rpcs3/rpcs3/Emu/Cell/lv2/sys_ss.cpp
elad335 8437a5f5ac
Some checks are pending
Generate Translation Template / Generate Translation Template (push) Waiting to run
Build RPCS3 / RPCS3 Linux ubuntu-24.04 gcc (push) Waiting to run
Build RPCS3 / RPCS3 Linux ubuntu-24.04-arm clang (push) Waiting to run
Build RPCS3 / RPCS3 Linux ubuntu-24.04 clang (push) Waiting to run
Build RPCS3 / RPCS3 Windows (push) Waiting to run
PPU Debugger/Memory: STDCX/STWCX breakpoints, make vm::_ref const
2025-04-19 16:14:00 +03:00

565 lines
11 KiB
C++

#include "stdafx.h"
#include "sys_ss.h"
#include "sys_process.h"
#include "Emu/IdManager.h"
#include "Emu/Cell/timers.hpp"
#include "Emu/system_config.h"
#include "util/sysinfo.hpp"
#include <charconv>
#include <shared_mutex>
#include <unordered_set>
#ifdef _WIN32
#include <Windows.h>
#include <bcrypt.h>
#endif
struct lv2_update_manager
{
lv2_update_manager()
{
std::string version_str = utils::get_firmware_version();
// For example, 4.90 should be converted to 0x4900000000000
std::erase(version_str, '.');
if (std::from_chars(version_str.data(), version_str.data() + version_str.size(), system_sw_version, 16).ec != std::errc{})
system_sw_version <<= 40;
else
system_sw_version = 0;
}
lv2_update_manager(const lv2_update_manager&) = delete;
lv2_update_manager& operator=(const lv2_update_manager&) = delete;
~lv2_update_manager() = default;
u64 system_sw_version;
std::unordered_map<u32, u8> eeprom_map // offset, value
{
// system language
// *i think* this gives english
{0x48C18, 0x00},
{0x48C19, 0x00},
{0x48C1A, 0x00},
{0x48C1B, 0x01},
// system language end
// vsh target (seems it can be 0xFFFFFFFE, 0xFFFFFFFF, 0x00000001 default: 0x00000000 / vsh sets it to 0x00000000 on boot if it isn't 0x00000000)
{0x48C1C, 0x00},
{0x48C1D, 0x00},
{0x48C1E, 0x00},
{0x48C1F, 0x00}
// vsh target end
};
mutable std::shared_mutex eeprom_mutex;
std::unordered_set<u32> malloc_set;
mutable std::shared_mutex malloc_mutex;
// return address
u32 allocate(u32 size)
{
std::unique_lock unique_lock(malloc_mutex);
if (const auto addr = vm::alloc(size, vm::main); addr)
{
malloc_set.emplace(addr);
return addr;
}
return 0;
}
// return size
u32 deallocate(u32 addr)
{
std::unique_lock unique_lock(malloc_mutex);
if (malloc_set.count(addr))
{
return vm::dealloc(addr, vm::main);
}
return 0;
}
};
template<>
void fmt_class_string<sys_ss_rng_error>::format(std::string& out, u64 arg)
{
format_enum(out, arg, [](auto error)
{
switch (error)
{
STR_CASE(SYS_SS_RNG_ERROR_INVALID_PKG);
STR_CASE(SYS_SS_RNG_ERROR_ENOMEM);
STR_CASE(SYS_SS_RNG_ERROR_EAGAIN);
STR_CASE(SYS_SS_RNG_ERROR_EFAULT);
STR_CASE(SYS_SS_RTC_ERROR_UNK);
}
return unknown;
});
}
LOG_CHANNEL(sys_ss);
error_code sys_ss_random_number_generator(u64 pkg_id, vm::ptr<void> buf, u64 size)
{
sys_ss.warning("sys_ss_random_number_generator(pkg_id=%u, buf=*0x%x, size=0x%x)", pkg_id, buf, size);
if (pkg_id != 2)
{
if (pkg_id == 1)
{
if (!g_ps3_process_info.has_root_perm())
{
return CELL_ENOSYS;
}
sys_ss.todo("sys_ss_random_number_generator(): pkg_id=1");
std::memset(buf.get_ptr(), 0, 0x18);
return CELL_OK;
}
return SYS_SS_RNG_ERROR_INVALID_PKG;
}
// TODO
if (size > 0x10000000)
{
return SYS_SS_RNG_ERROR_ENOMEM;
}
std::unique_ptr<u8[]> temp(new u8[size]);
#ifdef _WIN32
if (auto ret = BCryptGenRandom(nullptr, temp.get(), static_cast<ULONG>(size), BCRYPT_USE_SYSTEM_PREFERRED_RNG))
{
fmt::throw_exception("sys_ss_random_number_generator(): BCryptGenRandom failed (0x%08x)", ret);
}
#else
fs::file rnd{"/dev/urandom"};
if (!rnd || rnd.read(temp.get(), size) != size)
{
fmt::throw_exception("sys_ss_random_number_generator(): Failed to generate pseudo-random numbers");
}
#endif
std::memcpy(buf.get_ptr(), temp.get(), size);
return CELL_OK;
}
error_code sys_ss_access_control_engine(u64 pkg_id, u64 a2, u64 a3)
{
sys_ss.success("sys_ss_access_control_engine(pkg_id=0x%llx, a2=0x%llx, a3=0x%llx)", pkg_id, a2, a3);
const u64 authid = g_ps3_process_info.self_info.valid ?
g_ps3_process_info.self_info.prog_id_hdr.program_authority_id : 0;
switch (pkg_id)
{
case 0x1:
{
if (!g_ps3_process_info.debug_or_root())
{
return not_an_error(CELL_ENOSYS);
}
if (!a2)
{
return CELL_ESRCH;
}
ensure(a2 == static_cast<u64>(process_getpid()));
vm::write64(vm::cast(a3), authid);
break;
}
case 0x2:
{
vm::write64(vm::cast(a2), authid);
break;
}
case 0x3:
{
if (!g_ps3_process_info.debug_or_root())
{
return CELL_ENOSYS;
}
break;
}
default:
return 0x8001051du;
}
return CELL_OK;
}
error_code sys_ss_get_console_id(vm::ptr<u8> buf)
{
sys_ss.notice("sys_ss_get_console_id(buf=*0x%x)", buf);
return sys_ss_appliance_info_manager(0x19003, buf);
}
error_code sys_ss_get_open_psid(vm::ptr<CellSsOpenPSID> psid)
{
sys_ss.notice("sys_ss_get_open_psid(psid=*0x%x)", psid);
psid->high = g_cfg.sys.console_psid_high;
psid->low = g_cfg.sys.console_psid_low;
return CELL_OK;
}
error_code sys_ss_appliance_info_manager(u32 code, vm::ptr<u8> buffer)
{
sys_ss.notice("sys_ss_appliance_info_manager(code=0x%x, buffer=*0x%x)", code, buffer);
if (!g_ps3_process_info.has_root_perm())
return CELL_ENOSYS;
if (!buffer)
return CELL_EFAULT;
switch (code)
{
case 0x19002:
{
// AIM_get_device_type
constexpr u8 product_code[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x89 };
std::memcpy(buffer.get_ptr(), product_code, 16);
if (g_cfg.core.debug_console_mode)
buffer[15] = 0x81; // DECR
break;
}
case 0x19003:
{
// AIM_get_device_id
constexpr u8 idps[] = { 0x00, 0x00, 0x00, 0x01, 0x00, 0x89, 0x00, 0x0B, 0x14, 0x00, 0xEF, 0xDD, 0xCA, 0x25, 0x52, 0x66 };
std::memcpy(buffer.get_ptr(), idps, 16);
if (g_cfg.core.debug_console_mode)
{
buffer[5] = 0x81; // DECR
buffer[7] = 0x09; // DECR-1400
}
break;
}
case 0x19004:
{
// AIM_get_ps_code
constexpr u8 pscode[] = { 0x00, 0x01, 0x00, 0x85, 0x00, 0x07, 0x00, 0x04 };
std::memcpy(buffer.get_ptr(), pscode, 8);
break;
}
case 0x19005:
{
// AIM_get_open_ps_id
be_t<u64> psid[2] = { +g_cfg.sys.console_psid_high, +g_cfg.sys.console_psid_low };
std::memcpy(buffer.get_ptr(), psid, 16);
break;
}
case 0x19006:
{
// qa values (dex only) ??
[[fallthrough]];
}
default: sys_ss.todo("sys_ss_appliance_info_manager(code=0x%x, buffer=*0x%x)", code, buffer);
}
return CELL_OK;
}
error_code sys_ss_get_cache_of_product_mode(vm::ptr<u8> ptr)
{
sys_ss.todo("sys_ss_get_cache_of_product_mode(ptr=*0x%x)", ptr);
if (!ptr)
{
return CELL_EINVAL;
}
// 0xff Happens when hypervisor call returns an error
// 0 - disabled
// 1 - enabled
// except something segfaults when using 0, so error it is!
*ptr = 0xFF;
return CELL_OK;
}
error_code sys_ss_secure_rtc(u64 cmd, u64 a2, u64 a3, u64 a4)
{
sys_ss.todo("sys_ss_secure_rtc(cmd=0x%llx, a2=0x%x, a3=0x%llx, a4=0x%llx)", cmd, a2, a3, a4);
if (cmd == 0x3001)
{
if (a3 != 0x20)
return 0x80010500; // bad packet id
return CELL_OK;
}
else if (cmd == 0x3002)
{
// Get time
if (a2 > 1)
return 0x80010500; // bad packet id
// a3 is actual output, not 100% sure, but best guess is its tb val
vm::write64(::narrow<u32>(a3), get_timebased_time());
// a4 is a pointer to status, non 0 on error
vm::write64(::narrow<u32>(a4), 0);
return CELL_OK;
}
else if (cmd == 0x3003)
{
return CELL_OK;
}
return 0x80010500; // bad packet id
}
error_code sys_ss_get_cache_of_flash_ext_flag(vm::ptr<u64> flag)
{
sys_ss.todo("sys_ss_get_cache_of_flash_ext_flag(flag=*0x%x)", flag);
if (!flag)
{
return CELL_EFAULT;
}
*flag = 0xFE; // nand vs nor from lsb
return CELL_OK;
}
error_code sys_ss_get_boot_device(vm::ptr<u64> dev)
{
sys_ss.todo("sys_ss_get_boot_device(dev=*0x%x)", dev);
if (!dev)
{
return CELL_EINVAL;
}
*dev = 0x190;
return CELL_OK;
}
error_code sys_ss_update_manager(u64 pkg_id, u64 a1, u64 a2, u64 a3, u64 a4, u64 a5, u64 a6)
{
sys_ss.notice("sys_ss_update_manager(pkg=0x%x, a1=0x%x, a2=0x%x, a3=0x%x, a4=0x%x, a5=0x%x, a6=0x%x)", pkg_id, a1, a2, a3, a4, a5, a6);
if (!g_ps3_process_info.has_root_perm())
return CELL_ENOSYS;
auto& update_manager = g_fxo->get<lv2_update_manager>();
switch (pkg_id)
{
case 0x6001:
{
// update package async
break;
}
case 0x6002:
{
// inspect package async
break;
}
case 0x6003:
{
// get installed package info
[[maybe_unused]] const auto type = ::narrow<u32>(a1);
const auto info_ptr = ::narrow<u32>(a2);
if (!info_ptr)
return CELL_EFAULT;
vm::write64(info_ptr, update_manager.system_sw_version);
break;
}
case 0x6004:
{
// get fix instruction
break;
}
case 0x6005:
{
// extract package async
break;
}
case 0x6006:
{
// get extract package
break;
}
case 0x6007:
{
// get flash initialized
break;
}
case 0x6008:
{
// set flash initialized
break;
}
case 0x6009:
{
// get seed token
break;
}
case 0x600A:
{
// set seed token
break;
}
case 0x600B:
{
// read eeprom
const auto offset = ::narrow<u32>(a1);
const auto value_ptr = ::narrow<u32>(a2);
if (!value_ptr)
return CELL_EFAULT;
std::shared_lock shared_lock(update_manager.eeprom_mutex);
if (const auto iterator = update_manager.eeprom_map.find(offset); iterator != update_manager.eeprom_map.end())
vm::write8(value_ptr, iterator->second);
else
vm::write8(value_ptr, 0xFF); // 0xFF if not set
break;
}
case 0x600C:
{
// write eeprom
const auto offset = ::narrow<u32>(a1);
const auto value = ::narrow<u8>(a2);
std::unique_lock unique_lock(update_manager.eeprom_mutex);
if (value != 0xFF)
update_manager.eeprom_map[offset] = value;
else
update_manager.eeprom_map.erase(offset); // 0xFF: unset
break;
}
case 0x600D:
{
// get async status
break;
}
case 0x600E:
{
// allocate buffer
const auto size = ::narrow<u32>(a1);
const auto addr_ptr = ::narrow<u32>(a2);
if (!addr_ptr)
return CELL_EFAULT;
const auto addr = update_manager.allocate(size);
if (!addr)
return CELL_ENOMEM;
vm::write32(addr_ptr, addr);
break;
}
case 0x600F:
{
// release buffer
const auto addr = ::narrow<u32>(a1);
if (!update_manager.deallocate(addr))
return CELL_ENOMEM;
break;
}
case 0x6010:
{
// check integrity
break;
}
case 0x6011:
{
// get applicable version
const auto addr_ptr = ::narrow<u32>(a2);
if (!addr_ptr)
return CELL_EFAULT;
vm::write64(addr_ptr, 0x30040ULL << 32); // 3.40
break;
}
case 0x6012:
{
// allocate buffer from memory container
[[maybe_unused]] const auto mem_ct = ::narrow<u32>(a1);
const auto size = ::narrow<u32>(a2);
const auto addr_ptr = ::narrow<u32>(a3);
if (!addr_ptr)
return CELL_EFAULT;
const auto addr = update_manager.allocate(size);
if (!addr)
return CELL_ENOMEM;
vm::write32(addr_ptr, addr);
break;
}
case 0x6013:
{
// unknown
break;
}
default:
{
sys_ss.error("sys_ss_update_manager(): invalid packet id 0x%x ", pkg_id);
return CELL_EINVAL;
}
}
return CELL_OK;
}
error_code sys_ss_virtual_trm_manager(u64 pkg_id, u64 a1, u64 a2, u64 a3, u64 a4)
{
sys_ss.todo("sys_ss_virtual_trm_manager(pkg=0x%llx, a1=0x%llx, a2=0x%llx, a3=0x%llx, a4=0x%llx)", pkg_id, a1, a2, a3, a4);
return CELL_OK;
}
error_code sys_ss_individual_info_manager(u64 pkg_id, u64 a2, vm::ptr<u64> out_size, u64 a4, u64 a5, u64 a6)
{
sys_ss.todo("sys_ss_individual_info_manager(pkg=0x%llx, a2=0x%llx, out_size=*0x%llx, a4=0x%llx, a5=0x%llx, a6=0x%llx)", pkg_id, a2, out_size, a4, a5, a6);
switch (pkg_id)
{
// Read EID
case 0x17002:
{
// TODO
vm::write<u64>(a5, a4); // Write back size of buffer
break;
}
// Get EID size
case 0x17001: *out_size = 0x100; break;
default: break;
}
return CELL_OK;
}