rpcs3/rpcs3/Emu/RSX/rsx_utils.h

1125 lines
24 KiB
C++

#pragma once
#include "../System.h"
#include "Utilities/address_range.h"
#include "Utilities/geometry.h"
#include "Utilities/asm.h"
#include "gcm_enums.h"
#include <memory>
#include <bitset>
#include <chrono>
extern "C"
{
#include <libavutil/pixfmt.h>
}
namespace rsx
{
// Import address_range utilities
using utils::address_range;
using utils::address_range_vector;
using utils::page_for;
using utils::page_start;
using utils::page_end;
using utils::next_page;
using flags64_t = uint64_t;
using flags32_t = uint32_t;
using flags16_t = uint16_t;
using flags8_t = uint8_t;
// Definitions
class thread;
extern thread* g_current_renderer;
extern atomic_t<u64> g_rsx_shared_tag;
//Base for resources with reference counting
class ref_counted
{
atomic_t<s32> ref_count{ 0 }; // References held
atomic_t<u8> idle_time{ 0 }; // Number of times the resource has been tagged idle
public:
void add_ref()
{
ref_count++;
idle_time = 0;
}
void release()
{
ref_count--;
}
bool has_refs()
{
return (ref_count > 0);
}
// Returns number of times the resource has been checked without being used in-between checks
u8 unused_check_count()
{
if (ref_count)
{
return 0;
}
return idle_time++;
}
};
namespace limits
{
enum
{
fragment_textures_count = 16,
vertex_textures_count = 4,
vertex_count = 16,
fragment_count = 32,
tiles_count = 15,
zculls_count = 8,
color_buffers_count = 4
};
}
namespace constants
{
static std::array<const char*, 16> fragment_texture_names =
{
"tex0", "tex1", "tex2", "tex3", "tex4", "tex5", "tex6", "tex7",
"tex8", "tex9", "tex10", "tex11", "tex12", "tex13", "tex14", "tex15",
};
static std::array<const char*, 4> vertex_texture_names =
{
"vtex0", "vtex1", "vtex2", "vtex3",
};
// Local RSX memory base (known as constant)
static constexpr u32 local_mem_base = 0xC0000000;
}
/**
* Holds information about a framebuffer
*/
struct gcm_framebuffer_info
{
u32 address = 0;
u32 pitch = 0;
rsx::surface_color_format color_format;
rsx::surface_depth_format depth_format;
bool depth_buffer_float;
u16 width = 0;
u16 height = 0;
u8 bpp = 0;
u8 samples = 0;
address_range range{};
gcm_framebuffer_info() = default;
void calculate_memory_range(u32 aa_factor_u, u32 aa_factor_v)
{
// Account for the last line of the block not reaching the end
const u32 block_size = pitch * (height - 1) * aa_factor_v;
const u32 line_size = width * aa_factor_u * bpp;
range = address_range::start_length(address, block_size + line_size);
}
address_range get_memory_range(const u32* aa_factors)
{
calculate_memory_range(aa_factors[0], aa_factors[1]);
return range;
}
address_range get_memory_range() const
{
verify(HERE), range.start == address;
return range;
}
};
struct avconf
{
u8 format = 0; // XRGB
u8 aspect = 0; // AUTO
u32 scanline_pitch = 0; // PACKED
atomic_t<f32> gamma = 1.f; // NO GAMMA CORRECTION
u32 resolution_x = 1280; // X RES
u32 resolution_y = 720; // Y RES
atomic_t<u32> state = 0; // 1 after cellVideoOutConfigure was called
u32 get_compatible_gcm_format()
{
switch (format)
{
default:
LOG_ERROR(RSX, "Invalid AV format 0x%x", format);
case 0: // CELL_VIDEO_OUT_BUFFER_COLOR_FORMAT_X8R8G8B8:
case 1: // CELL_VIDEO_OUT_BUFFER_COLOR_FORMAT_X8B8G8R8:
return CELL_GCM_TEXTURE_A8R8G8B8;
case 2: // CELL_VIDEO_OUT_BUFFER_COLOR_FORMAT_R16G16B16X16_FLOAT:
return CELL_GCM_TEXTURE_W16_Z16_Y16_X16_FLOAT;
}
}
u8 get_bpp()
{
switch (format)
{
default:
LOG_ERROR(RSX, "Invalid AV format 0x%x", format);
case 0: // CELL_VIDEO_OUT_BUFFER_COLOR_FORMAT_X8R8G8B8:
case 1: // CELL_VIDEO_OUT_BUFFER_COLOR_FORMAT_X8B8G8R8:
return 4;
case 2: // CELL_VIDEO_OUT_BUFFER_COLOR_FORMAT_R16G16B16X16_FLOAT:
return 8;
}
}
};
struct blit_src_info
{
blit_engine::transfer_source_format format;
blit_engine::transfer_origin origin;
u16 offset_x;
u16 offset_y;
u16 width;
u16 height;
u16 pitch;
u32 rsx_address;
void *pixels;
};
struct blit_dst_info
{
blit_engine::transfer_destination_format format;
u16 offset_x;
u16 offset_y;
u16 width;
u16 height;
u16 pitch;
u16 clip_x;
u16 clip_y;
u16 clip_width;
u16 clip_height;
f32 scale_x;
f32 scale_y;
u32 rsx_address;
void *pixels;
bool swizzled;
};
static const std::pair<std::array<u8, 4>, std::array<u8, 4>> default_remap_vector =
{
{ CELL_GCM_TEXTURE_REMAP_FROM_A, CELL_GCM_TEXTURE_REMAP_FROM_R, CELL_GCM_TEXTURE_REMAP_FROM_G, CELL_GCM_TEXTURE_REMAP_FROM_B },
{ CELL_GCM_TEXTURE_REMAP_REMAP, CELL_GCM_TEXTURE_REMAP_REMAP, CELL_GCM_TEXTURE_REMAP_REMAP, CELL_GCM_TEXTURE_REMAP_REMAP }
};
template<typename T>
void pad_texture(void* input_pixels, void* output_pixels, u16 input_width, u16 input_height, u16 output_width, u16 output_height)
{
T *src = static_cast<T*>(input_pixels);
T *dst = static_cast<T*>(output_pixels);
for (u16 h = 0; h < input_height; ++h)
{
const u32 padded_pos = h * output_width;
const u32 pos = h * input_width;
for (u16 w = 0; w < input_width; ++w)
{
dst[padded_pos + w] = src[pos + w];
}
}
}
//
static inline u32 floor_log2(u32 value)
{
return value <= 1 ? 0 : utils::cntlz32(value, true) ^ 31;
}
static inline u32 ceil_log2(u32 value)
{
return value <= 1 ? 0 : utils::cntlz32((value - 1) << 1, true) ^ 31;
}
static inline u32 next_pow2(u32 x)
{
if (x <= 2) return x;
return static_cast<u32>((1ULL << 32) >> utils::cntlz32(x - 1, true));
}
static inline bool fcmp(float a, float b, float epsilon = 0.000001f)
{
return fabsf(a - b) < epsilon;
}
// Returns an ever-increasing tag value
static inline u64 get_shared_tag()
{
return g_rsx_shared_tag++;
}
static inline u32 get_location(u32 addr)
{
return (addr >= rsx::constants::local_mem_base) ?
CELL_GCM_LOCATION_LOCAL :
CELL_GCM_LOCATION_MAIN;
}
// Copy memory in inverse direction from source
// Used to scale negatively x axis while transfering image data
template <typename Ts = u8, typename Td = Ts>
static void memcpy_r(void* dst, void* src, std::size_t size)
{
for (u32 i = 0; i < size; i++)
{
*((Td*)dst + i) = *((Ts*)src - i);
}
}
// Returns interleaved bits of X|Y|Z used as Z-order curve indices
static inline u32 calculate_z_index(u32 x, u32 y, u32 z, u32 log2_width, u32 log2_height, u32 log2_depth)
{
AUDIT(x < (1u << log2_width) && y < (1u << log2_height) && z < (1u << log2_depth));
// offset = X' | Y' | Z' which are x,y,z bits interleaved
u32 offset = 0;
u32 shift_count = 0;
do
{
if (log2_width)
{
offset |= (x & 0x1) << shift_count++;
x >>= 1;
log2_width--;
}
if (log2_height)
{
offset |= (y & 0x1) << shift_count++;
y >>= 1;
log2_height--;
}
if (log2_depth)
{
offset |= (z & 0x1) << shift_count++;
z >>= 1;
log2_depth--;
}
}
while (x | y | z);
return offset;
}
/* Note: What the ps3 calls swizzling in this case is actually z-ordering / morton ordering of pixels
* - Input can be swizzled or linear, bool flag handles conversion to and from
* - It will handle any width and height that are a power of 2, square or non square
* Restriction: It has mixed results if the height or width is not a power of 2
* Restriction: Only works with 2D surfaces
*/
template<typename T>
void convert_linear_swizzle(void* input_pixels, void* output_pixels, u16 width, u16 height, u32 pitch, bool input_is_swizzled)
{
u32 log2width = ceil_log2(width);
u32 log2height = ceil_log2(height);
// Max mask possible for square texture
u32 x_mask = 0x55555555;
u32 y_mask = 0xAAAAAAAA;
// We have to limit the masks to the lower of the two dimensions to allow for non-square textures
u32 limit_mask = (log2width < log2height) ? log2width : log2height;
// double the limit mask to account for bits in both x and y
limit_mask = 1 << (limit_mask << 1);
//x_mask, bits above limit are 1's for x-carry
x_mask = (x_mask | ~(limit_mask - 1));
//y_mask. bits above limit are 0'd, as we use a different method for y-carry over
y_mask = (y_mask & (limit_mask - 1));
u32 offs_y = 0;
u32 offs_x = 0;
u32 offs_x0 = 0; //total y-carry offset for x
u32 y_incr = limit_mask;
u32 adv = pitch / sizeof(T);
if (!input_is_swizzled)
{
for (int y = 0; y < height; ++y)
{
T* src = static_cast<T*>(input_pixels) + y * adv;
T *dst = static_cast<T*>(output_pixels) + offs_y;
offs_x = offs_x0;
for (int x = 0; x < width; ++x)
{
dst[offs_x] = src[x];
offs_x = (offs_x - x_mask) & x_mask;
}
offs_y = (offs_y - y_mask) & y_mask;
if (offs_y == 0)
{
offs_x0 += y_incr;
}
}
}
else
{
for (int y = 0; y < height; ++y)
{
T *src = static_cast<T*>(input_pixels) + offs_y;
T* dst = static_cast<T*>(output_pixels) + y * adv;
offs_x = offs_x0;
for (int x = 0; x < width; ++x)
{
dst[x] = src[offs_x];
offs_x = (offs_x - x_mask) & x_mask;
}
offs_y = (offs_y - y_mask) & y_mask;
if (offs_y == 0)
{
offs_x0 += y_incr;
}
}
}
}
/**
* Write swizzled data to linear memory with support for 3 dimensions
* Z ordering is done in all 3 planes independently with a unit being a 2x2 block per-plane
* A unit in 3d textures is a group of 2x2x2 texels advancing towards depth in units of 2x2x1 blocks
* i.e 32 texels per "unit"
*/
template <typename T>
void convert_linear_swizzle_3d(void *input_pixels, void *output_pixels, u16 width, u16 height, u16 depth)
{
if (depth == 1)
{
convert_linear_swizzle<T>(input_pixels, output_pixels, width, height, width * sizeof(T), true);
return;
}
T *src = static_cast<T*>(input_pixels);
T *dst = static_cast<T*>(output_pixels);
const u32 log2_w = ceil_log2(width);
const u32 log2_h = ceil_log2(height);
const u32 log2_d = ceil_log2(depth);
for (u32 z = 0; z < depth; ++z)
{
for (u32 y = 0; y < height; ++y)
{
for (u32 x = 0; x < width; ++x)
{
*dst++ = src[calculate_z_index(x, y, z, log2_w, log2_h, log2_d)];
}
}
}
}
void scale_image_nearest(void* dst, const void* src, u16 src_width, u16 src_height, u16 dst_pitch, u16 src_pitch, u8 element_size, u8 samples_u, u8 samples_v, bool swap_bytes = false);
void convert_scale_image(u8 *dst, AVPixelFormat dst_format, int dst_width, int dst_height, int dst_pitch,
const u8 *src, AVPixelFormat src_format, int src_width, int src_height, int src_pitch, int src_slice_h, bool bilinear);
void clip_image(u8 *dst, const u8 *src, int clip_x, int clip_y, int clip_w, int clip_h, int bpp, int src_pitch, int dst_pitch);
void clip_image_may_overlap(u8 *dst, const u8 *src, int clip_x, int clip_y, int clip_w, int clip_h, int bpp, int src_pitch, int dst_pitch, u8* buffer);
void convert_le_f32_to_be_d24(void *dst, void *src, u32 row_length_in_texels, u32 num_rows);
void convert_le_d24x8_to_be_d24x8(void *dst, void *src, u32 row_length_in_texels, u32 num_rows);
void convert_le_d24x8_to_le_f32(void *dst, void *src, u32 row_length_in_texels, u32 num_rows);
std::array<float, 4> get_constant_blend_colors();
/**
* Shuffle texel layout from xyzw to wzyx
* TODO: Variable src/dst and optional se conversion
*/
template <typename T>
void shuffle_texel_data_wzyx(void *data, u16 row_pitch_in_bytes, u16 row_length_in_texels, u16 num_rows)
{
char *raw_src = (char*)data;
T tmp[4];
for (u16 n = 0; n < num_rows; ++n)
{
T* src = (T*)raw_src;
raw_src += row_pitch_in_bytes;
for (u16 m = 0; m < row_length_in_texels; ++m)
{
tmp[0] = src[3];
tmp[1] = src[2];
tmp[2] = src[1];
tmp[3] = src[0];
src[0] = tmp[0];
src[1] = tmp[1];
src[2] = tmp[2];
src[3] = tmp[3];
src += 4;
}
}
}
/**
* Clips a rect so that it never falls outside the parent region
* attempt_fit: allows resizing of the requested region. If false, failure to fit will result in the child rect being pinned to (0, 0)
*/
template <typename T>
std::tuple<T, T, T, T> clip_region(T parent_width, T parent_height, T clip_x, T clip_y, T clip_width, T clip_height, bool attempt_fit)
{
T x = clip_x;
T y = clip_y;
T width = clip_width;
T height = clip_height;
if ((clip_x + clip_width) > parent_width)
{
if (clip_x >= parent_width)
{
if (clip_width < parent_width)
width = clip_width;
else
width = parent_width;
x = (T)0;
}
else
{
if (attempt_fit)
width = parent_width - clip_x;
else
width = std::min(clip_width, parent_width);
}
}
if ((clip_y + clip_height) > parent_height)
{
if (clip_y >= parent_height)
{
if (clip_height < parent_height)
height = clip_height;
else
height = parent_height;
y = (T)0;
}
else
{
if (attempt_fit)
height = parent_height - clip_y;
else
height = std::min(clip_height, parent_height);
}
}
return std::make_tuple(x, y, width, height);
}
/**
* Extracts from 'parent' a region that fits in 'child'
*/
static inline std::tuple<position2u, position2u, size2u> intersect_region(
u32 parent_address, u16 parent_w, u16 parent_h, u16 parent_bpp,
u32 child_address, u16 child_w, u16 child_h, u32 child_bpp,
u32 pitch)
{
if (child_address < parent_address)
{
const auto offset = parent_address - child_address;
const auto src_x = 0u;
const auto src_y = 0u;
const auto dst_y = (offset / pitch);
const auto dst_x = (offset % pitch) / child_bpp;
const auto w = std::min<u32>(parent_w, child_w - dst_x);
const auto h = std::min<u32>(parent_h, child_h - dst_y);
return std::make_tuple<position2u, position2u, size2u>({ src_x, src_y }, { dst_x, dst_y }, { w, h });
}
else
{
const auto offset = child_address - parent_address;
const auto src_y = (offset / pitch);
const auto src_x = (offset % pitch) / parent_bpp;
const auto dst_x = 0u;
const auto dst_y = 0u;
const auto w = std::min<u32>(child_w, parent_w - src_x);
const auto h = std::min<u32>(child_h, parent_h - src_y);
return std::make_tuple<position2u, position2u, size2u>({ src_x, src_y }, { dst_x, dst_y }, { w, h });
}
}
static inline const f32 get_resolution_scale()
{
return g_cfg.video.strict_rendering_mode? 1.f : ((f32)g_cfg.video.resolution_scale_percent / 100.f);
}
static inline const int get_resolution_scale_percent()
{
return g_cfg.video.strict_rendering_mode ? 100 : g_cfg.video.resolution_scale_percent;
}
static inline const u16 apply_resolution_scale(u16 value, bool clamp, u16 ref = 0)
{
if (ref == 0)
ref = value;
if (ref <= g_cfg.video.min_scalable_dimension)
return value;
else if (clamp)
return (u16)std::max((get_resolution_scale_percent() * value) / 100, 1);
else
return (get_resolution_scale_percent() * value) / 100;
}
static inline const u16 apply_inverse_resolution_scale(u16 value, bool clamp)
{
u16 result = value;
if (clamp)
result = (u16)std::max((value * 100) / get_resolution_scale_percent(), 1);
else
result = (value * 100) / get_resolution_scale_percent();
if (result <= g_cfg.video.min_scalable_dimension)
return value;
return result;
}
/**
* Calculates the regions used for memory transfer between rendertargets on succession events
* Returns <src_w, src_h, dst_w, dst_h>
*/
template <typename SurfaceType>
std::tuple<u16, u16, u16, u16> get_transferable_region(const SurfaceType* surface)
{
auto src = static_cast<const SurfaceType*>(surface->old_contents[0].source);
auto area1 = src->get_normalized_memory_area();
auto area2 = surface->get_normalized_memory_area();
auto w = std::min(area1.x2, area2.x2);
auto h = std::min(area1.y2, area2.y2);
const auto src_scale_x = src->get_bpp() * src->samples_x;
const auto src_scale_y = src->samples_y;
const auto dst_scale_x = surface->get_bpp() * surface->samples_x;
const auto dst_scale_y = surface->samples_y;
const u16 src_w = u16(w / src_scale_x);
const u16 src_h = u16(h / src_scale_y);
const u16 dst_w = u16(w / dst_scale_x);
const u16 dst_h = u16(h / dst_scale_y);
return std::make_tuple(src_w, src_h, dst_w, dst_h);
}
template <typename SurfaceType>
inline bool pitch_compatible(const SurfaceType* a, const SurfaceType* b)
{
if (a->get_surface_height() == 1 || b->get_surface_height() == 1)
return true;
return (a->get_rsx_pitch() == b->get_rsx_pitch());
}
template <bool __is_surface = true, typename SurfaceType>
inline bool pitch_compatible(const SurfaceType* surface, u16 pitch_required, u16 height_required)
{
if constexpr (__is_surface)
{
if (height_required == 1 || surface->get_surface_height() == 1)
return true;
}
else
{
if (height_required == 1 || surface->get_height() == 1)
return true;
}
return (surface->get_rsx_pitch() == pitch_required);
}
/**
* Remove restart index and emulate using degenerate triangles
* Can be used as a workaround when restart_index doesnt work too well
* dst should be able to hold at least 2xcount entries
*/
template <typename T>
u32 remove_restart_index(T* dst, T* src, int count, T restart_index)
{
// Converts a stream e.g [1, 2, 3, -1, 4, 5, 6] to a stream with degenerate splits
// Output is e.g [1, 2, 3, 3, 3, 4, 4, 5, 6] (5 bogus triangles)
T last_index, index;
u32 dst_index = 0;
for (int n = 0; n < count;)
{
index = src[n];
if (index == restart_index)
{
for (; n < count; ++n)
{
if (src[n] != restart_index)
break;
}
if (n == count)
return dst_index;
dst[dst_index++] = last_index; //Duplicate last
if ((dst_index & 1) == 0)
//Duplicate last again to fix face winding
dst[dst_index++] = last_index;
last_index = src[n];
dst[dst_index++] = last_index; //Duplicate next
}
else
{
dst[dst_index++] = index;
last_index = index;
++n;
}
}
return dst_index;
}
// The rsx internally adds the 'data_base_offset' and the 'vert_offset' and masks it
// before actually attempting to translate to the internal address. Seen happening heavily in R&C games
static inline u32 get_vertex_offset_from_base(u32 vert_data_base_offset, u32 vert_base_offset)
{
return ((u64)vert_data_base_offset + vert_base_offset) & 0xFFFFFFF;
}
// Similar to vertex_offset_base calculation, the rsx internally adds and masks index
// before using
static inline u32 get_index_from_base(u32 index, u32 index_base)
{
return ((u64)index + index_base) & 0x000FFFFF;
}
// Convert color write mask for G8B8 to R8G8
static inline u32 get_g8b8_r8g8_colormask(u32 mask)
{
u32 result = 0;
if (mask & 0x20) result |= 0x20;
if (mask & 0x40) result |= 0x10;
return result;
}
static inline void get_g8b8_r8g8_colormask(bool &red, bool &green, bool &blue, bool &alpha)
{
red = blue;
green = green;
blue = false;
alpha = false;
}
static inline color4f decode_border_color(u32 colorref)
{
color4f result;
result.b = (colorref & 0xFF) / 255.f;
result.g = ((colorref >> 8) & 0xFF) / 255.f;
result.r = ((colorref >> 16) & 0xFF) / 255.f;
result.a = ((colorref >> 24) & 0xFF) / 255.f;
return result;
}
static inline thread* get_current_renderer()
{
return g_current_renderer;
}
template <int N>
void unpack_bitset(std::bitset<N>& block, u64* values)
{
constexpr int count = N / 64;
for (int n = 0; n < count; ++n)
{
int i = (n << 6);
values[n] = 0;
for (int bit = 0; bit < 64; ++bit, ++i)
{
if (block[i])
{
values[n] |= (1ull << bit);
}
}
}
}
template <int N>
void pack_bitset(std::bitset<N>& block, u64* values)
{
constexpr int count = N / 64;
for (int n = (count - 1); n >= 0; --n)
{
if ((n + 1) < count)
{
block <<= 64;
}
if (values[n])
{
block |= values[n];
}
}
}
template <typename T, typename bitmask_type = u32>
class atomic_bitmask_t
{
private:
atomic_t<bitmask_type> m_data;
public:
atomic_bitmask_t() { m_data.store(0); }
~atomic_bitmask_t() = default;
T load() const
{
return static_cast<T>(m_data.load());
}
void store(T value)
{
m_data.store(static_cast<bitmask_type>(value));
}
bool operator & (T mask) const
{
return ((m_data.load() & static_cast<bitmask_type>(mask)) != 0);
}
T operator | (T mask) const
{
return static_cast<T>(m_data.load() | static_cast<bitmask_type>(mask));
}
void operator &= (T mask)
{
m_data.fetch_and(static_cast<bitmask_type>(mask));
}
void operator |= (T mask)
{
m_data.fetch_or(static_cast<bitmask_type>(mask));
}
auto clear(T mask)
{
bitmask_type clear_mask = ~(static_cast<bitmask_type>(mask));
return m_data.and_fetch(clear_mask);
}
void clear()
{
m_data.store(0);
}
};
template <typename Ty>
struct simple_array
{
public:
using iterator = Ty * ;
using const_iterator = Ty * const;
private:
u32 _capacity = 0;
u32 _size = 0;
Ty* _data = nullptr;
inline u64 offset(const_iterator pos)
{
return (_data) ? u64(pos - _data) : 0ull;
}
public:
simple_array() = default;
simple_array(u32 initial_size, const Ty val = {})
{
reserve(initial_size);
_size = initial_size;
for (int n = 0; n < initial_size; ++n)
{
_data[n] = val;
}
}
simple_array(const std::initializer_list<Ty>& args)
{
reserve(args.size());
for (const auto& arg : args)
{
push_back(arg);
}
}
simple_array(const simple_array<Ty>& other)
{
_capacity = other._capacity;
_size = other._size;
const auto size_bytes = sizeof(Ty) * _capacity;
_data = (Ty*)malloc(size_bytes);
std::memcpy(_data, other._data, size_bytes);
}
simple_array(simple_array<Ty>&& other) noexcept
{
swap(other);
}
~simple_array()
{
if (_data)
{
free(_data);
_data = nullptr;
_size = _capacity = 0;
}
}
void swap(simple_array<Ty>& other) noexcept
{
std::swap(_capacity, other._capacity);
std::swap(_size, other._size);
std::swap(_data, other._data);
}
void reserve(u32 size)
{
if (_capacity >= size)
return;
if (_data)
{
verify("realloc() failed!" HERE), _data = (Ty*)realloc(_data, sizeof(Ty) * size);
}
else
{
verify("malloc() failed!" HERE), _data = (Ty*)malloc(sizeof(Ty) * size);
}
_capacity = size;
}
void resize(u32 size)
{
reserve(size);
_size = size;
}
void push_back(const Ty& val)
{
if (_size >= _capacity)
{
reserve(_capacity + 16);
}
_data[_size++] = val;
}
void push_back(Ty&& val)
{
if (_size >= _capacity)
{
reserve(_capacity + 16);
}
_data[_size++] = val;
}
iterator insert(iterator pos, const Ty& val)
{
verify(HERE), pos >= _data;
const auto _loc = offset(pos);
if (_size >= _capacity)
{
reserve(_capacity + 16);
pos = _data + _loc;
}
if (_loc >= _size)
{
_data[_size++] = val;
return pos;
}
verify(HERE), _loc < _size;
const auto remaining = (_size - _loc);
memmove(pos + 1, pos, remaining * sizeof(Ty));
*pos = val;
_size++;
return pos;
}
iterator insert(iterator pos, Ty&& val)
{
verify(HERE), pos >= _data;
const auto _loc = offset(pos);
if (_size >= _capacity)
{
reserve(_capacity + 16);
pos = _data + _loc;
}
if (_loc >= _size)
{
_data[_size++] = val;
return pos;
}
verify(HERE), _loc < _size;
const u32 remaining = (_size - _loc);
memmove(pos + 1, pos, remaining * sizeof(Ty));
*pos = val;
_size++;
return pos;
}
void clear()
{
_size = 0;
}
bool empty() const
{
return _size == 0;
}
u32 size() const
{
return _size;
}
u32 capacity() const
{
return _capacity;
}
Ty& operator[] (u32 index)
{
return _data[index];
}
const Ty& operator[] (u32 index) const
{
return _data[index];
}
Ty* data()
{
return _data;
}
const Ty* data() const
{
return _data;
}
Ty& back()
{
return _data[_size - 1];
}
const Ty& back() const
{
return _data[_size - 1];
}
Ty& front()
{
return _data[0];
}
const Ty& front() const
{
return _data[0];
}
iterator begin()
{
return _data;
}
iterator end()
{
return _data ? _data + _size : nullptr;
}
const_iterator begin() const
{
return _data;
}
const_iterator end() const
{
return _data ? _data + _size : nullptr;
}
};
struct profiling_timer
{
bool enabled = false;
std::chrono::time_point<steady_clock> last;
profiling_timer() = default;
void start()
{
if (UNLIKELY(enabled))
{
last = steady_clock::now();
}
}
s64 duration()
{
if (LIKELY(!enabled))
{
return 0ll;
}
auto old = last;
last = steady_clock::now();
return std::chrono::duration_cast<std::chrono::microseconds>(last - old).count();
}
};
}