rpcs3/rpcs3/Emu/RSX/GL/GLTextureCache.h
2017-03-13 23:40:34 +03:00

903 lines
No EOL
22 KiB
C++

#pragma once
#include "stdafx.h"
#include <exception>
#include <string>
#include <functional>
#include <vector>
#include <memory>
#include <thread>
#include <condition_variable>
#include "GLRenderTargets.h"
#include "../Common/TextureUtils.h"
#include <chrono>
class GLGSRender;
namespace gl
{
class texture_cache
{
public:
class cached_texture_section : public rsx::buffered_section
{
u32 texture_id = 0;
u32 width = 0;
u32 height = 0;
u16 mipmaps = 0;
public:
void create(u32 id, u32 width, u32 height, u32 mipmaps)
{
verify(HERE), locked == false;
texture_id = id;
this->width = width;
this->height = height;
this->mipmaps = mipmaps;
}
bool matches(u32 rsx_address, u32 width, u32 height, u32 mipmaps) const
{
if (rsx_address == cpu_address_base && texture_id != 0)
{
if (!width && !height && !mipmaps)
return true;
return (width == this->width && height == this->height && mipmaps == this->mipmaps);
}
return false;
}
void destroy()
{
if (locked)
unprotect();
glDeleteTextures(1, &texture_id);
texture_id = 0;
}
bool is_empty() const
{
return (texture_id == 0);
}
u32 id() const
{
return texture_id;
}
};
class cached_rtt_section : public rsx::buffered_section
{
private:
fence m_fence;
u32 pbo_id = 0;
u32 pbo_size = 0;
u32 source_texture = 0;
bool copied = false;
bool flushed = false;
bool is_depth = false;
u32 current_width = 0;
u32 current_height = 0;
u32 current_pitch = 0;
u32 real_pitch = 0;
texture::format format = texture::format::rgba;
texture::type type = texture::type::ubyte;
bool pack_unpack_swap_bytes = false;
u8 get_pixel_size(texture::format fmt_, texture::type type_)
{
u8 size = 1;
switch (type_)
{
case texture::type::ubyte:
case texture::type::sbyte:
break;
case texture::type::ushort:
case texture::type::sshort:
case texture::type::f16:
size = 2;
break;
case texture::type::ushort_5_6_5:
case texture::type::ushort_5_6_5_rev:
case texture::type::ushort_4_4_4_4:
case texture::type::ushort_4_4_4_4_rev:
case texture::type::ushort_5_5_5_1:
case texture::type::ushort_1_5_5_5_rev:
return 2;
case texture::type::uint_8_8_8_8:
case texture::type::uint_8_8_8_8_rev:
case texture::type::uint_10_10_10_2:
case texture::type::uint_2_10_10_10_rev:
case texture::type::uint_24_8:
return 4;
case texture::type::f32:
case texture::type::sint:
case texture::type::uint:
size = 4;
break;
}
switch (fmt_)
{
case texture::format::red:
case texture::format::r:
break;
case texture::format::rg:
size *= 2;
break;
case texture::format::rgb:
case texture::format::bgr:
size *= 3;
break;
case texture::format::rgba:
case texture::format::bgra:
size *= 4;
break;
//Depth formats..
case texture::format::depth:
size = 2;
break;
case texture::format::depth_stencil:
size = 4;
break;
default:
LOG_ERROR(RSX, "Unsupported rtt format %d", (GLenum)fmt_);
size = 4;
}
return size;
}
void scale_image_fallback(u8* dst, const u8* src, u16 src_width, u16 src_height, u16 dst_pitch, u16 src_pitch, u8 pixel_size, u8 samples)
{
u32 dst_offset = 0;
u32 src_offset = 0;
u32 padding = dst_pitch - (src_pitch * samples);
for (u16 h = 0; h < src_height; ++h)
{
for (u16 w = 0; w < src_width; ++w)
{
for (u8 n = 0; n < samples; ++n)
{
memcpy(&dst[dst_offset], &src[src_offset], pixel_size);
dst_offset += pixel_size;
}
src_offset += pixel_size;
}
dst_offset += padding;
}
}
template <typename T, int N>
void scale_image_impl(T* dst, const T* src, u16 src_width, u16 src_height, u16 padding)
{
u32 dst_offset = 0;
u32 src_offset = 0;
for (u16 h = 0; h < src_height; ++h)
{
for (u16 w = 0; w < src_width; ++w)
{
for (u8 n = 0; n < N; ++n)
{
dst[dst_offset++] = src[src_offset];
}
//Fetch next pixel
src_offset++;
}
//Pad this row
dst_offset += padding;
}
}
template <int N>
void scale_image(void *dst, void *src, u8 pixel_size, u16 src_width, u16 src_height, u16 padding)
{
switch (pixel_size)
{
case 1:
scale_image_impl<u8, N>((u8*)dst, (u8*)src, current_width, current_height, padding);
break;
case 2:
scale_image_impl<u16, N>((u16*)dst, (u16*)src, current_width, current_height, padding);
break;
case 4:
scale_image_impl<u32, N>((u32*)dst, (u32*)src, current_width, current_height, padding);
break;
case 8:
scale_image_impl<u64, N>((u64*)dst, (u64*)src, current_width, current_height, padding);
break;
default:
fmt::throw_exception("unsupported rtt format 0x%X" HERE, (u32)format);
}
}
void init_buffer()
{
if (pbo_id)
{
glDeleteBuffers(1, &pbo_id);
pbo_id = 0;
pbo_size = 0;
}
glGenBuffers(1, &pbo_id);
glBindBuffer(GL_PIXEL_PACK_BUFFER, pbo_id);
glBufferStorage(GL_PIXEL_PACK_BUFFER, locked_address_range, nullptr, GL_MAP_READ_BIT);
pbo_size = locked_address_range;
}
public:
void reset(u32 base, u32 size)
{
rsx::buffered_section::reset(base, size);
init_buffer();
flushed = false;
copied = false;
source_texture = 0;
}
void set_dimensions(u32 width, u32 height, u32 pitch)
{
current_width = width;
current_height = height;
current_pitch = pitch;
real_pitch = width * get_pixel_size(format, type);
}
void set_format(texture::format gl_format, texture::type gl_type, bool swap_bytes)
{
format = gl_format;
type = gl_type;
pack_unpack_swap_bytes = swap_bytes;
real_pitch = current_width * get_pixel_size(format, type);
}
void set_source(gl::texture &source)
{
source_texture = source.id();
}
void copy_texture()
{
if (!glIsTexture(source_texture))
{
LOG_ERROR(RSX, "Attempted to download rtt texture, but texture handle was invalid! (0x%X)", source_texture);
return;
}
glPixelStorei(GL_PACK_SWAP_BYTES, pack_unpack_swap_bytes);
glBindBuffer(GL_PIXEL_PACK_BUFFER, pbo_id);
glGetTextureImageEXT(source_texture, GL_TEXTURE_2D, 0, (GLenum)format, (GLenum)type, nullptr);
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
m_fence.reset();
copied = true;
}
void fill_texture(gl::texture &tex)
{
if (!copied)
{
//LOG_WARNING(RSX, "Request to fill texture rejected because contents were not read");
return;
}
u32 min_width = std::min((u32)tex.width(), current_width);
u32 min_height = std::min((u32)tex.height(), current_height);
tex.bind();
glPixelStorei(GL_UNPACK_SWAP_BYTES, pack_unpack_swap_bytes);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pbo_id);
glTexSubImage2D((GLenum)tex.get_target(), 0, 0, 0, min_width, min_height, (GLenum)format, (GLenum)type, nullptr);
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
}
void flush()
{
if (!copied)
{
LOG_WARNING(RSX, "Cache miss at address 0x%X. This is gonna hurt...", cpu_address_base);
copy_texture();
if (!copied)
{
LOG_WARNING(RSX, "Nothing to copy; Setting section to readable and moving on...");
protect(utils::protection::ro);
return;
}
}
protect(utils::protection::rw);
m_fence.wait_for_signal();
flushed = true;
glBindBuffer(GL_PIXEL_PACK_BUFFER, pbo_id);
void *data = glMapBufferRange(GL_PIXEL_PACK_BUFFER, 0, pbo_size, GL_MAP_READ_BIT);
u8 *dst = vm::ps3::_ptr<u8>(cpu_address_base);
//throw if map failed since we'll segfault anyway
verify(HERE), data != nullptr;
if (real_pitch >= current_pitch)
{
memcpy(dst, data, cpu_address_range);
}
else
{
//TODO: Use compression hint from the gcm tile information
//Scale this image by repeating pixel data n times
//n = expected_pitch / real_pitch
//Use of fixed argument templates for performance reasons
const u16 pixel_size = get_pixel_size(format, type);
const u16 dst_width = current_pitch / pixel_size;
const u16 sample_count = current_pitch / real_pitch;
const u16 padding = dst_width - (current_width * sample_count);
switch (sample_count)
{
case 2:
scale_image<2>(dst, data, pixel_size, current_width, current_height, padding);
break;
case 3:
scale_image<3>(dst, data, pixel_size, current_width, current_height, padding);
break;
case 4:
scale_image<4>(dst, data, pixel_size, current_width, current_height, padding);
break;
case 8:
scale_image<8>(dst, data, pixel_size, current_width, current_height, padding);
break;
case 16:
scale_image<16>(dst, data, pixel_size, current_width, current_height, padding);
break;
default:
LOG_ERROR(RSX, "Unsupported RTT scaling factor: dst_pitch=%d src_pitch=%d", current_pitch, real_pitch);
scale_image_fallback(dst, static_cast<u8*>(data), current_width, current_height, current_pitch, real_pitch, pixel_size, sample_count);
}
}
glUnmapBuffer(GL_PIXEL_PACK_BUFFER);
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
protect(utils::protection::ro);
}
void destroy()
{
if (locked)
unprotect();
glDeleteBuffers(1, &pbo_id);
pbo_id = 0;
pbo_size = 0;
m_fence.destroy();
}
bool is_flushed() const
{
return flushed;
}
void set_flushed(bool state)
{
flushed = state;
}
void set_copied(bool state)
{
copied = state;
}
};
private:
std::vector<cached_texture_section> m_texture_cache;
std::vector<cached_rtt_section> m_rtt_cache;
std::vector<u32> m_temporary_surfaces;
std::pair<u32, u32> texture_cache_range = std::make_pair(0xFFFFFFFF, 0);
std::pair<u32, u32> rtt_cache_range = std::make_pair(0xFFFFFFFF, 0);
std::mutex m_section_mutex;
GLGSRender *m_renderer;
std::thread::id m_renderer_thread;
cached_texture_section *find_texture(u64 texaddr, u32 w, u32 h, u16 mipmaps)
{
for (cached_texture_section &tex : m_texture_cache)
{
if (tex.matches(texaddr, w, h, mipmaps) && !tex.is_dirty())
return &tex;
}
return nullptr;
}
cached_texture_section& create_texture(u32 id, u32 texaddr, u32 texsize, u32 w, u32 h, u16 mipmap)
{
for (cached_texture_section &tex : m_texture_cache)
{
if (tex.is_dirty())
{
tex.destroy();
tex.reset(texaddr, texsize);
tex.create(id, w, h, mipmap);
texture_cache_range = tex.get_min_max(texture_cache_range);
return tex;
}
}
cached_texture_section tex;
tex.reset(texaddr, texsize);
tex.create(id, w, h, mipmap);
texture_cache_range = tex.get_min_max(texture_cache_range);
m_texture_cache.push_back(tex);
return m_texture_cache.back();
}
void clear()
{
for (cached_texture_section &tex : m_texture_cache)
{
tex.destroy();
}
for (cached_rtt_section &rtt : m_rtt_cache)
{
rtt.destroy();
}
m_rtt_cache.resize(0);
m_texture_cache.resize(0);
clear_temporary_surfaces();
}
cached_rtt_section* find_cached_rtt_section(u32 base, u32 size)
{
for (cached_rtt_section &rtt : m_rtt_cache)
{
if (rtt.matches(base, size))
{
return &rtt;
}
}
return nullptr;
}
cached_rtt_section *create_locked_view_of_section(u32 base, u32 size)
{
cached_rtt_section *region = find_cached_rtt_section(base, size);
if (!region)
{
for (cached_rtt_section &rtt : m_rtt_cache)
{
if (rtt.is_dirty())
{
rtt.reset(base, size);
rtt.protect(utils::protection::no);
region = &rtt;
break;
}
}
if (!region)
{
cached_rtt_section section;
section.reset(base, size);
section.set_dirty(true);
section.protect(utils::protection::no);
m_rtt_cache.push_back(section);
region = &m_rtt_cache.back();
}
rtt_cache_range = region->get_min_max(rtt_cache_range);
}
else
{
//This section view already exists
if (region->get_section_size() != size)
{
region->unprotect();
region->reset(base, size);
}
if (!region->is_locked() || region->is_flushed())
{
region->protect(utils::protection::no);
}
}
return region;
}
u32 create_temporary_subresource(u32 src_id, GLenum sized_internal_fmt, u16 x, u16 y, u16 width, u16 height)
{
u32 dst_id = 0;
glGenTextures(1, &dst_id);
glBindTexture(GL_TEXTURE_2D, dst_id);
glTexStorage2D(GL_TEXTURE_2D, 1, sized_internal_fmt, width, height);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
//Empty GL_ERROR
glGetError();
glCopyImageSubData(src_id, GL_TEXTURE_2D, 0, x, y, 0,
dst_id, GL_TEXTURE_2D, 0, 0, 0, 0, width, height, 1);
m_temporary_surfaces.push_back(dst_id);
//Check for error
if (GLenum err = glGetError())
{
LOG_WARNING(RSX, "Failed to copy image subresource with GL error 0x%X", err);
return 0;
}
return dst_id;
}
public:
texture_cache() {}
~texture_cache() {}
void initialize(GLGSRender *renderer)
{
m_renderer = renderer;
m_renderer_thread = std::this_thread::get_id();
}
void close()
{
clear();
}
template<typename RsxTextureType>
void upload_texture(int index, RsxTextureType &tex, rsx::gl::texture &gl_texture, gl_render_targets &m_rtts)
{
const u32 texaddr = rsx::get_address(tex.offset(), tex.location());
const u32 range = (u32)get_texture_size(tex);
if (!texaddr || !range)
{
LOG_ERROR(RSX, "Texture upload requested but texture not found, (address=0x%X, size=0x%X)", texaddr, range);
gl_texture.bind();
return;
}
glActiveTexture(GL_TEXTURE0 + index);
/**
* Check for sampleable rtts from previous render passes
*/
gl::texture *texptr = nullptr;
if (texptr = m_rtts.get_texture_from_render_target_if_applicable(texaddr))
{
texptr->bind();
return;
}
if (texptr = m_rtts.get_texture_from_depth_stencil_if_applicable(texaddr))
{
texptr->bind();
return;
}
/**
* Check if we are re-sampling a subresource of an RTV/DSV texture, bound or otherwise
* (Turbo: Super Stunt Squad does this; bypassing the need for a sync object)
* The engine does not read back the texture resource through cell, but specifies a texture location that is
* a bound render target. We can bypass the expensive download in this case
*/
surface_subresource rsc = m_rtts.get_surface_subresource_if_applicable(texaddr, tex.width(), tex.height(), tex.pitch());
if (rsc.surface)
{
//Check that this region is not cpu-dirty before doing a copy
//This section is guaranteed to have a locking section *if* this bit has been bypassed before
bool upload_from_cpu = false;
for (cached_rtt_section &section : m_rtt_cache)
{
if (section.overlaps(std::make_pair(texaddr, range)) && section.is_dirty())
{
LOG_ERROR(RSX, "Cell wrote to render target section we are uploading from!");
upload_from_cpu = true;
break;
}
}
if (!upload_from_cpu)
{
if (tex.get_extended_texture_dimension() != rsx::texture_dimension_extended::texture_dimension_2d)
{
LOG_ERROR(RSX, "Sampling of RTT region as non-2D texture! addr=0x%x, Type=%d, dims=%dx%d",
texaddr, (u8)tex.get_extended_texture_dimension(), tex.width(), tex.height());
}
else
{
const u32 format = tex.format() & ~(CELL_GCM_TEXTURE_LN | CELL_GCM_TEXTURE_UN);
GLenum src_format = (GLenum)rsc.surface->get_internal_format();
GLenum dst_format = std::get<0>(get_format_type(format));
u32 bound_index = ~0U;
if (src_format != dst_format)
{
LOG_WARNING(RSX, "Sampling from a section of a render target, but formats might be incompatible (0x%X vs 0x%X)", src_format, dst_format);
}
if (!rsc.is_bound)
{
if (rsc.w == tex.width() && rsc.h == tex.height())
rsc.surface->bind();
else
bound_index = create_temporary_subresource(rsc.surface->id(), (GLenum)rsc.surface->get_compatible_internal_format(), rsc.x, rsc.y, rsc.w, rsc.h);
}
else
{
LOG_WARNING(RSX, "Attempting to sample a currently bound render target @ 0x%x", texaddr);
bound_index = create_temporary_subresource(rsc.surface->id(), (GLenum)rsc.surface->get_compatible_internal_format(), rsc.x, rsc.y, rsc.w, rsc.h);
}
if (bound_index)
return;
}
}
}
/**
* If all the above failed, then its probably a generic texture.
* Search in cache and upload/bind
*/
cached_texture_section *cached_texture = find_texture(texaddr, tex.width(), tex.height(), tex.get_exact_mipmap_count());
if (cached_texture)
{
verify(HERE), cached_texture->is_empty() == false;
gl_texture.set_id(cached_texture->id());
gl_texture.bind();
//external gl::texture objects should always be undefined/uninitialized!
gl_texture.set_id(0);
return;
}
if (!tex.width() || !tex.height())
{
LOG_ERROR(RSX, "Texture upload requested but invalid texture dimensions passed");
return;
}
gl_texture.init(index, tex);
std::lock_guard<std::mutex> lock(m_section_mutex);
cached_texture_section &cached = create_texture(gl_texture.id(), texaddr, get_texture_size(tex), tex.width(), tex.height(), tex.get_exact_mipmap_count());
cached.protect(utils::protection::ro);
cached.set_dirty(false);
//external gl::texture objects should always be undefined/uninitialized!
gl_texture.set_id(0);
}
void save_rtt(u32 base, u32 size)
{
std::lock_guard<std::mutex> lock(m_section_mutex);
cached_rtt_section *region = find_cached_rtt_section(base, size);
if (!region)
{
LOG_ERROR(RSX, "Attempted to download render target that does not exist. Please report to developers");
return;
}
if (!region->is_locked())
{
verify(HERE), region->is_dirty();
LOG_WARNING(RSX, "Cell write to bound render target area");
region->protect(utils::protection::no);
region->set_dirty(false);
}
region->copy_texture();
}
void lock_rtt_region(const u32 base, const u32 size, const u16 width, const u16 height, const u16 pitch, const texture::format format, const texture::type type, const bool swap_bytes, gl::texture &source)
{
std::lock_guard<std::mutex> lock(m_section_mutex);
cached_rtt_section *region = create_locked_view_of_section(base, size);
if (!region->matches(base, size))
{
//This memory region overlaps our own region, but does not match it exactly
if (region->is_locked())
region->unprotect();
region->reset(base, size);
region->protect(utils::protection::no);
}
region->set_dimensions(width, height, pitch);
region->set_format(format, type, swap_bytes);
region->set_dirty(false);
region->set_flushed(false);
region->set_copied(false);
region->set_source(source);
verify(HERE), region->is_locked() == true;
}
bool load_rtt(gl::texture &tex, const u32 address, const u32 pitch)
{
const u32 range = tex.height() * pitch;
cached_rtt_section *rtt = find_cached_rtt_section(address, range);
if (rtt && !rtt->is_dirty())
{
rtt->fill_texture(tex);
return true;
}
//No valid object found in cache
return false;
}
bool mark_as_dirty(u32 address)
{
bool response = false;
std::pair<u32, u32> trampled_range = std::make_pair(0xffffffff, 0x0);
//TODO: Optimize this function!
//Multi-pass checking is slow. Pre-calculate dependency tree at section creation
if (address >= texture_cache_range.first &&
address < texture_cache_range.second)
{
std::lock_guard<std::mutex> lock(m_section_mutex);
for (int i = 0; i < m_texture_cache.size(); ++i)
{
auto &tex = m_texture_cache[i];
if (!tex.is_locked()) continue;
auto overlapped = tex.overlaps_page(trampled_range, address);
if (std::get<0>(overlapped))
{
auto &new_range = std::get<1>(overlapped);
if (new_range.first != trampled_range.first ||
new_range.second != trampled_range.second)
{
trampled_range = new_range;
i = 0;
}
tex.unprotect();
tex.set_dirty(true);
response = true;
}
}
}
if (address >= rtt_cache_range.first &&
address < rtt_cache_range.second)
{
std::lock_guard<std::mutex> lock(m_section_mutex);
for (int i = 0; i < m_rtt_cache.size(); ++i)
{
auto &rtt = m_rtt_cache[i];
if (rtt.is_dirty() || !rtt.is_locked()) continue;
auto overlapped = rtt.overlaps_page(trampled_range, address);
if (std::get<0>(overlapped))
{
auto &new_range = std::get<1>(overlapped);
if (new_range.first != trampled_range.first ||
new_range.second != trampled_range.second)
{
trampled_range = new_range;
i = 0;
}
rtt.unprotect();
rtt.set_dirty(true);
response = true;
}
}
}
return response;
}
void invalidate_range(u32 base, u32 size)
{
std::lock_guard<std::mutex> lock(m_section_mutex);
std::pair<u32, u32> range = std::make_pair(base, size);
if (base < texture_cache_range.second &&
(base + size) >= texture_cache_range.first)
{
for (cached_texture_section &tex : m_texture_cache)
{
if (!tex.is_dirty() && tex.overlaps(range))
tex.destroy();
}
}
if (base < rtt_cache_range.second &&
(base + size) >= rtt_cache_range.first)
{
for (cached_rtt_section &rtt : m_rtt_cache)
{
if (!rtt.is_dirty() && rtt.overlaps(range))
{
rtt.unprotect();
rtt.set_dirty(true);
}
}
}
}
bool flush_section(u32 address);
void clear_temporary_surfaces()
{
for (u32 &id : m_temporary_surfaces)
{
glDeleteTextures(1, &id);
}
m_temporary_surfaces.clear();
}
};
}