rpcs3/rpcs3/Emu/Memory/vm_ptr.h
Nekotekina 77bf86eaa5 Bugfix
2015-10-16 03:25:39 +03:00

560 lines
18 KiB
C++

#pragma once
#include "vm_ref.h"
class PPUThread;
class ARMv7Thread;
namespace vm
{
// helper SFINAE type for vm::_ptr_base comparison operators (enables comparison between equal types and between any type and void*)
template<typename T1, typename T2, typename RT = void> using if_comparable_t = std::enable_if_t<
std::is_void<T1>::value ||
std::is_void<T2>::value ||
std::is_same<std::remove_cv_t<T1>, std::remove_cv_t<T2>>::value,
RT>;
template<typename T, typename AT = u32> class _ptr_base
{
AT m_addr;
static_assert(!std::is_pointer<T>::value, "vm::_ptr_base<> error: invalid type (pointer)");
static_assert(!std::is_reference<T>::value, "vm::_ptr_base<> error: invalid type (reference)");
public:
using type = T;
using addr_type = std::remove_cv_t<AT>;
_ptr_base() = default;
constexpr _ptr_base(addr_type addr, const addr_tag_t&)
: m_addr(addr)
{
}
constexpr addr_type addr() const
{
return m_addr;
}
// get vm pointer to a struct member
template<typename MT, typename T2, typename = if_comparable_t<T, T2>> _ptr_base<MT> ptr(MT T2::*const mptr) const
{
return{ VM_CAST(m_addr) + get_offset(mptr), vm::addr };
}
// get vm pointer to a struct member with array subscription
template<typename MT, typename T2, typename ET = std::remove_extent_t<MT>, typename = if_comparable_t<T, T2>> _ptr_base<ET> ptr(MT T2::*const mptr, u32 index) const
{
return{ VM_CAST(m_addr) + get_offset(mptr) + sizeof32(ET) * index, vm::addr };
}
// get vm reference to a struct member
template<typename MT, typename T2, typename = if_comparable_t<T, T2>> _ref_base<MT> ref(MT T2::*const mptr) const
{
return{ VM_CAST(m_addr) + get_offset(mptr), vm::addr };
}
// get vm reference to a struct member with array subscription
template<typename MT, typename T2, typename ET = std::remove_extent_t<MT>, typename = if_comparable_t<T, T2>> _ref_base<ET> ref(MT T2::*const mptr, u32 index) const
{
return{ VM_CAST(m_addr) + get_offset(mptr) + sizeof32(ET) * index, vm::addr };
}
// get vm reference
_ref_base<T, u32> ref() const
{
return{ VM_CAST(m_addr), vm::addr };
}
/*[[deprecated("Use constructor instead")]]*/ void set(addr_type value)
{
m_addr = value;
}
/*[[deprecated("Use constructor instead")]]*/ static _ptr_base make(addr_type addr)
{
return{ addr, vm::addr };
}
T* get_ptr() const
{
return static_cast<T*>(vm::base(VM_CAST(m_addr)));
}
T* get_ptr_priv() const
{
return static_cast<T*>(vm::base_priv(VM_CAST(m_addr)));
}
T* operator ->() const
{
static_assert(!std::is_void<T>::value, "vm::_ptr_base<> error: operator-> is not available for void pointers");
return get_ptr();
}
std::add_lvalue_reference_t<T> operator [](u32 index) const
{
static_assert(!std::is_void<T>::value, "vm::_ptr_base<> error: operator[] is not available for void pointers");
return *static_cast<T*>(vm::base(VM_CAST(m_addr) + sizeof32(T) * index));
}
// enable only the conversions which are originally possible between pointer types
template<typename T2, typename AT2, typename = std::enable_if_t<std::is_convertible<T*, T2*>::value>> operator _ptr_base<T2, AT2>() const
{
return{ VM_CAST(m_addr), vm::addr };
}
//template<typename T2, typename = std::enable_if_t<std::is_convertible<T*, T2*>::value>> explicit operator T2*() const
//{
// return get_ptr();
//}
explicit operator bool() const
{
return m_addr != 0;
}
// Test address for arbitrary alignment: (addr & (align - 1)) == 0
bool aligned(u32 align) const
{
return (m_addr & (align - 1)) == 0;
}
// Test address alignment using alignof(T)
bool aligned() const
{
static_assert(!std::is_void<T>::value, "vm::_ptr_base<> error: aligned() is not available for void pointers");
return aligned(alignof32(T));
}
// Test address for arbitrary alignment: (addr & (align - 1)) != 0
explicit_bool_t operator %(u32 align) const
{
return !aligned(align);
}
// pointer increment (postfix)
_ptr_base operator ++(int)
{
static_assert(!std::is_void<T>::value, "vm::_ptr_base<> error: operator++ is not available for void pointers");
const addr_type result = m_addr;
m_addr = VM_CAST(m_addr) + sizeof32(T);
return{ result, vm::addr };
}
// pointer increment (prefix)
_ptr_base& operator ++()
{
static_assert(!std::is_void<T>::value, "vm::_ptr_base<> error: operator++ is not available for void pointers");
m_addr = VM_CAST(m_addr) + sizeof32(T);
return *this;
}
// pointer decrement (postfix)
_ptr_base operator --(int)
{
static_assert(!std::is_void<T>::value, "vm::_ptr_base<> error: operator-- is not available for void pointers");
const addr_type result = m_addr;
m_addr = VM_CAST(m_addr) - sizeof32(T);
return{ result, vm::addr };
}
// pointer decrement (prefix)
_ptr_base& operator --()
{
static_assert(!std::is_void<T>::value, "vm::_ptr_base<> error: operator-- is not available for void pointers");
m_addr = VM_CAST(m_addr) - sizeof32(T);
return *this;
}
_ptr_base& operator +=(s32 count)
{
static_assert(!std::is_void<T>::value, "vm::_ptr_base<> error: operator+= is not available for void pointers");
m_addr = VM_CAST(m_addr) + count * sizeof32(T);
return *this;
}
_ptr_base& operator -=(s32 count)
{
static_assert(!std::is_void<T>::value, "vm::_ptr_base<> error: operator-= is not available for void pointers");
m_addr = VM_CAST(m_addr) - count * sizeof32(T);
return *this;
}
};
template<typename AT, typename RT, typename... T> class _ptr_base<RT(T...), AT>
{
AT m_addr;
public:
using addr_type = std::remove_cv_t<AT>;
_ptr_base() = default;
constexpr _ptr_base(addr_type addr, const addr_tag_t&)
: m_addr(addr)
{
}
constexpr addr_type addr() const
{
return m_addr;
}
/*[[deprecated("Use constructor instead")]]*/ void set(addr_type value)
{
m_addr = value;
}
/*[[deprecated("Use constructor instead")]]*/ static _ptr_base make(addr_type addr)
{
return{ addr, vm::addr };
}
// defined in CB_FUNC.h, passing context is mandatory
RT operator()(PPUThread& CPU, T... args) const;
// defined in ARMv7Callback.h, passing context is mandatory
RT operator()(ARMv7Thread& context, T... args) const;
// conversion to another function pointer
template<typename AT2> operator _ptr_base<RT(T...), AT2>() const
{
return{ VM_CAST(m_addr), vm::addr };
}
explicit operator bool() const
{
return m_addr != 0;
}
};
template<typename AT, typename RT, typename... T> class _ptr_base<RT(*)(T...), AT>
{
AT m_addr;
static_assert(!sizeof(AT), "vm::_ptr_base<> error: use RT(T...) format for functions instead of RT(*)(T...)");
};
// Native endianness pointer to LE data
template<typename T, typename AT = u32> using ptrl = _ptr_base<to_le_t<T>, AT>;
// Native endianness pointer to BE data
template<typename T, typename AT = u32> using ptrb = _ptr_base<to_be_t<T>, AT>;
// BE pointer to LE data
template<typename T, typename AT = u32> using bptrl = _ptr_base<to_le_t<T>, to_be_t<AT>>;
// BE pointer to BE data
template<typename T, typename AT = u32> using bptrb = _ptr_base<to_be_t<T>, to_be_t<AT>>;
// LE pointer to LE data
template<typename T, typename AT = u32> using lptrl = _ptr_base<to_le_t<T>, to_le_t<AT>>;
// LE pointer to BE data
template<typename T, typename AT = u32> using lptrb = _ptr_base<to_be_t<T>, to_le_t<AT>>;
namespace ps3
{
// default pointer for PS3 HLE functions (Native endianness pointer to BE data)
template<typename T, typename AT = u32> using ptr = ptrb<T, AT>;
// default pointer to pointer for PS3 HLE functions (Native endianness pointer to BE pointer to BE data)
template<typename T, typename AT = u32, typename AT2 = u32> using pptr = ptr<ptr<T, AT2>, AT>;
// default pointer for PS3 HLE structures (BE pointer to BE data)
template<typename T, typename AT = u32> using bptr = bptrb<T, AT>;
// default pointer to pointer for PS3 HLE structures (BE pointer to BE pointer to BE data)
template<typename T, typename AT = u32, typename AT2 = u32> using bpptr = bptr<ptr<T, AT2>, AT>;
// native endianness pointer to const BE data
template<typename T, typename AT = u32> using cptr = ptr<const T, AT>;
// BE pointer to const BE data
template<typename T, typename AT = u32> using bcptr = bptr<const T, AT>;
template<typename T, typename AT = u32> using cpptr = pptr<const T, AT>;
template<typename T, typename AT = u32> using bcpptr = bpptr<const T, AT>;
// perform static_cast (for example, vm::ptr<void> to vm::ptr<char>)
template<typename CT, typename T, typename AT, typename = decltype(static_cast<to_be_t<CT>*>(std::declval<T*>()))> inline _ptr_base<to_be_t<CT>> static_ptr_cast(const _ptr_base<T, AT>& other)
{
return{ VM_CAST(other.addr()), vm::addr };
}
// perform const_cast (for example, vm::cptr<char> to vm::ptr<char>)
template<typename CT, typename T, typename AT, typename = decltype(const_cast<to_be_t<CT>*>(std::declval<T*>()))> inline _ptr_base<to_be_t<CT>> const_ptr_cast(const _ptr_base<T, AT>& other)
{
return{ VM_CAST(other.addr()), vm::addr };
}
}
namespace psv
{
// default pointer for PSV HLE functions (Native endianness pointer to LE data)
template<typename T> using ptr = ptrl<T>;
// default pointer to pointer for PSV HLE functions (Native endianness pointer to LE pointer to LE data)
template<typename T> using pptr = ptr<ptr<T>>;
// default pointer for PSV HLE structures (LE pointer to LE data)
template<typename T> using lptr = lptrl<T>;
// default pointer to pointer for PSV HLE structures (LE pointer to LE pointer to LE data)
template<typename T> using lpptr = lptr<ptr<T>>;
// native endianness pointer to const LE data
template<typename T> using cptr = ptr<const T>;
// LE pointer to const LE data
template<typename T> using lcptr = lptr<const T>;
template<typename T> using cpptr = pptr<const T>;
template<typename T> using lcpptr = lpptr<const T>;
// perform static_cast (for example, vm::ptr<void> to vm::ptr<char>)
template<typename CT, typename T, typename AT, typename = decltype(static_cast<to_le_t<CT>*>(std::declval<T*>()))> inline _ptr_base<to_le_t<CT>> static_ptr_cast(const _ptr_base<T, AT>& other)
{
return{ VM_CAST(other.addr()), vm::addr };
}
// perform const_cast (for example, vm::cptr<char> to vm::ptr<char>)
template<typename CT, typename T, typename AT, typename = decltype(const_cast<to_le_t<CT>*>(std::declval<T*>()))> inline _ptr_base<to_le_t<CT>> const_ptr_cast(const _ptr_base<T, AT>& other)
{
return{ VM_CAST(other.addr()), vm::addr };
}
}
struct null_t
{
template<typename T, typename AT> operator _ptr_base<T, AT>() const
{
return{ 0, vm::addr };
}
};
// vm::null is convertible to any vm::ptr type as null pointer in virtual memory
static null_t null;
// Call wait_op() for specified vm pointer
template<typename T, typename AT, typename F, typename... Args> inline auto wait_op(named_thread_t& thread, const _ptr_base<T, AT>& ptr, F pred, Args&&... args) -> decltype(static_cast<void>(pred(args...)))
{
return wait_op(thread, ptr.addr(), sizeof32(T), std::move(pred), std::forward<Args>(args)...);
}
// Call notify_at() for specified vm pointer
template<typename T, typename AT> inline void notify_at(const vm::_ptr_base<T, AT>& ptr)
{
return notify_at(ptr.addr(), sizeof32(T));
}
}
// unary plus operator for vm::_ptr_base (always available)
template<typename T, typename AT> inline vm::_ptr_base<T> operator +(const vm::_ptr_base<T, AT>& ptr)
{
return ptr;
}
// indirection operator for vm::_ptr_base
template<typename T, typename AT> inline std::enable_if_t<std::is_object<T>::value, T&> operator *(const vm::_ptr_base<T, AT>& ptr)
{
return *ptr.get_ptr();
}
// addition operator for vm::_ptr_base (pointer + integer)
template<typename T, typename AT> inline std::enable_if_t<std::is_object<T>::value, vm::_ptr_base<T>> operator +(const vm::_ptr_base<T, AT>& ptr, u32 count)
{
return{ VM_CAST(ptr.addr()) + count * sizeof32(T), vm::addr };
}
// addition operator for vm::_ptr_base (integer + pointer)
template<typename T, typename AT> inline std::enable_if_t<std::is_object<T>::value, vm::_ptr_base<T>> operator +(u32 count, const vm::_ptr_base<T, AT>& ptr)
{
return{ VM_CAST(ptr.addr()) + count * sizeof32(T), vm::addr };
}
// subtraction operator for vm::_ptr_base (pointer - integer)
template<typename T, typename AT> inline std::enable_if_t<std::is_object<T>::value, vm::_ptr_base<T>> operator -(const vm::_ptr_base<T, AT>& ptr, u32 count)
{
return{ VM_CAST(ptr.addr()) - count * sizeof32(T), vm::addr };
}
// pointer difference operator for vm::_ptr_base
template<typename T1, typename AT1, typename T2, typename AT2> inline std::enable_if_t<
std::is_object<T1>::value &&
std::is_object<T2>::value &&
std::is_same<std::remove_cv_t<T1>, std::remove_cv_t<T2>>::value,
s32> operator -(const vm::_ptr_base<T1, AT1>& left, const vm::_ptr_base<T2, AT2>& right)
{
return static_cast<s32>(VM_CAST(left.addr()) - VM_CAST(right.addr())) / sizeof32(T1);
}
// comparison operator for vm::_ptr_base (pointer1 == pointer2)
template<typename T1, typename AT1, typename T2, typename AT2> inline vm::if_comparable_t<T1, T2, bool> operator ==(const vm::_ptr_base<T1, AT1>& left, const vm::_ptr_base<T2, AT2>& right)
{
return left.addr() == right.addr();
}
template<typename T, typename AT> inline bool operator ==(const vm::null_t&, const vm::_ptr_base<T, AT>& ptr)
{
return !ptr.operator bool();
}
template<typename T, typename AT> inline bool operator ==(const vm::_ptr_base<T, AT>& ptr, const vm::null_t&)
{
return !ptr.operator bool();
}
// comparison operator for vm::_ptr_base (pointer1 != pointer2)
template<typename T1, typename AT1, typename T2, typename AT2> inline vm::if_comparable_t<T1, T2, bool> operator !=(const vm::_ptr_base<T1, AT1>& left, const vm::_ptr_base<T2, AT2>& right)
{
return left.addr() != right.addr();
}
template<typename T, typename AT> inline bool operator !=(const vm::null_t&, const vm::_ptr_base<T, AT>& ptr)
{
return ptr.operator bool();
}
template<typename T, typename AT> inline bool operator !=(const vm::_ptr_base<T, AT>& ptr, const vm::null_t&)
{
return ptr.operator bool();
}
// comparison operator for vm::_ptr_base (pointer1 < pointer2)
template<typename T1, typename AT1, typename T2, typename AT2> inline vm::if_comparable_t<T1, T2, bool> operator <(const vm::_ptr_base<T1, AT1>& left, const vm::_ptr_base<T2, AT2>& right)
{
return left.addr() < right.addr();
}
template<typename T, typename AT> inline bool operator <(const vm::null_t&, const vm::_ptr_base<T, AT>& ptr)
{
return ptr.operator bool();
}
template<typename T, typename AT> inline bool operator <(const vm::_ptr_base<T, AT>&, const vm::null_t&)
{
return false;
}
// comparison operator for vm::_ptr_base (pointer1 <= pointer2)
template<typename T1, typename AT1, typename T2, typename AT2> inline vm::if_comparable_t<T1, T2, bool> operator <=(const vm::_ptr_base<T1, AT1>& left, const vm::_ptr_base<T2, AT2>& right)
{
return left.addr() <= right.addr();
}
template<typename T, typename AT> inline bool operator <=(const vm::null_t&, const vm::_ptr_base<T, AT>&)
{
return true;
}
template<typename T, typename AT> inline bool operator <=(const vm::_ptr_base<T, AT>& ptr, const vm::null_t&)
{
return !ptr.operator bool();
}
// comparison operator for vm::_ptr_base (pointer1 > pointer2)
template<typename T1, typename AT1, typename T2, typename AT2> inline vm::if_comparable_t<T1, T2, bool> operator >(const vm::_ptr_base<T1, AT1>& left, const vm::_ptr_base<T2, AT2>& right)
{
return left.addr() > right.addr();
}
template<typename T, typename AT> inline bool operator >(const vm::null_t&, const vm::_ptr_base<T, AT>&)
{
return false;
}
template<typename T, typename AT> inline bool operator >(const vm::_ptr_base<T, AT>& ptr, const vm::null_t&)
{
return ptr.operator bool();
}
// comparison operator for vm::_ptr_base (pointer1 >= pointer2)
template<typename T1, typename AT1, typename T2, typename AT2> inline vm::if_comparable_t<T1, T2, bool> operator >=(const vm::_ptr_base<T1, AT1>& left, const vm::_ptr_base<T2, AT2>& right)
{
return left.addr() >= right.addr();
}
template<typename T, typename AT> inline bool operator >=(const vm::null_t&, const vm::_ptr_base<T, AT>& ptr)
{
return !ptr.operator bool();
}
template<typename T, typename AT> inline bool operator >=(const vm::_ptr_base<T, AT>&, const vm::null_t&)
{
return true;
}
// external specialization for to_se<> (change AT endianness to BE/LE)
template<typename T, typename AT, bool Se> struct to_se<vm::_ptr_base<T, AT>, Se>
{
using type = vm::_ptr_base<T, typename to_se<AT, Se>::type>;
};
// external specialization for to_ne<> (change AT endianness to native)
template<typename T, typename AT> struct to_ne<vm::_ptr_base<T, AT>>
{
using type = vm::_ptr_base<T, typename to_ne<AT>::type>;
};
namespace fmt
{
// external specialization for fmt::format function
template<typename T, typename AT> struct unveil<vm::_ptr_base<T, AT>, false>
{
using result_type = typename unveil<AT>::result_type;
static inline result_type get_value(const vm::_ptr_base<T, AT>& arg)
{
return unveil<AT>::get_value(arg.addr());
}
};
}
// external specializations for PPU GPR (SC_FUNC.h, CB_FUNC.h)
template<typename T, bool is_enum> struct cast_ppu_gpr;
template<typename T, typename AT> struct cast_ppu_gpr<vm::_ptr_base<T, AT>, false>
{
static inline u64 to_gpr(const vm::_ptr_base<T, AT>& value)
{
return cast_ppu_gpr<AT, std::is_enum<AT>::value>::to_gpr(value.addr());
}
static inline vm::_ptr_base<T, AT> from_gpr(const u64 reg)
{
return{ cast_ppu_gpr<AT, std::is_enum<AT>::value>::from_gpr(reg), vm::addr };
}
};
// external specializations for ARMv7 GPR
template<typename T, bool is_enum> struct cast_armv7_gpr;
template<typename T, typename AT> struct cast_armv7_gpr<vm::_ptr_base<T, AT>, false>
{
static inline u32 to_gpr(const vm::_ptr_base<T, AT>& value)
{
return cast_armv7_gpr<AT, std::is_enum<AT>::value>::to_gpr(value.addr());
}
static inline vm::_ptr_base<T, AT> from_gpr(const u32 reg)
{
return{ cast_armv7_gpr<AT, std::is_enum<AT>::value>::from_gpr(reg), vm::addr };
}
};