rpcs3/rpcs3/Emu/SysCalls/Modules/cellSync.cpp

1652 lines
35 KiB
C++

#include "stdafx.h"
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_event.h"
#include "Emu/SysCalls/lv2/sys_process.h"
#include "Emu/Event.h"
#include "cellSync.h"
extern Module cellSync;
waiter_map_t g_sync_mutex_wm("sync_mutex_wm");
waiter_map_t g_sync_barrier_wait_wm("sync_barrier_wait_wm");
waiter_map_t g_sync_barrier_notify_wm("sync_barrier_notify_wm");
waiter_map_t g_sync_rwm_read_wm("sync_rwm_read_wm");
waiter_map_t g_sync_rwm_write_wm("sync_rwm_write_wm");
waiter_map_t g_sync_queue_wm("sync_queue_wm");
s32 cellSyncMutexInitialize(vm::ptr<CellSyncMutex> mutex)
{
cellSync.Log("cellSyncMutexInitialize(mutex=*0x%x)", mutex);
if (!mutex)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!mutex.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
mutex->exchange({});
return CELL_OK;
}
s32 cellSyncMutexLock(vm::ptr<CellSyncMutex> mutex)
{
cellSync.Log("cellSyncMutexLock(mutex=*0x%x)", mutex);
if (!mutex)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!mutex.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
// increase acq value and remember its old value
const auto order = mutex->atomic_op(&sync_mutex_t::acquire);
// wait until rel value is equal to old acq value
g_sync_mutex_wm.wait_op(mutex.addr(), WRAP_EXPR(mutex->load().rel == order));
_mm_mfence();
return CELL_OK;
}
s32 cellSyncMutexTryLock(vm::ptr<CellSyncMutex> mutex)
{
cellSync.Log("cellSyncMutexTryLock(mutex=*0x%x)", mutex);
if (!mutex)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!mutex.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
if (!mutex->atomic_op(&sync_mutex_t::try_lock))
{
return CELL_SYNC_ERROR_BUSY;
}
return CELL_OK;
}
s32 cellSyncMutexUnlock(vm::ptr<CellSyncMutex> mutex)
{
cellSync.Log("cellSyncMutexUnlock(mutex=*0x%x)", mutex);
if (!mutex)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!mutex.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
mutex->atomic_op(&sync_mutex_t::unlock);
g_sync_mutex_wm.notify(mutex.addr());
return CELL_OK;
}
s32 cellSyncBarrierInitialize(vm::ptr<CellSyncBarrier> barrier, u16 total_count)
{
cellSync.Log("cellSyncBarrierInitialize(barrier=*0x%x, total_count=%d)", barrier, total_count);
if (!barrier)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!barrier.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
if (!total_count || total_count > 32767)
{
return CELL_SYNC_ERROR_INVAL;
}
// clear current value, write total_count and sync
barrier->exchange({ 0, total_count });
return CELL_OK;
}
s32 cellSyncBarrierNotify(vm::ptr<CellSyncBarrier> barrier)
{
cellSync.Log("cellSyncBarrierNotify(barrier=*0x%x)", barrier);
if (!barrier)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!barrier.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
g_sync_barrier_notify_wm.wait_op(barrier.addr(), WRAP_EXPR(barrier->atomic_op(&sync_barrier_t::try_notify)));
g_sync_barrier_wait_wm.notify(barrier.addr());
return CELL_OK;
}
s32 cellSyncBarrierTryNotify(vm::ptr<CellSyncBarrier> barrier)
{
cellSync.Log("cellSyncBarrierTryNotify(barrier=*0x%x)", barrier);
if (!barrier)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!barrier.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
_mm_mfence();
if (!barrier->atomic_op(&sync_barrier_t::try_notify))
{
return CELL_SYNC_ERROR_BUSY;
}
g_sync_barrier_wait_wm.notify(barrier.addr());
return CELL_OK;
}
s32 cellSyncBarrierWait(vm::ptr<CellSyncBarrier> barrier)
{
cellSync.Log("cellSyncBarrierWait(barrier=*0x%x)", barrier);
if (!barrier)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!barrier.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
_mm_mfence();
g_sync_barrier_wait_wm.wait_op(barrier.addr(), WRAP_EXPR(barrier->atomic_op(&sync_barrier_t::try_wait)));
g_sync_barrier_notify_wm.notify(barrier.addr());
return CELL_OK;
}
s32 cellSyncBarrierTryWait(vm::ptr<CellSyncBarrier> barrier)
{
cellSync.Log("cellSyncBarrierTryWait(barrier=*0x%x)", barrier);
if (!barrier)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!barrier.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
_mm_mfence();
if (!barrier->atomic_op(&sync_barrier_t::try_wait))
{
return CELL_SYNC_ERROR_BUSY;
}
g_sync_barrier_notify_wm.notify(barrier.addr());
return CELL_OK;
}
s32 cellSyncRwmInitialize(vm::ptr<CellSyncRwm> rwm, vm::ptr<void> buffer, u32 buffer_size)
{
cellSync.Log("cellSyncRwmInitialize(rwm=*0x%x, buffer=*0x%x, buffer_size=0x%x)", rwm, buffer, buffer_size);
if (!rwm || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!rwm.aligned() || buffer % 128)
{
return CELL_SYNC_ERROR_ALIGN;
}
if (buffer_size % 128 || buffer_size > 0x4000)
{
return CELL_SYNC_ERROR_INVAL;
}
// clear readers and writers, write buffer_size, buffer addr and sync
rwm->ctrl.store({});
rwm->size = buffer_size;
rwm->buffer = buffer;
_mm_mfence();
return CELL_OK;
}
s32 cellSyncRwmRead(vm::ptr<CellSyncRwm> rwm, vm::ptr<void> buffer)
{
cellSync.Log("cellSyncRwmRead(rwm=*0x%x, buffer=*0x%x)", rwm, buffer);
if (!rwm || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!rwm.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
// wait until `writers` is zero, increase `readers`
g_sync_rwm_read_wm.wait_op(rwm.addr(), WRAP_EXPR(rwm->ctrl.atomic_op(&sync_rwm_t::try_read_begin)));
// copy data to buffer
std::memcpy(buffer.get_ptr(), rwm->buffer.get_ptr(), rwm->size);
// decrease `readers`, return error if already zero
if (!rwm->ctrl.atomic_op(&sync_rwm_t::try_read_end))
{
return CELL_SYNC_ERROR_ABORT;
}
g_sync_rwm_write_wm.notify(rwm.addr());
return CELL_OK;
}
s32 cellSyncRwmTryRead(vm::ptr<CellSyncRwm> rwm, vm::ptr<void> buffer)
{
cellSync.Log("cellSyncRwmTryRead(rwm=*0x%x, buffer=*0x%x)", rwm, buffer);
if (!rwm || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!rwm.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
// increase `readers` if `writers` is zero
if (!rwm->ctrl.atomic_op(&sync_rwm_t::try_read_begin))
{
return CELL_SYNC_ERROR_BUSY;
}
// copy data to buffer
std::memcpy(buffer.get_ptr(), rwm->buffer.get_ptr(), rwm->size);
// decrease `readers`, return error if already zero
if (!rwm->ctrl.atomic_op(&sync_rwm_t::try_read_end))
{
return CELL_SYNC_ERROR_ABORT;
}
g_sync_rwm_write_wm.notify(rwm.addr());
return CELL_OK;
}
s32 cellSyncRwmWrite(vm::ptr<CellSyncRwm> rwm, vm::cptr<void> buffer)
{
cellSync.Log("cellSyncRwmWrite(rwm=*0x%x, buffer=*0x%x)", rwm, buffer);
if (!rwm || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!rwm.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
// wait until `writers` is zero, set to 1
g_sync_rwm_read_wm.wait_op(rwm.addr(), WRAP_EXPR(rwm->ctrl.atomic_op(&sync_rwm_t::try_write_begin)));
// wait until `readers` is zero
g_sync_rwm_write_wm.wait_op(rwm.addr(), WRAP_EXPR(!rwm->ctrl.load().readers.data()));
// copy data from buffer
std::memcpy(rwm->buffer.get_ptr(), buffer.get_ptr(), rwm->size);
// sync and clear `readers` and `writers`
rwm->ctrl.exchange({});
g_sync_rwm_read_wm.notify(rwm.addr());
return CELL_OK;
}
s32 cellSyncRwmTryWrite(vm::ptr<CellSyncRwm> rwm, vm::cptr<void> buffer)
{
cellSync.Log("cellSyncRwmTryWrite(rwm=*0x%x, buffer=*0x%x)", rwm, buffer);
if (!rwm || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!rwm.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
// set `writers` to 1 if `readers` and `writers` are zero
if (!rwm->ctrl.compare_and_swap_test({ 0, 0 }, { 0, 1 }))
{
return CELL_SYNC_ERROR_BUSY;
}
// copy data from buffer
std::memcpy(rwm->buffer.get_ptr(), buffer.get_ptr(), rwm->size);
// sync and clear `readers` and `writers`
rwm->ctrl.exchange({});
g_sync_rwm_read_wm.notify(rwm.addr());
return CELL_OK;
}
s32 cellSyncQueueInitialize(vm::ptr<CellSyncQueue> queue, vm::ptr<u8> buffer, u32 size, u32 depth)
{
cellSync.Log("cellSyncQueueInitialize(queue=*0x%x, buffer=*0x%x, size=0x%x, depth=0x%x)", queue, buffer, size, depth);
if (!queue)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (size && !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned() || buffer % 16)
{
return CELL_SYNC_ERROR_ALIGN;
}
if (!depth || size % 16)
{
return CELL_SYNC_ERROR_INVAL;
}
// clear sync var, write size, depth, buffer addr and sync
queue->ctrl.store({});
queue->size = size;
queue->depth = depth;
queue->buffer = buffer;
_mm_mfence();
return CELL_OK;
}
s32 cellSyncQueuePush(vm::ptr<CellSyncQueue> queue, vm::cptr<void> buffer)
{
cellSync.Log("cellSyncQueuePush(queue=*0x%x, buffer=*0x%x)", queue, buffer);
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 depth = queue->check_depth();
u32 position;
g_sync_queue_wm.wait_op(queue.addr(), WRAP_EXPR(queue->ctrl.atomic_op(&sync_queue_t::try_push_begin, depth, position)));
// copy data from the buffer at the position
std::memcpy(&queue->buffer[position * queue->size], buffer.get_ptr(), queue->size);
// clear 5th byte
queue->ctrl &= { 0xffffffff, 0x00ffffff };
g_sync_queue_wm.notify(queue.addr());
return CELL_OK;
}
s32 cellSyncQueueTryPush(vm::ptr<CellSyncQueue> queue, vm::cptr<void> buffer)
{
cellSync.Log("cellSyncQueueTryPush(queue=*0x%x, buffer=*0x%x)", queue, buffer);
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 depth = queue->check_depth();
u32 position;
if (!queue->ctrl.atomic_op(&sync_queue_t::try_push_begin, depth, position))
{
return CELL_SYNC_ERROR_BUSY;
}
// copy data from the buffer at the position
std::memcpy(&queue->buffer[position * queue->size], buffer.get_ptr(), queue->size);
// clear 5th byte
queue->ctrl &= { 0xffffffff, 0x00ffffff };
g_sync_queue_wm.notify(queue.addr());
return CELL_OK;
}
s32 cellSyncQueuePop(vm::ptr<CellSyncQueue> queue, vm::ptr<void> buffer)
{
cellSync.Log("cellSyncQueuePop(queue=*0x%x, buffer=*0x%x)", queue, buffer);
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 depth = queue->check_depth();
u32 position;
g_sync_queue_wm.wait_op(queue.addr(), WRAP_EXPR(queue->ctrl.atomic_op(&sync_queue_t::try_pop_begin, depth, position)));
// copy data at the position to the buffer
std::memcpy(buffer.get_ptr(), &queue->buffer[position * queue->size], queue->size);
// clear first byte
queue->ctrl &= { 0x00ffffff, 0xffffffffu };
g_sync_queue_wm.notify(queue.addr());
return CELL_OK;
}
s32 cellSyncQueueTryPop(vm::ptr<CellSyncQueue> queue, vm::ptr<void> buffer)
{
cellSync.Log("cellSyncQueueTryPop(queue=*0x%x, buffer=*0x%x)", queue, buffer);
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 depth = queue->check_depth();
u32 position;
if (!queue->ctrl.atomic_op(&sync_queue_t::try_pop_begin, depth, position))
{
return CELL_SYNC_ERROR_BUSY;
}
// copy data at the position to the buffer
std::memcpy(buffer.get_ptr(), &queue->buffer[position * queue->size], queue->size);
// clear first byte
queue->ctrl &= { 0x00ffffff, 0xffffffffu };
g_sync_queue_wm.notify(queue.addr());
return CELL_OK;
}
s32 cellSyncQueuePeek(vm::ptr<CellSyncQueue> queue, vm::ptr<void> buffer)
{
cellSync.Log("cellSyncQueuePeek(queue=*0x%x, buffer=*0x%x)", queue, buffer);
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 depth = queue->check_depth();
u32 position;
g_sync_queue_wm.wait_op(queue.addr(), WRAP_EXPR(queue->ctrl.atomic_op(&sync_queue_t::try_peek_begin, depth, position)));
// copy data at the position to the buffer
std::memcpy(buffer.get_ptr(), &queue->buffer[position * queue->size], queue->size);
// clear first byte
queue->ctrl &= { 0x00ffffff, 0xffffffffu };
g_sync_queue_wm.notify(queue.addr());
return CELL_OK;
}
s32 cellSyncQueueTryPeek(vm::ptr<CellSyncQueue> queue, vm::ptr<void> buffer)
{
cellSync.Log("cellSyncQueueTryPeek(queue=*0x%x, buffer=*0x%x)", queue, buffer);
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 depth = queue->check_depth();
u32 position;
if (!queue->ctrl.atomic_op(&sync_queue_t::try_peek_begin, depth, position))
{
return CELL_SYNC_ERROR_BUSY;
}
// copy data at the position to the buffer
std::memcpy(buffer.get_ptr(), &queue->buffer[position * queue->size], queue->size);
// clear first byte
queue->ctrl &= { 0x00ffffff, 0xffffffffu };
g_sync_queue_wm.notify(queue.addr());
return CELL_OK;
}
s32 cellSyncQueueSize(vm::ptr<CellSyncQueue> queue)
{
cellSync.Log("cellSyncQueueSize(queue=*0x%x)", queue);
if (!queue)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
queue->check_depth();
return queue->ctrl.load().m_v2 & 0xffffff;
}
s32 cellSyncQueueClear(vm::ptr<CellSyncQueue> queue)
{
cellSync.Log("cellSyncQueueClear(queue=*0x%x)", queue);
if (!queue)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
queue->check_depth();
g_sync_queue_wm.wait_op(queue.addr(), WRAP_EXPR(queue->ctrl.atomic_op(&sync_queue_t::try_clear_begin_1)));
g_sync_queue_wm.wait_op(queue.addr(), WRAP_EXPR(queue->ctrl.atomic_op(&sync_queue_t::try_clear_begin_2)));
queue->ctrl.exchange({});
g_sync_queue_wm.notify(queue.addr());
return CELL_OK;
}
// LFQueue functions
void syncLFQueueInitialize(vm::ptr<CellSyncLFQueue> queue, vm::ptr<u8> buffer, u32 size, u32 depth, CellSyncQueueDirection direction, vm::ptr<void> eaSignal)
{
queue->m_size = size;
queue->m_depth = depth;
queue->m_buffer = buffer;
queue->m_direction = direction;
memset(queue->m_hs1, 0, sizeof(queue->m_hs1));
memset(queue->m_hs2, 0, sizeof(queue->m_hs2));
queue->m_eaSignal = eaSignal;
if (direction == CELL_SYNC_QUEUE_ANY2ANY)
{
queue->pop1 = {};
queue->push1 = {};
queue->m_buffer.set(queue->m_buffer.addr() | 1);
queue->m_bs[0] = -1;
queue->m_bs[1] = -1;
//m_bs[2]
//m_bs[3]
queue->m_v1 = -1;
queue->push2 = { { 0xffff } };
queue->pop2 = { { 0xffff } };
}
else
{
queue->pop1 = { { 0, 0, queue->pop1.load().m_h3, 0 } };
queue->push1 = { { 0, 0, queue->push1.load().m_h7, 0 } };
queue->m_bs[0] = -1; // written as u32
queue->m_bs[1] = -1;
queue->m_bs[2] = -1;
queue->m_bs[3] = -1;
queue->m_v1 = 0;
queue->push2 = {};
queue->pop2 = {};
}
queue->m_v2 = 0;
queue->m_eq_id = 0;
}
s32 cellSyncLFQueueInitialize(vm::ptr<CellSyncLFQueue> queue, vm::ptr<u8> buffer, u32 size, u32 depth, CellSyncQueueDirection direction, vm::ptr<void> eaSignal)
{
cellSync.Warning("cellSyncLFQueueInitialize(queue=*0x%x, buffer=*0x%x, size=0x%x, depth=0x%x, direction=%d, eaSignal=*0x%x)", queue, buffer, size, depth, direction, eaSignal);
if (!queue)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (size)
{
if (!buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (size > 0x4000 || size % 16)
{
return CELL_SYNC_ERROR_INVAL;
}
}
if (!depth || (depth >> 15) || direction > 3)
{
return CELL_SYNC_ERROR_INVAL;
}
if (!queue.aligned() || buffer % 16)
{
return CELL_SYNC_ERROR_ALIGN;
}
// get sdk version of current process
s32 sdk_ver;
if (s32 ret = process_get_sdk_version(process_getpid(), sdk_ver))
{
return ret;
}
if (sdk_ver == -1)
{
sdk_ver = 0x460000;
}
// reserve `init`
u32 old_value;
while (true)
{
const auto old = queue->init.load();
auto init = old;
if (old.data())
{
if (sdk_ver > 0x17ffff && old != 2)
{
return CELL_SYNC_ERROR_STAT;
}
old_value = old;
}
else
{
if (sdk_ver > 0x17ffff)
{
auto data = vm::get_ptr<u64>(queue.addr());
for (u32 i = 0; i < sizeof(CellSyncLFQueue) / sizeof(u64); i++)
{
if (data[i])
{
return CELL_SYNC_ERROR_STAT;
}
}
}
init = 1;
old_value = 1;
}
if (queue->init.compare_and_swap_test(old, init)) break;
}
if (old_value == 2)
{
if (queue->m_size != size || queue->m_depth != depth || queue->m_buffer != buffer)
{
return CELL_SYNC_ERROR_INVAL;
}
if (sdk_ver > 0x17ffff)
{
if (queue->m_eaSignal != eaSignal || queue->m_direction != direction)
{
return CELL_SYNC_ERROR_INVAL;
}
}
_mm_mfence();
}
else
{
syncLFQueueInitialize(queue, buffer, size, depth, direction, eaSignal);
queue->init.exchange({});
}
return CELL_OK;
}
s32 _cellSyncLFQueueGetPushPointer(PPUThread& CPU, vm::ptr<CellSyncLFQueue> queue, vm::ptr<s32> pointer, u32 isBlocking, u32 useEventQueue)
{
cellSync.Warning("_cellSyncLFQueueGetPushPointer(queue=*0x%x, pointer=*0x%x, isBlocking=%d, useEventQueue=%d)", queue, pointer, isBlocking, useEventQueue);
if (queue->m_direction != CELL_SYNC_QUEUE_PPU2SPU)
{
return CELL_SYNC_ERROR_PERM;
}
const s32 depth = queue->m_depth;
u32 var1 = 0;
while (true)
{
while (true)
{
CHECK_EMU_STATUS;
const auto old = queue->push1.load_sync();
auto push = old;
if (var1)
{
push.m_h7 = 0;
}
if (isBlocking && useEventQueue && *(u32*)queue->m_bs == -1)
{
return CELL_SYNC_ERROR_STAT;
}
s32 var2 = (s16)push.m_h8;
s32 res;
if (useEventQueue && ((s32)push.m_h5 != var2 || push.m_h7.data() != 0))
{
res = CELL_SYNC_ERROR_BUSY;
}
else
{
var2 -= (s32)(u16)queue->pop1.load().m_h1;
if (var2 < 0)
{
var2 += depth * 2;
}
if (var2 < depth)
{
const s32 _pointer = (s16)push.m_h8;
*pointer = _pointer;
if (_pointer + 1 >= depth * 2)
{
push.m_h8 = 0;
}
else
{
push.m_h8++;
}
res = CELL_OK;
}
else if (!isBlocking)
{
return CELL_SYNC_ERROR_AGAIN;
}
else if (!useEventQueue)
{
continue;
}
else
{
res = CELL_OK;
push.m_h7 = 3;
if (isBlocking != 3)
{
break;
}
}
}
if (queue->push1.compare_and_swap_test(old, push))
{
if (!push.m_h7.data() || res)
{
return res;
}
break;
}
}
if (s32 res = sys_event_queue_receive(CPU, queue->m_eq_id, vm::null, 0))
{
throw EXCEPTION("");
}
var1 = 1;
}
}
s32 _cellSyncLFQueueGetPushPointer2(PPUThread& CPU, vm::ptr<CellSyncLFQueue> queue, vm::ptr<s32> pointer, u32 isBlocking, u32 useEventQueue)
{
// arguments copied from _cellSyncLFQueueGetPushPointer
cellSync.Todo("_cellSyncLFQueueGetPushPointer2(queue=*0x%x, pointer=*0x%x, isBlocking=%d, useEventQueue=%d)", queue, pointer, isBlocking, useEventQueue);
throw EXCEPTION("");
}
s32 _cellSyncLFQueueCompletePushPointer(PPUThread& CPU, vm::ptr<CellSyncLFQueue> queue, s32 pointer, vm::ptr<s32(u32 addr, u32 arg)> fpSendSignal)
{
cellSync.Warning("_cellSyncLFQueueCompletePushPointer(queue=*0x%x, pointer=%d, fpSendSignal=*0x%x)", queue, pointer, fpSendSignal);
if (queue->m_direction != CELL_SYNC_QUEUE_PPU2SPU)
{
return CELL_SYNC_ERROR_PERM;
}
const s32 depth = queue->m_depth;
while (true)
{
const auto old = queue->push2.load_sync();
auto push2 = old;
const auto old2 = queue->push3.load();
auto push3 = old2;
s32 var1 = pointer - (u16)push3.m_h5;
if (var1 < 0)
{
var1 += depth * 2;
}
s32 var2 = (s32)(s16)queue->pop1.load().m_h4 - (s32)(u16)queue->pop1.load().m_h1;
if (var2 < 0)
{
var2 += depth * 2;
}
s32 var9_ = 15 - var1;
// calculate (u16)(1 slw (15 - var1))
if (var9_ & 0x30)
{
var9_ = 0;
}
else
{
var9_ = 1 << var9_;
}
s32 var9 = cntlz32((u32)(u16)~(var9_ | (u16)push3.m_h6)) - 16; // count leading zeros in u16
s32 var5 = (s32)(u16)push3.m_h6 | var9_;
if (var9 & 0x30)
{
var5 = 0;
}
else
{
var5 <<= var9;
}
s32 var3 = (u16)push3.m_h5 + var9;
if (var3 >= depth * 2)
{
var3 -= depth * 2;
}
u16 pack = push2.pack; // three packed 5-bit fields
s32 var4 = ((pack >> 10) & 0x1f) - ((pack >> 5) & 0x1f);
if (var4 < 0)
{
var4 += 0x1e;
}
u32 var6;
if (var2 + var4 <= 15 && ((pack >> 10) & 0x1f) != (pack & 0x1f))
{
s32 var8 = (pack & 0x1f) - ((pack >> 10) & 0x1f);
if (var8 < 0)
{
var8 += 0x1e;
}
if (var9 > 1 && (u32)var8 > 1)
{
assert(16 - var2 <= 1);
}
s32 var11 = (pack >> 10) & 0x1f;
if (var11 >= 15)
{
var11 -= 15;
}
u16 var12 = (pack >> 10) & 0x1f;
if (var12 == 0x1d)
{
var12 = 0;
}
else
{
var12 = (var12 + 1) << 10;
}
push2.pack = (pack & 0x83ff) | var12;
var6 = (u16)queue->m_hs1[var11];
}
else
{
var6 = -1;
}
push3.m_h5 = (u16)var3;
push3.m_h6 = (u16)var5;
if (queue->push2.compare_and_swap_test(old, push2))
{
assert(var2 + var4 < 16);
if (var6 != -1)
{
bool exch = queue->push3.compare_and_swap_test(old2, push3);
assert(exch);
if (exch)
{
assert(fpSendSignal);
return fpSendSignal(CPU, (u32)queue->m_eaSignal.addr(), var6);
}
}
else
{
pack = queue->push2.load().pack;
if ((pack & 0x1f) == ((pack >> 10) & 0x1f))
{
if (queue->push3.compare_and_swap_test(old2, push3))
{
return CELL_OK;
}
}
}
}
}
}
s32 _cellSyncLFQueueCompletePushPointer2(PPUThread& CPU, vm::ptr<CellSyncLFQueue> queue, s32 pointer, vm::ptr<s32(u32 addr, u32 arg)> fpSendSignal)
{
// arguments copied from _cellSyncLFQueueCompletePushPointer
cellSync.Todo("_cellSyncLFQueueCompletePushPointer2(queue=*0x%x, pointer=%d, fpSendSignal=*0x%x)", queue, pointer, fpSendSignal);
throw EXCEPTION("");
}
s32 _cellSyncLFQueuePushBody(PPUThread& CPU, vm::ptr<CellSyncLFQueue> queue, vm::cptr<void> buffer, u32 isBlocking)
{
// cellSyncLFQueuePush has 1 in isBlocking param, cellSyncLFQueueTryPush has 0
cellSync.Warning("_cellSyncLFQueuePushBody(queue=*0x%x, buffer=*0x%x, isBlocking=%d)", queue, buffer, isBlocking);
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned() || buffer % 16)
{
return CELL_SYNC_ERROR_ALIGN;
}
vm::stackvar<be_t<s32>> position(CPU);
while (true)
{
CHECK_EMU_STATUS;
s32 res;
if (queue->m_direction != CELL_SYNC_QUEUE_ANY2ANY)
{
res = _cellSyncLFQueueGetPushPointer(CPU, queue, position, isBlocking, 0);
}
else
{
res = _cellSyncLFQueueGetPushPointer2(CPU, queue, position, isBlocking, 0);
}
if (!isBlocking || res != CELL_SYNC_ERROR_AGAIN)
{
if (res) return res;
break;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
const s32 depth = queue->m_depth;
const s32 size = queue->m_size;
const s32 pos = position.value();
const u32 addr = VM_CAST((u64)((queue->m_buffer.addr() & ~1ull) + size * (pos >= depth ? pos - depth : pos)));
std::memcpy(vm::get_ptr<void>(addr), buffer.get_ptr(), size);
if (queue->m_direction != CELL_SYNC_QUEUE_ANY2ANY)
{
return _cellSyncLFQueueCompletePushPointer(CPU, queue, pos, vm::null);
}
else
{
return _cellSyncLFQueueCompletePushPointer2(CPU, queue, pos, vm::null);
}
}
s32 _cellSyncLFQueueGetPopPointer(PPUThread& CPU, vm::ptr<CellSyncLFQueue> queue, vm::ptr<s32> pointer, u32 isBlocking, u32 arg4, u32 useEventQueue)
{
cellSync.Warning("_cellSyncLFQueueGetPopPointer(queue=*0x%x, pointer=*0x%x, isBlocking=%d, arg4=%d, useEventQueue=%d)", queue, pointer, isBlocking, arg4, useEventQueue);
if (queue->m_direction != CELL_SYNC_QUEUE_SPU2PPU)
{
return CELL_SYNC_ERROR_PERM;
}
const s32 depth = queue->m_depth;
u32 var1 = 0;
while (true)
{
while (true)
{
CHECK_EMU_STATUS;
const auto old = queue->pop1.load_sync();
auto pop = old;
if (var1)
{
pop.m_h3 = 0;
}
if (isBlocking && useEventQueue && *(u32*)queue->m_bs == -1)
{
return CELL_SYNC_ERROR_STAT;
}
s32 var2 = (s32)(s16)pop.m_h4;
s32 res;
if (useEventQueue && ((s32)(u16)pop.m_h1 != var2 || pop.m_h3.data() != 0))
{
res = CELL_SYNC_ERROR_BUSY;
}
else
{
var2 = (s32)(u16)queue->push1.load().m_h5 - var2;
if (var2 < 0)
{
var2 += depth * 2;
}
if (var2 > 0)
{
const s32 _pointer = (s16)pop.m_h4;
*pointer = _pointer;
if (_pointer + 1 >= depth * 2)
{
pop.m_h4 = 0;
}
else
{
pop.m_h4++;
}
res = CELL_OK;
}
else if (!isBlocking)
{
return CELL_SYNC_ERROR_AGAIN;
}
else if (!useEventQueue)
{
continue;
}
else
{
res = CELL_OK;
pop.m_h3 = 3;
if (isBlocking != 3)
{
break;
}
}
}
if (queue->pop1.compare_and_swap_test(old, pop))
{
if (!pop.m_h3.data() || res)
{
return res;
}
break;
}
}
if (s32 res = sys_event_queue_receive(CPU, queue->m_eq_id, vm::null, 0))
{
throw EXCEPTION("");
}
var1 = 1;
}
}
s32 _cellSyncLFQueueGetPopPointer2(PPUThread& CPU, vm::ptr<CellSyncLFQueue> queue, vm::ptr<s32> pointer, u32 isBlocking, u32 useEventQueue)
{
// arguments copied from _cellSyncLFQueueGetPopPointer
cellSync.Todo("_cellSyncLFQueueGetPopPointer2(queue=*0x%x, pointer=*0x%x, isBlocking=%d, useEventQueue=%d)", queue, pointer, isBlocking, useEventQueue);
throw EXCEPTION("");
}
s32 _cellSyncLFQueueCompletePopPointer(PPUThread& CPU, vm::ptr<CellSyncLFQueue> queue, s32 pointer, vm::ptr<s32(u32 addr, u32 arg)> fpSendSignal, u32 noQueueFull)
{
// arguments copied from _cellSyncLFQueueCompletePushPointer + unknown argument (noQueueFull taken from LFQueue2CompletePopPointer)
cellSync.Warning("_cellSyncLFQueueCompletePopPointer(queue=*0x%x, pointer=%d, fpSendSignal=*0x%x, noQueueFull=%d)", queue, pointer, fpSendSignal, noQueueFull);
if (queue->m_direction != CELL_SYNC_QUEUE_SPU2PPU)
{
return CELL_SYNC_ERROR_PERM;
}
const s32 depth = queue->m_depth;
while (true)
{
const auto old = queue->pop2.load_sync();
auto pop2 = old;
const auto old2 = queue->pop3.load();
auto pop3 = old2;
s32 var1 = pointer - (u16)pop3.m_h1;
if (var1 < 0)
{
var1 += depth * 2;
}
s32 var2 = (s32)(s16)queue->push1.load().m_h8 - (s32)(u16)queue->push1.load().m_h5;
if (var2 < 0)
{
var2 += depth * 2;
}
s32 var9_ = 15 - var1;
// calculate (u16)(1 slw (15 - var1))
if (var9_ & 0x30)
{
var9_ = 0;
}
else
{
var9_ = 1 << var9_;
}
s32 var9 = cntlz32((u32)(u16)~(var9_ | (u16)pop3.m_h2)) - 16; // count leading zeros in u16
s32 var5 = (s32)(u16)pop3.m_h2 | var9_;
if (var9 & 0x30)
{
var5 = 0;
}
else
{
var5 <<= var9;
}
s32 var3 = (u16)pop3.m_h1 + var9;
if (var3 >= depth * 2)
{
var3 -= depth * 2;
}
u16 pack = pop2.pack; // three packed 5-bit fields
s32 var4 = ((pack >> 10) & 0x1f) - ((pack >> 5) & 0x1f);
if (var4 < 0)
{
var4 += 0x1e;
}
u32 var6;
if (noQueueFull || var2 + var4 > 15 || ((pack >> 10) & 0x1f) == (pack & 0x1f))
{
var6 = -1;
}
else
{
s32 var8 = (pack & 0x1f) - ((pack >> 10) & 0x1f);
if (var8 < 0)
{
var8 += 0x1e;
}
if (var9 > 1 && (u32)var8 > 1)
{
assert(16 - var2 <= 1);
}
s32 var11 = (pack >> 10) & 0x1f;
if (var11 >= 15)
{
var11 -= 15;
}
u16 var12 = (pack >> 10) & 0x1f;
if (var12 == 0x1d)
{
var12 = 0;
}
else
{
var12 = (var12 + 1) << 10;
}
pop2.pack = (pack & 0x83ff) | var12;
var6 = (u16)queue->m_hs2[var11];
}
pop3.m_h1 = (u16)var3;
pop3.m_h2 = (u16)var5;
if (queue->pop2.compare_and_swap_test(old, pop2))
{
if (var6 != -1)
{
bool exch = queue->pop3.compare_and_swap_test(old2, pop3);
assert(exch);
if (exch)
{
assert(fpSendSignal);
return fpSendSignal(CPU, (u32)queue->m_eaSignal.addr(), var6);
}
}
else
{
pack = queue->pop2.load().pack;
if ((pack & 0x1f) == ((pack >> 10) & 0x1f))
{
if (queue->pop3.compare_and_swap_test(old2, pop3))
{
return CELL_OK;
}
}
}
}
}
}
s32 _cellSyncLFQueueCompletePopPointer2(PPUThread& CPU, vm::ptr<CellSyncLFQueue> queue, s32 pointer, vm::ptr<s32(u32 addr, u32 arg)> fpSendSignal, u32 noQueueFull)
{
// arguments copied from _cellSyncLFQueueCompletePopPointer
cellSync.Todo("_cellSyncLFQueueCompletePopPointer2(queue=*0x%x, pointer=%d, fpSendSignal=*0x%x, noQueueFull=%d)", queue, pointer, fpSendSignal, noQueueFull);
throw EXCEPTION("");
}
s32 _cellSyncLFQueuePopBody(PPUThread& CPU, vm::ptr<CellSyncLFQueue> queue, vm::ptr<void> buffer, u32 isBlocking)
{
// cellSyncLFQueuePop has 1 in isBlocking param, cellSyncLFQueueTryPop has 0
cellSync.Warning("_cellSyncLFQueuePopBody(queue=*0x%x, buffer=*0x%x, isBlocking=%d)", queue, buffer, isBlocking);
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned() || buffer % 16)
{
return CELL_SYNC_ERROR_ALIGN;
}
vm::stackvar<be_t<s32>> position(CPU);
while (true)
{
CHECK_EMU_STATUS;
s32 res;
if (queue->m_direction != CELL_SYNC_QUEUE_ANY2ANY)
{
res = _cellSyncLFQueueGetPopPointer(CPU, queue, position, isBlocking, 0, 0);
}
else
{
res = _cellSyncLFQueueGetPopPointer2(CPU, queue, position, isBlocking, 0);
}
if (!isBlocking || res != CELL_SYNC_ERROR_AGAIN)
{
if (res) return res;
break;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
}
const s32 depth = queue->m_depth;
const s32 size = queue->m_size;
const s32 pos = position.value();
const u32 addr = VM_CAST((u64)((queue->m_buffer.addr() & ~1) + size * (pos >= depth ? pos - depth : pos)));
std::memcpy(buffer.get_ptr(), vm::get_ptr<void>(addr), size);
if (queue->m_direction != CELL_SYNC_QUEUE_ANY2ANY)
{
return _cellSyncLFQueueCompletePopPointer(CPU, queue, pos, vm::null, 0);
}
else
{
return _cellSyncLFQueueCompletePopPointer2(CPU, queue, pos, vm::null, 0);
}
}
s32 cellSyncLFQueueClear(vm::ptr<CellSyncLFQueue> queue)
{
cellSync.Warning("cellSyncLFQueueClear(queue=*0x%x)", queue);
if (!queue)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
while (true)
{
const auto old = queue->pop1.load_sync();
auto pop = old;
const auto push = queue->push1.load();
s32 var1, var2;
if (queue->m_direction != CELL_SYNC_QUEUE_ANY2ANY)
{
var1 = var2 = (u16)queue->pop2.load().pack;
}
else
{
var1 = (u16)push.m_h7;
var2 = (u16)pop.m_h3;
}
if ((s32)(s16)pop.m_h4 != (s32)(u16)pop.m_h1 ||
(s32)(s16)push.m_h8 != (s32)(u16)push.m_h5 ||
((var2 >> 10) & 0x1f) != (var2 & 0x1f) ||
((var1 >> 10) & 0x1f) != (var1 & 0x1f))
{
return CELL_SYNC_ERROR_BUSY;
}
pop.m_h1 = push.m_h5;
pop.m_h2 = push.m_h6;
pop.m_h3 = push.m_h7;
pop.m_h4 = push.m_h8;
if (queue->pop1.compare_and_swap_test(old, pop)) break;
}
return CELL_OK;
}
s32 cellSyncLFQueueSize(vm::ptr<CellSyncLFQueue> queue, vm::ptr<u32> size)
{
cellSync.Warning("cellSyncLFQueueSize(queue=*0x%x, size=*0x%x)", queue, size);
if (!queue || !size)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
while (true)
{
const auto old = queue->pop3.load_sync();
u32 var1 = (u16)queue->pop1.load().m_h1;
u32 var2 = (u16)queue->push1.load().m_h5;
if (queue->pop3.compare_and_swap_test(old, old))
{
if (var1 <= var2)
{
*size = var2 - var1;
}
else
{
*size = var2 - var1 + (u32)queue->m_depth * 2;
}
return CELL_OK;
}
}
}
s32 cellSyncLFQueueDepth(vm::ptr<CellSyncLFQueue> queue, vm::ptr<u32> depth)
{
cellSync.Log("cellSyncLFQueueDepth(queue=*0x%x, depth=*0x%x)", queue, depth);
if (!queue || !depth)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
*depth = queue->m_depth;
return CELL_OK;
}
s32 _cellSyncLFQueueGetSignalAddress(vm::cptr<CellSyncLFQueue> queue, vm::pptr<void> ppSignal)
{
cellSync.Log("_cellSyncLFQueueGetSignalAddress(queue=*0x%x, ppSignal=**0x%x)", queue, ppSignal);
if (!queue || !ppSignal)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
*ppSignal = queue->m_eaSignal;
return CELL_OK;
}
s32 cellSyncLFQueueGetDirection(vm::cptr<CellSyncLFQueue> queue, vm::ptr<u32> direction)
{
cellSync.Log("cellSyncLFQueueGetDirection(queue=*0x%x, direction=*0x%x)", queue, direction);
if (!queue || !direction)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
*direction = queue->m_direction;
return CELL_OK;
}
s32 cellSyncLFQueueGetEntrySize(vm::cptr<CellSyncLFQueue> queue, vm::ptr<u32> entry_size)
{
cellSync.Log("cellSyncLFQueueGetEntrySize(queue=*0x%x, entry_size=*0x%x)", queue, entry_size);
if (!queue || !entry_size)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (!queue.aligned())
{
return CELL_SYNC_ERROR_ALIGN;
}
*entry_size = queue->m_size;
return CELL_OK;
}
s32 _cellSyncLFQueueAttachLv2EventQueue(vm::ptr<u32> spus, u32 num, vm::ptr<CellSyncLFQueue> queue)
{
cellSync.Todo("_cellSyncLFQueueAttachLv2EventQueue(spus=*0x%x, num=%d, queue=*0x%x)", spus, num, queue);
throw EXCEPTION("");
}
s32 _cellSyncLFQueueDetachLv2EventQueue(vm::ptr<u32> spus, u32 num, vm::ptr<CellSyncLFQueue> queue)
{
cellSync.Todo("_cellSyncLFQueueDetachLv2EventQueue(spus=*0x%x, num=%d, queue=*0x%x)", spus, num, queue);
throw EXCEPTION("");
}
Module cellSync("cellSync", []()
{
REG_FUNC(cellSync, cellSyncMutexInitialize);
REG_FUNC(cellSync, cellSyncMutexLock);
REG_FUNC(cellSync, cellSyncMutexTryLock);
REG_FUNC(cellSync, cellSyncMutexUnlock);
REG_FUNC(cellSync, cellSyncBarrierInitialize);
REG_FUNC(cellSync, cellSyncBarrierNotify);
REG_FUNC(cellSync, cellSyncBarrierTryNotify);
REG_FUNC(cellSync, cellSyncBarrierWait);
REG_FUNC(cellSync, cellSyncBarrierTryWait);
REG_FUNC(cellSync, cellSyncRwmInitialize);
REG_FUNC(cellSync, cellSyncRwmRead);
REG_FUNC(cellSync, cellSyncRwmTryRead);
REG_FUNC(cellSync, cellSyncRwmWrite);
REG_FUNC(cellSync, cellSyncRwmTryWrite);
REG_FUNC(cellSync, cellSyncQueueInitialize);
REG_FUNC(cellSync, cellSyncQueuePush);
REG_FUNC(cellSync, cellSyncQueueTryPush);
REG_FUNC(cellSync, cellSyncQueuePop);
REG_FUNC(cellSync, cellSyncQueueTryPop);
REG_FUNC(cellSync, cellSyncQueuePeek);
REG_FUNC(cellSync, cellSyncQueueTryPeek);
REG_FUNC(cellSync, cellSyncQueueSize);
REG_FUNC(cellSync, cellSyncQueueClear);
REG_FUNC(cellSync, cellSyncLFQueueGetEntrySize);
REG_FUNC(cellSync, cellSyncLFQueueSize);
REG_FUNC(cellSync, cellSyncLFQueueClear);
REG_FUNC(cellSync, _cellSyncLFQueueCompletePushPointer2);
REG_FUNC(cellSync, _cellSyncLFQueueGetPopPointer2);
REG_FUNC(cellSync, _cellSyncLFQueueCompletePushPointer);
REG_FUNC(cellSync, _cellSyncLFQueueAttachLv2EventQueue);
REG_FUNC(cellSync, _cellSyncLFQueueGetPushPointer2);
REG_FUNC(cellSync, _cellSyncLFQueueGetPopPointer);
REG_FUNC(cellSync, _cellSyncLFQueueCompletePopPointer2);
REG_FUNC(cellSync, _cellSyncLFQueueDetachLv2EventQueue);
REG_FUNC(cellSync, cellSyncLFQueueInitialize);
REG_FUNC(cellSync, _cellSyncLFQueueGetSignalAddress);
REG_FUNC(cellSync, _cellSyncLFQueuePushBody);
REG_FUNC(cellSync, cellSyncLFQueueGetDirection);
REG_FUNC(cellSync, cellSyncLFQueueDepth);
REG_FUNC(cellSync, _cellSyncLFQueuePopBody);
REG_FUNC(cellSync, _cellSyncLFQueueGetPushPointer);
REG_FUNC(cellSync, _cellSyncLFQueueCompletePopPointer);
});