memory->memory, 0));
}
// TODO: Ctor that uses a provided memory heap
~image()
{
vkDestroyImage(m_device, value, nullptr);
}
image(const image&) = delete;
image(image&&) = delete;
u32 width() const
{
return info.extent.width;
}
u32 height() const
{
return info.extent.height;
}
u32 depth() const
{
return info.extent.depth;
}
private:
VkDevice m_device;
};
struct image_view
{
VkImageView value;
VkImageViewCreateInfo info = {};
image_view(VkDevice dev, VkImage image, VkImageViewType view_type, VkFormat format, VkComponentMapping mapping, VkImageSubresourceRange range)
: m_device(dev)
{
info.format = format;
info.image = image;
info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
info.viewType = view_type;
info.components = mapping;
info.subresourceRange = range;
CHECK_RESULT(vkCreateImageView(m_device, &info, nullptr, &value));
}
~image_view()
{
vkDestroyImageView(m_device, value, nullptr);
}
image_view(const image_view&) = delete;
image_view(image_view&&) = delete;
private:
VkDevice m_device;
};
class texture
{
VkImageView m_view = nullptr;
VkImage m_image_contents = nullptr;
VkMemoryRequirements m_memory_layout;
VkFormat m_internal_format;
VkImageUsageFlags m_flags;
VkImageAspectFlagBits m_image_aspect = VK_IMAGE_ASPECT_COLOR_BIT;
VkImageLayout m_layout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageViewType m_view_type = VK_IMAGE_VIEW_TYPE_2D;
VkImageUsageFlags m_usage = VK_IMAGE_USAGE_SAMPLED_BIT;
VkImageTiling m_tiling = VK_IMAGE_TILING_LINEAR;
vk::memory_block_deprecated vram_allocation;
vk::render_device *owner = nullptr;
u32 m_width;
u32 m_height;
u32 m_mipmaps;
vk::texture *staging_texture = nullptr;
bool ready = false;
public:
texture(vk::swap_chain_image &img);
texture() {}
~texture() {}
void create(vk::render_device &device, VkFormat format, VkImageType image_type, VkImageViewType view_type, VkImageCreateFlags image_flags, VkImageUsageFlags usage, VkImageTiling tiling, u32 width, u32 height, u32 mipmaps, bool gpu_only, VkComponentMapping swizzle);
void create(vk::render_device &device, VkFormat format, VkImageUsageFlags usage, VkImageTiling tiling, u32 width, u32 height, u32 mipmaps, bool gpu_only, VkComponentMapping swizzle);
void create(vk::render_device &device, VkFormat format, VkImageUsageFlags usage, u32 width, u32 height, u32 mipmaps = 1, bool gpu_only = false, VkComponentMapping swizzle = default_component_map());
void destroy();
void init(rsx::fragment_texture &tex, vk::command_buffer &cmd, bool ignore_checks = false);
void flush(vk::command_buffer & cmd);
//Fill with debug color 0xFF
void init_debug();
void change_layout(vk::command_buffer &cmd, VkImageLayout new_layout);
VkImageLayout get_layout();
const u32 width();
const u32 height();
const u16 mipmaps();
const VkFormat get_format();
operator VkImageView();
operator VkImage();
};
struct buffer
{
VkBuffer value;
VkBufferCreateInfo info = {};
std::unique_ptr<vk::memory_block> memory;
buffer(vk::render_device& dev, u64 size, uint32_t memory_type_index, uint32_t access_flags, VkBufferUsageFlagBits usage, VkBufferCreateFlags flags)
: m_device(dev)
{
info.size = size;
info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.flags = flags;
info.usage = usage;
CHECK_RESULT(vkCreateBuffer(m_device, &info, nullptr, &value));
//Allocate vram for this buffer
VkMemoryRequirements memory_reqs;
vkGetBufferMemoryRequirements(m_device, value, &memory_reqs);
if (!(memory_reqs.memoryTypeBits & (1 << memory_type_index)))
{
//Suggested memory type is incompatible with this memory type.
//Go through the bitset and test for requested props.
if (!dev.get_compatible_memory_type(memory_reqs.memoryTypeBits, access_flags, &memory_type_index))
fmt::throw_exception("No compatible memory type was found!" HERE);
}
memory.reset(new memory_block(m_device, memory_reqs.size, memory_type_index));
vkBindBufferMemory(dev, value, memory->memory, 0);
}
~buffer()
{
vkDestroyBuffer(m_device, value, nullptr);
}
void *map(u64 offset, u64 size)
{
void *data = nullptr;
CHECK_RESULT(vkMapMemory(m_device, memory->memory, offset, std::max<u64>(size, 1u), 0, &data));
return data;
}
void unmap()
{
vkUnmapMemory(m_device, memory->memory);
}
buffer(const buffer&) = delete;
buffer(buffer&&) = delete;
private:
VkDevice m_device;
};
struct buffer_view
{
VkBufferView value;
VkBufferViewCreateInfo info = {};
buffer_view(VkDevice dev, VkBuffer buffer, VkFormat format, VkDeviceSize offset, VkDeviceSize size)
: m_device(dev)
{
info.buffer = buffer;
info.format = format;
info.offset = offset;
info.range = size;
info.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
CHECK_RESULT(vkCreateBufferView(m_device, &info, nullptr, &value));
}
~buffer_view()
{
vkDestroyBufferView(m_device, value, nullptr);
}
buffer_view(const buffer_view&) = delete;
buffer_view(buffer_view&&) = delete;
private:
VkDevice m_device;
};
struct sampler
{
VkSampler value;
VkSamplerCreateInfo info = {};
sampler(VkDevice dev, VkSamplerAddressMode clamp_u, VkSamplerAddressMode clamp_v, VkSamplerAddressMode clamp_w,
bool unnormalized_coordinates, float mipLodBias, float max_anisotropy, float min_lod, float max_lod,
VkFilter min_filter, VkFilter mag_filter, VkSamplerMipmapMode mipmap_mode, VkBorderColor border_color,
VkBool32 depth_compare = false, VkCompareOp depth_compare_mode = VK_COMPARE_OP_NEVER)
: m_device(dev)
{
VkSamplerCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
info.addressModeU = clamp_u;
info.addressModeV = clamp_v;
info.addressModeW = clamp_w;
info.anisotropyEnable = VK_TRUE;
info.compareEnable = depth_compare;
info.unnormalizedCoordinates = unnormalized_coordinates;
info.mipLodBias = mipLodBias;
info.maxAnisotropy = max_anisotropy;
info.maxLod = max_lod;
info.minLod = min_lod;
info.magFilter = mag_filter;
info.minFilter = min_filter;
info.mipmapMode = mipmap_mode;
info.compareOp = depth_compare_mode;
info.borderColor = border_color;
CHECK_RESULT(vkCreateSampler(m_device, &info, nullptr, &value));
}
~sampler()
{
vkDestroySampler(m_device, value, nullptr);
}
sampler(const sampler&) = delete;
sampler(sampler&&) = delete;
private:
VkDevice m_device;
};
struct framebuffer
{
VkFramebuffer value;
VkFramebufferCreateInfo info = {};
std::vector<std::unique_ptr<vk::image_view>> attachments;
u32 m_width = 0;
u32 m_height = 0;
public:
framebuffer(VkDevice dev, VkRenderPass pass, u32 width, u32 height, std::vector<std::unique_ptr<vk::image_view>> &&atts)
: m_device(dev), attachments(std::move(atts))
{
std::vector<VkImageView> image_view_array(attachments.size());
size_t i = 0;
for (const auto &att : attachments)
{
image_view_array[i++] = att->value;
}
info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
info.width = width;
info.height = height;
info.attachmentCount = static_cast<uint32_t>(image_view_array.size());
info.pAttachments = image_view_array.data();
info.renderPass = pass;
info.layers = 1;
m_width = width;
m_height = height;
CHECK_RESULT(vkCreateFramebuffer(dev, &info, nullptr, &value));
}
~framebuffer()
{
vkDestroyFramebuffer(m_device, value, nullptr);
}
u32 width()
{
return m_width;
}
u32 height()
{
return m_height;
}
bool matches(std::vector<vk::image*> fbo_images, u32 width, u32 height)
{
if (m_width != width || m_height != height)
return false;
if (fbo_images.size() != attachments.size())
return false;
for (int n = 0; n < fbo_images.size(); ++n)
{
if (attachments[n]->info.image != fbo_images[n]->value ||
attachments[n]->info.format != fbo_images[n]->info.format)
return false;
}
return true;
}
framebuffer(const framebuffer&) = delete;
framebuffer(framebuffer&&) = delete;
private:
VkDevice m_device;
};
class swap_chain_image
{
VkImageView view = nullptr;
VkImage image = nullptr;
VkFormat internal_format;
vk::render_device *owner = nullptr;
public:
swap_chain_image() {}
void create(vk::render_device &dev, VkImage &swap_image, VkFormat format)
{
VkImageViewCreateInfo color_image_view = {};
color_image_view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
color_image_view.format = format;
color_image_view.components.r = VK_COMPONENT_SWIZZLE_R;
color_image_view.components.g = VK_COMPONENT_SWIZZLE_G;
color_image_view.components.b = VK_COMPONENT_SWIZZLE_B;
color_image_view.components.a = VK_COMPONENT_SWIZZLE_A;
color_image_view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
color_image_view.subresourceRange.baseMipLevel = 0;
color_image_view.subresourceRange.levelCount = 1;
color_image_view.subresourceRange.baseArrayLayer = 0;
color_image_view.subresourceRange.layerCount = 1;
color_image_view.viewType = VK_IMAGE_VIEW_TYPE_2D;
color_image_view.image = swap_image;
vkCreateImageView(dev, &color_image_view, nullptr, &view);
image = swap_image;
internal_format = format;
owner = &dev;
}
void discard(vk::render_device &dev)
{
vkDestroyImageView(dev, view, nullptr);
}
operator VkImage()
{
return image;
}
operator VkImageView()
{
return view;
}
operator vk::texture()
{
return vk::texture(*this);
}
};
class swap_chain
{
vk::render_device dev;
uint32_t m_present_queue = 0xFFFF;
uint32_t m_graphics_queue = 0xFFFF;
VkQueue vk_graphics_queue = nullptr;
VkQueue vk_present_queue = nullptr;
/* WSI surface information */
VkSurfaceKHR m_surface = nullptr;
VkFormat m_surface_format;
VkColorSpaceKHR m_color_space;
VkSwapchainKHR m_vk_swapchain = nullptr;
std::vector<vk::swap_chain_image> m_swap_images;
public:
PFN_vkCreateSwapchainKHR createSwapchainKHR;
PFN_vkDestroySwapchainKHR destroySwapchainKHR;
PFN_vkGetSwapchainImagesKHR getSwapchainImagesKHR;
PFN_vkAcquireNextImageKHR acquireNextImageKHR;
PFN_vkQueuePresentKHR queuePresentKHR;
swap_chain(vk::physical_device &gpu, uint32_t _present_queue, uint32_t _graphics_queue, VkFormat format, VkSurfaceKHR surface, VkColorSpaceKHR color_space)
{
dev = render_device(gpu, _graphics_queue);
createSwapchainKHR = (PFN_vkCreateSwapchainKHR)vkGetDeviceProcAddr(dev, "vkCreateSwapchainKHR");
destroySwapchainKHR = (PFN_vkDestroySwapchainKHR)vkGetDeviceProcAddr(dev, "vkDestroySwapchainKHR");
getSwapchainImagesKHR = (PFN_vkGetSwapchainImagesKHR)vkGetDeviceProcAddr(dev, "vkGetSwapchainImagesKHR");
acquireNextImageKHR = (PFN_vkAcquireNextImageKHR)vkGetDeviceProcAddr(dev, "vkAcquireNextImageKHR");
queuePresentKHR = (PFN_vkQueuePresentKHR)vkGetDeviceProcAddr(dev, "vkQueuePresentKHR");
vkGetDeviceQueue(dev, _graphics_queue, 0, &vk_graphics_queue);
vkGetDeviceQueue(dev, _present_queue, 0, &vk_present_queue);
m_present_queue = _present_queue;
m_graphics_queue = _graphics_queue;
m_surface = surface;
m_color_space = color_space;
m_surface_format = format;
}
~swap_chain()
{
}
void destroy()
{
if (VkDevice pdev = (VkDevice)dev)
{
if (m_vk_swapchain)
{
if (m_swap_images.size())
{
for (vk::swap_chain_image &img : m_swap_images)
img.discard(dev);
}
destroySwapchainKHR(pdev, m_vk_swapchain, nullptr);
}
dev.destroy();
}
}
void init_swapchain(u32 width, u32 height)
{
VkSwapchainKHR old_swapchain = m_vk_swapchain;
vk::physical_device& gpu = const_cast<vk::physical_device&>(dev.gpu());
VkSurfaceCapabilitiesKHR surface_descriptors = {};
CHECK_RESULT(vkGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, m_surface, &surface_descriptors));
VkExtent2D swapchainExtent;
if (surface_descriptors.currentExtent.width == (uint32_t)-1)
{
swapchainExtent.width = width;
swapchainExtent.height = height;
}
else
{
swapchainExtent = surface_descriptors.currentExtent;
width = surface_descriptors.currentExtent.width;
height = surface_descriptors.currentExtent.height;
}
uint32_t nb_available_modes = 0;
CHECK_RESULT(vkGetPhysicalDeviceSurfacePresentModesKHR(gpu, m_surface, &nb_available_modes, nullptr));
std::vector<VkPresentModeKHR> present_modes(nb_available_modes);
CHECK_RESULT(vkGetPhysicalDeviceSurfacePresentModesKHR(gpu, m_surface, &nb_available_modes, present_modes.data()));
VkPresentModeKHR swapchain_present_mode = VK_PRESENT_MODE_FIFO_KHR;
for (VkPresentModeKHR mode : present_modes)
{
if (mode == VK_PRESENT_MODE_MAILBOX_KHR)
{
//If we can get a mailbox mode, use it
swapchain_present_mode = mode;
break;
}
//If we can get out of using the FIFO mode, take it. Fifo is very high latency (generic vsync)
if (swapchain_present_mode == VK_PRESENT_MODE_FIFO_KHR &&
(mode == VK_PRESENT_MODE_IMMEDIATE_KHR || mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR))
swapchain_present_mode = mode;
}
uint32_t nb_swap_images = surface_descriptors.minImageCount + 1;
if (surface_descriptors.maxImageCount > 0)
{
//Try to negotiate for a triple buffer setup
//In cases where the front-buffer isnt available for present, its better to have a spare surface
nb_swap_images = std::max(surface_descriptors.minImageCount + 2u, 3u);
if (nb_swap_images > surface_descriptors.maxImageCount)
{
// Application must settle for fewer images than desired:
nb_swap_images = surface_descriptors.maxImageCount;
}
}
VkSurfaceTransformFlagBitsKHR pre_transform = surface_descriptors.currentTransform;
if (surface_descriptors.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
pre_transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
VkSwapchainCreateInfoKHR swap_info = {};
swap_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swap_info.surface = m_surface;
swap_info.minImageCount = nb_swap_images;
swap_info.imageFormat = m_surface_format;
swap_info.imageColorSpace = m_color_space;
swap_info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
swap_info.preTransform = pre_transform;
swap_info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
swap_info.imageArrayLayers = 1;
swap_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swap_info.presentMode = swapchain_present_mode;
swap_info.oldSwapchain = old_swapchain;
swap_info.clipped = true;
swap_info.imageExtent.width = width;
swap_info.imageExtent.height = height;
createSwapchainKHR(dev, &swap_info, nullptr, &m_vk_swapchain);
if (old_swapchain)
{
if (m_swap_images.size())
{
for (auto &img : m_swap_images)
img.discard(dev);
m_swap_images.resize(0);
}
destroySwapchainKHR(dev, old_swapchain, nullptr);
}
nb_swap_images = 0;
getSwapchainImagesKHR(dev, m_vk_swapchain, &nb_swap_images, nullptr);
if (!nb_swap_images) fmt::throw_exception("Driver returned 0 images for swapchain" HERE);
std::vector<VkImage> swap_images;
swap_images.resize(nb_swap_images);
getSwapchainImagesKHR(dev, m_vk_swapchain, &nb_swap_images, swap_images.data());
m_swap_images.resize(nb_swap_images);
for (u32 i = 0; i < nb_swap_images; ++i)
{
m_swap_images[i].create(dev, swap_images[i], m_surface_format);
}
}
u32 get_swap_image_count()
{
return (u32)m_swap_images.size();
}
vk::swap_chain_image& get_swap_chain_image(const int index)
{
return m_swap_images[index];
}
const vk::render_device& get_device()
{
return dev;
}
const VkQueue& get_present_queue()
{
return vk_graphics_queue;
}
const VkFormat get_surface_format()
{
return m_surface_format;
}
operator const VkSwapchainKHR()
{
return m_vk_swapchain;
}
};
class command_pool
{
vk::render_device *owner = nullptr;
VkCommandPool pool = nullptr;
public:
command_pool() {}
~command_pool() {}
void create(vk::render_device &dev)
{
owner = &dev;
VkCommandPoolCreateInfo infos = {};
infos.flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT | VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
infos.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
CHECK_RESULT(vkCreateCommandPool(dev, &infos, nullptr, &pool));
}
void destroy()
{
if (!pool)
return;
vkDestroyCommandPool((*owner), pool, nullptr);
pool = nullptr;
}
vk::render_device& get_owner()
{
return (*owner);
}
operator VkCommandPool()
{
return pool;
}
};
class command_buffer
{
protected:
vk::command_pool *pool = nullptr;
VkCommandBuffer commands = nullptr;
public:
command_buffer() {}
~command_buffer() {}
void create(vk::command_pool &cmd_pool)
{
VkCommandBufferAllocateInfo infos = {};
infos.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
infos.commandBufferCount = 1;
infos.commandPool = (VkCommandPool)cmd_pool;
infos.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
CHECK_RESULT(vkAllocateCommandBuffers(cmd_pool.get_owner(), &infos, &commands));
pool = &cmd_pool;
}
void destroy()
{
vkFreeCommandBuffers(pool->get_owner(), (*pool), 1, &commands);
}
vk::command_pool& get_command_pool() const
{
return *pool;
}
operator VkCommandBuffer()
{
return commands;
}
};
class context
{
private:
std::vector<physical_device> gpus;
std::vector<VkInstance> m_vk_instances;
VkInstance m_instance;
PFN_vkDestroyDebugReportCallbackEXT destroyDebugReportCallback = nullptr;
PFN_vkCreateDebugReportCallbackEXT createDebugReportCallback = nullptr;
VkDebugReportCallbackEXT m_debugger = nullptr;
bool loader_exists = false;
public:
context()
{
m_instance = nullptr;
//Check that some critical entry-points have been loaded into memory indicating prescence of a loader
loader_exists = (vkCreateInstance != nullptr);
}
~context()
{
if (m_instance || m_vk_instances.size())
close();
}
void close()
{
if (!m_vk_instances.size()) return;
if (m_debugger)
{
destroyDebugReportCallback(m_instance, m_debugger, nullptr);
m_debugger = nullptr;
}
for (VkInstance &inst : m_vk_instances)
{
vkDestroyInstance(inst, nullptr);
}
m_instance = nullptr;
m_vk_instances.resize(0);
}
void enable_debugging()
{
if (!g_cfg.video.debug_output) return;
PFN_vkDebugReportCallbackEXT callback = vk::dbgFunc;
createDebugReportCallback = (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr(m_instance, "vkCreateDebugReportCallbackEXT");
destroyDebugReportCallback = (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(m_instance, "vkDestroyDebugReportCallbackEXT");
VkDebugReportCallbackCreateInfoEXT dbgCreateInfo = {};
dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
dbgCreateInfo.pfnCallback = callback;
dbgCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
CHECK_RESULT(createDebugReportCallback(m_instance, &dbgCreateInfo, NULL, &m_debugger));
}
uint32_t createInstance(const char *app_name, bool fast = false)
{
if (!loader_exists) return 0;
//Initialize a vulkan instance
VkApplicationInfo app = {};
app.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
app.pApplicationName = app_name;
app.applicationVersion = 0;
app.pEngineName = app_name;
app.engineVersion = 0;
app.apiVersion = VK_MAKE_VERSION(1, 0, 0);
//Set up instance information
const char *requested_extensions[] =
{
"VK_KHR_surface",
#ifdef _WIN32
"VK_KHR_win32_surface",
#else
"VK_KHR_xlib_surface",
#endif
"VK_EXT_debug_report",
};
std::vector<const char *> layers;
if (!fast && g_cfg.video.debug_output)
layers.push_back("VK_LAYER_LUNARG_standard_validation");
VkInstanceCreateInfo instance_info = {};
instance_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instance_info.pApplicationInfo = &app;
instance_info.enabledLayerCount = static_cast<uint32_t>(layers.size());
instance_info.ppEnabledLayerNames = layers.data();
instance_info.enabledExtensionCount = fast? 0: 3;
instance_info.ppEnabledExtensionNames = fast? nullptr: requested_extensions;
VkInstance instance;
if (vkCreateInstance(&instance_info, nullptr, &instance) != VK_SUCCESS)
return 0;
m_vk_instances.push_back(instance);
return (u32)m_vk_instances.size();
}
void makeCurrentInstance(uint32_t instance_id)
{
if (!instance_id || instance_id > m_vk_instances.size())
fmt::throw_exception("Invalid instance passed to makeCurrentInstance (%u)" HERE, instance_id);
if (m_debugger)
{
destroyDebugReportCallback(m_instance, m_debugger, nullptr);
m_debugger = nullptr;
}
instance_id--;
m_instance = m_vk_instances[instance_id];
}
VkInstance getCurrentInstance()
{
return m_instance;
}
VkInstance getInstanceById(uint32_t instance_id)
{
if (!instance_id || instance_id > m_vk_instances.size())
fmt::throw_exception("Invalid instance passed to getInstanceById (%u)" HERE, instance_id);
instance_id--;
return m_vk_instances[instance_id];
}
std::vector<physical_device>& enumerateDevices()
{
if (!loader_exists)
return gpus;
uint32_t num_gpus;
// This may fail on unsupported drivers, so just assume no devices
if (vkEnumeratePhysicalDevices(m_instance, &num_gpus, nullptr) != VK_SUCCESS)
return gpus;
if (gpus.size() != num_gpus)
{
std::vector<VkPhysicalDevice> pdevs(num_gpus);
gpus.resize(num_gpus);
CHECK_RESULT(vkEnumeratePhysicalDevices(m_instance, &num_gpus, pdevs.data()));
for (u32 i = 0; i < num_gpus; ++i)
gpus[i].set_device(pdevs[i]);
}
return gpus;
}
#ifdef _WIN32
vk::swap_chain* createSwapChain(HINSTANCE hInstance, HWND hWnd, vk::physical_device &dev)
{
VkWin32SurfaceCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
createInfo.hinstance = hInstance;
createInfo.hwnd = hWnd;
VkSurfaceKHR surface;
CHECK_RESULT(vkCreateWin32SurfaceKHR(m_instance, &createInfo, NULL, &surface));
#elif __linux__
vk::swap_chain* createSwapChain(Display *display, Window window, vk::physical_device &dev)
{
VkXlibSurfaceCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR;
createInfo.dpy = display;
createInfo.window = window;
VkSurfaceKHR surface;
CHECK_RESULT(vkCreateXlibSurfaceKHR(m_instance, &createInfo, nullptr, &surface));
#endif
uint32_t device_queues = dev.get_queue_count();
std::vector<VkBool32> supportsPresent(device_queues);
for (u32 index = 0; index < device_queues; index++)
{
vkGetPhysicalDeviceSurfaceSupportKHR(dev, index, surface, &supportsPresent[index]);
}
// Search for a graphics and a present queue in the array of queue
// families, try to find one that supports both
uint32_t graphicsQueueNodeIndex = UINT32_MAX;
uint32_t presentQueueNodeIndex = UINT32_MAX;
for (u32 i = 0; i < device_queues; i++)
{
if ((dev.get_queue_properties(i).queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0)
{
if (graphicsQueueNodeIndex == UINT32_MAX)
graphicsQueueNodeIndex = i;
if (supportsPresent[i] == VK_TRUE)
{
graphicsQueueNodeIndex = i;
presentQueueNodeIndex = i;
break;
}
}
}
if (presentQueueNodeIndex == UINT32_MAX)
{
// If didn't find a queue that supports both graphics and present, then
// find a separate present queue.
for (uint32_t i = 0; i < device_queues; ++i)
{
if (supportsPresent[i] == VK_TRUE)
{
presentQueueNodeIndex = i;
break;
}
}
}
// Generate error if could not find both a graphics and a present queue
if (graphicsQueueNodeIndex == UINT32_MAX || presentQueueNodeIndex == UINT32_MAX)
fmt::throw_exception("Failed to find a suitable graphics/compute queue" HERE);
if (graphicsQueueNodeIndex != presentQueueNodeIndex)
fmt::throw_exception("Separate graphics and present queues not supported" HERE);
// Get the list of VkFormat's that are supported:
uint32_t formatCount;
CHECK_RESULT(vkGetPhysicalDeviceSurfaceFormatsKHR(dev, surface, &formatCount, nullptr));
std::vector<VkSurfaceFormatKHR> surfFormats(formatCount);
CHECK_RESULT(vkGetPhysicalDeviceSurfaceFormatsKHR(dev, surface, &formatCount, surfFormats.data()));
VkFormat format;
VkColorSpaceKHR color_space;
if (formatCount == 1 && surfFormats[0].format == VK_FORMAT_UNDEFINED)
{
format = VK_FORMAT_B8G8R8A8_UNORM;
}
else
{
if (!formatCount) fmt::throw_exception("Format count is zero!" HERE);
format = surfFormats[0].format;
//Prefer BGRA8_UNORM to avoid sRGB compression (RADV)
for (auto& surface_format: surfFormats)
{
if (surface_format.format == VK_FORMAT_B8G8R8A8_UNORM)
{
format = VK_FORMAT_B8G8R8A8_UNORM;
break;
}
}
}
color_space = surfFormats[0].colorSpace;
return new swap_chain(dev, presentQueueNodeIndex, graphicsQueueNodeIndex, format, surface, color_space);
}
};
class descriptor_pool
{
VkDescriptorPool pool = nullptr;
vk::render_device *owner = nullptr;
public:
descriptor_pool() {}
~descriptor_pool() {}
void create(vk::render_device &dev, VkDescriptorPoolSize *sizes, u32 size_descriptors_count)
{
VkDescriptorPoolCreateInfo infos = {};
infos.flags = 0;
infos.maxSets = DESCRIPTOR_MAX_DRAW_CALLS;
infos.poolSizeCount = size_descriptors_count;
infos.pPoolSizes = sizes;
infos.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
owner = &dev;
CHECK_RESULT(vkCreateDescriptorPool(dev, &infos, nullptr, &pool));
}
void destroy()
{
if (!pool) return;
vkDestroyDescriptorPool((*owner), pool, nullptr);
owner = nullptr;
pool = nullptr;
}
bool valid()
{
return (pool != nullptr);
}
operator VkDescriptorPool()
{
return pool;
}
};
namespace glsl
{
enum program_input_type
{
input_type_uniform_buffer = 0,
input_type_texel_buffer = 1,
input_type_texture = 2
};
struct bound_sampler
{
VkFormat format;
VkImage image;
VkComponentMapping mapping;
};
struct bound_buffer
{
VkFormat format = VK_FORMAT_UNDEFINED;
VkBuffer buffer = nullptr;
u64 offset = 0;
u64 size = 0;
};
struct program_input
{
::glsl::program_domain domain;
program_input_type type;
bound_buffer as_buffer;
bound_sampler as_sampler;
int location;
std::string name;
};
class program
{
std::vector<program_input> uniforms;
VkDevice m_device;
public:
VkPipeline pipeline;
u64 attribute_location_mask;
u64 vertex_attributes_mask;
program(VkDevice dev, VkPipeline p, const std::vector<program_input> &vertex_input, const std::vector<program_input>& fragment_inputs);
program(const program&) = delete;
program(program&& other) = delete;
~program();
program& load_uniforms(::glsl::program_domain domain, const std::vector<program_input>& inputs);
bool has_uniform(std::string uniform_name);
void bind_uniform(VkDescriptorImageInfo image_descriptor, std::string uniform_name, VkDescriptorSet &descriptor_set);
void bind_uniform(VkDescriptorBufferInfo buffer_descriptor, uint32_t binding_point, VkDescriptorSet &descriptor_set);
void bind_uniform(const VkBufferView &buffer_view, const std::string &binding_name, VkDescriptorSet &descriptor_set);
u64 get_vertex_input_attributes_mask();
};
}
struct vk_data_heap : public data_heap
{
std::unique_ptr<vk::buffer> heap;
bool mapped = false;
void* map(size_t offset, size_t size)
{
mapped = true;
return heap->map(offset, size);
}
void unmap()
{
mapped = false;
heap->unmap();
}
};
/**
* Allocate enough space in upload_buffer and write all mipmap/layer data into the subbuffer.
* Then copy all layers into dst_image.
* dst_image must be in TRANSFER_DST_OPTIMAL layout and upload_buffer have TRANSFER_SRC_BIT usage flag.
*/
void copy_mipmaped_image_using_buffer(VkCommandBuffer cmd, VkImage dst_image,
const std::vector<rsx_subresource_layout>& subresource_layout, int format, bool is_swizzled, u16 mipmap_count,
vk::vk_data_heap &upload_heap, vk::buffer* upload_buffer);
}