mirror of
https://github.com/RPCS3/rpcs3.git
synced 2025-07-12 01:38:37 +12:00
Misc: fix EH frame registration (LLVM, non-Windows). Misc: constant-folding bitcast (cpu_translator). Misc: add syntax for LLVM arrays (cpu_translator). Misc: use function names for proper linkage (SPU LLVM). Changed function search and verification in Giga mode. Basic stack frame layout analysis. Function detection in Giga mode. Basic use of new information in SPU LLVM. Fixed jump table compilation in SPU LLVM. Disable broken optimization in Accurate xfloat mode. Make compiled SPU modules position-independent in SPU LLVM. Optimizations include but not limited to: * Compiling SPU functions as native functions when eligible * Avoiding register context write-out * Aligned stack assumption (CWD alike instruction)
7918 lines
202 KiB
C++
7918 lines
202 KiB
C++
#include "stdafx.h"
|
|
#include "Emu/System.h"
|
|
#include "Emu/IdManager.h"
|
|
#include "Emu/Memory/vm.h"
|
|
#include "Crypto/sha1.h"
|
|
#include "Utilities/StrUtil.h"
|
|
|
|
#include "SPUThread.h"
|
|
#include "SPUAnalyser.h"
|
|
#include "SPUInterpreter.h"
|
|
#include "SPUDisAsm.h"
|
|
#include "SPURecompiler.h"
|
|
#include <algorithm>
|
|
#include <mutex>
|
|
#include <thread>
|
|
|
|
extern atomic_t<const char*> g_progr;
|
|
extern atomic_t<u64> g_progr_ptotal;
|
|
extern atomic_t<u64> g_progr_pdone;
|
|
|
|
const spu_decoder<spu_itype> s_spu_itype;
|
|
const spu_decoder<spu_iname> s_spu_iname;
|
|
const spu_decoder<spu_iflag> s_spu_iflag;
|
|
|
|
extern u64 get_timebased_time();
|
|
|
|
thread_local DECLARE(spu_runtime::workload){};
|
|
|
|
thread_local DECLARE(spu_runtime::addrv){u32{0}};
|
|
|
|
DECLARE(spu_runtime::tr_dispatch) = []
|
|
{
|
|
// Generate a special trampoline to spu_recompiler_base::dispatch with pause instruction
|
|
u8* const trptr = jit_runtime::alloc(16, 16);
|
|
trptr[0] = 0xf3; // pause
|
|
trptr[1] = 0x90;
|
|
trptr[2] = 0xff; // jmp [rip]
|
|
trptr[3] = 0x25;
|
|
std::memset(trptr + 4, 0, 4);
|
|
const u64 target = reinterpret_cast<u64>(&spu_recompiler_base::dispatch);
|
|
std::memcpy(trptr + 8, &target, 8);
|
|
return reinterpret_cast<spu_function_t>(trptr);
|
|
}();
|
|
|
|
DECLARE(spu_runtime::tr_branch) = []
|
|
{
|
|
// Generate a trampoline to spu_recompiler_base::branch
|
|
u8* const trptr = jit_runtime::alloc(16, 16);
|
|
trptr[0] = 0xff; // jmp [rip]
|
|
trptr[1] = 0x25;
|
|
std::memset(trptr + 2, 0, 4);
|
|
const u64 target = reinterpret_cast<u64>(&spu_recompiler_base::branch);
|
|
std::memcpy(trptr + 6, &target, 8);
|
|
return reinterpret_cast<spu_function_t>(trptr);
|
|
}();
|
|
|
|
DECLARE(spu_runtime::g_dispatcher) = []
|
|
{
|
|
const auto ptr = reinterpret_cast<decltype(spu_runtime::g_dispatcher)>(jit_runtime::alloc(0x10000 * sizeof(void*), 8, false));
|
|
|
|
// Initialize lookup table
|
|
for (u32 i = 0; i < 0x10000; i++)
|
|
{
|
|
ptr[i].raw() = &spu_recompiler_base::dispatch;
|
|
}
|
|
|
|
return ptr;
|
|
}();
|
|
|
|
DECLARE(spu_runtime::g_interpreter) = nullptr;
|
|
|
|
spu_cache::spu_cache(const std::string& loc)
|
|
: m_file(loc, fs::read + fs::write + fs::create + fs::append)
|
|
{
|
|
}
|
|
|
|
spu_cache::~spu_cache()
|
|
{
|
|
}
|
|
|
|
std::deque<std::vector<u32>> spu_cache::get()
|
|
{
|
|
std::deque<std::vector<u32>> result;
|
|
|
|
if (!m_file)
|
|
{
|
|
return result;
|
|
}
|
|
|
|
m_file.seek(0);
|
|
|
|
// TODO: signal truncated or otherwise broken file
|
|
while (true)
|
|
{
|
|
be_t<u32> size;
|
|
be_t<u32> addr;
|
|
std::vector<u32> func;
|
|
|
|
if (!m_file.read(size) || !m_file.read(addr))
|
|
{
|
|
break;
|
|
}
|
|
|
|
func.resize(size + 1);
|
|
func[0] = addr;
|
|
|
|
if (m_file.read(func.data() + 1, func.size() * 4 - 4) != func.size() * 4 - 4)
|
|
{
|
|
break;
|
|
}
|
|
|
|
result.emplace_front(std::move(func));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void spu_cache::add(const std::vector<u32>& func)
|
|
{
|
|
if (!m_file)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Allocate buffer
|
|
const auto buf = std::make_unique<be_t<u32>[]>(func.size() + 1);
|
|
|
|
buf[0] = ::size32(func) - 1;
|
|
buf[1] = func[0];
|
|
std::memcpy(buf.get() + 2, func.data() + 1, func.size() * 4 - 4);
|
|
|
|
// Append data
|
|
m_file.write(buf.get(), func.size() * 4 + 4);
|
|
}
|
|
|
|
void spu_cache::initialize()
|
|
{
|
|
spu_runtime::g_interpreter = nullptr;
|
|
|
|
const std::string ppu_cache = Emu.PPUCache();
|
|
|
|
if (ppu_cache.empty())
|
|
{
|
|
return;
|
|
}
|
|
|
|
// SPU cache file (version + block size type)
|
|
const std::string loc = ppu_cache + "spu-" + fmt::to_lower(g_cfg.core.spu_block_size.to_string()) + "-v1-tane.dat";
|
|
|
|
auto cache = std::make_shared<spu_cache>(loc);
|
|
|
|
if (!*cache)
|
|
{
|
|
LOG_ERROR(SPU, "Failed to initialize SPU cache at: %s", loc);
|
|
return;
|
|
}
|
|
|
|
// Read cache
|
|
auto func_list = cache->get();
|
|
atomic_t<std::size_t> fnext{};
|
|
atomic_t<u8> fail_flag{0};
|
|
|
|
// Initialize compiler instances for parallel compilation
|
|
u32 max_threads = static_cast<u32>(g_cfg.core.llvm_threads);
|
|
u32 thread_count = max_threads > 0 ? std::min(max_threads, std::thread::hardware_concurrency()) : std::thread::hardware_concurrency();
|
|
std::vector<std::unique_ptr<spu_recompiler_base>> compilers{thread_count};
|
|
|
|
if (g_cfg.core.spu_decoder == spu_decoder_type::fast)
|
|
{
|
|
if (auto compiler = spu_recompiler_base::make_llvm_recompiler(11))
|
|
{
|
|
compiler->init();
|
|
|
|
if (compiler->compile(0, {}) && spu_runtime::g_interpreter)
|
|
{
|
|
LOG_SUCCESS(SPU, "SPU Runtime: built interpreter.");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto& compiler : compilers)
|
|
{
|
|
if (g_cfg.core.spu_decoder == spu_decoder_type::asmjit)
|
|
{
|
|
compiler = spu_recompiler_base::make_asmjit_recompiler();
|
|
}
|
|
else if (g_cfg.core.spu_decoder == spu_decoder_type::llvm)
|
|
{
|
|
compiler = spu_recompiler_base::make_llvm_recompiler();
|
|
}
|
|
else
|
|
{
|
|
compilers.clear();
|
|
break;
|
|
}
|
|
|
|
compiler->init();
|
|
}
|
|
|
|
if (compilers.size() && !func_list.empty())
|
|
{
|
|
// Initialize progress dialog (wait for previous progress done)
|
|
while (g_progr_ptotal)
|
|
{
|
|
std::this_thread::sleep_for(5ms);
|
|
}
|
|
|
|
g_progr = "Building SPU cache...";
|
|
g_progr_ptotal += func_list.size();
|
|
}
|
|
|
|
std::deque<named_thread<std::function<void()>>> thread_queue;
|
|
|
|
for (std::size_t i = 0; i < compilers.size(); i++) thread_queue.emplace_back("Worker " + std::to_string(i), [&, compiler = compilers[i].get()]()
|
|
{
|
|
// Register SPU runtime user
|
|
spu_runtime::passive_lock _passive_lock(compiler->get_runtime());
|
|
|
|
// Fake LS
|
|
std::vector<be_t<u32>> ls(0x10000);
|
|
|
|
// Build functions
|
|
for (std::size_t func_i = fnext++; func_i < func_list.size(); func_i = fnext++)
|
|
{
|
|
std::vector<u32>& func = func_list[func_i];
|
|
|
|
if (Emu.IsStopped() || fail_flag)
|
|
{
|
|
g_progr_pdone++;
|
|
continue;
|
|
}
|
|
|
|
// Get data start
|
|
const u32 start = func[0] * (g_cfg.core.spu_block_size != spu_block_size_type::giga);
|
|
const u32 size0 = ::size32(func);
|
|
|
|
// Initialize LS with function data only
|
|
for (u32 i = 1, pos = start; i < size0; i++, pos += 4)
|
|
{
|
|
ls[pos / 4] = se_storage<u32>::swap(func[i]);
|
|
}
|
|
|
|
// Call analyser
|
|
const std::vector<u32>& func2 = compiler->analyse(ls.data(), func[0]);
|
|
|
|
if (func2.size() != size0)
|
|
{
|
|
LOG_ERROR(SPU, "[0x%05x] SPU Analyser failed, %u vs %u", func2[0], func2.size() - 1, size0 - 1);
|
|
}
|
|
|
|
if (!compiler->compile(0, func))
|
|
{
|
|
// Likely, out of JIT memory. Signal to prevent further building.
|
|
fail_flag |= 1;
|
|
}
|
|
|
|
// Clear fake LS
|
|
for (u32 i = 1, pos = start; i < func2.size(); i++, pos += 4)
|
|
{
|
|
if (se_storage<u32>::swap(func2[i]) != ls[pos / 4])
|
|
{
|
|
LOG_ERROR(SPU, "[0x%05x] SPU Analyser failed at 0x%x", func2[0], pos);
|
|
}
|
|
|
|
ls[pos / 4] = 0;
|
|
}
|
|
|
|
if (func2.size() != size0)
|
|
{
|
|
std::memset(ls.data(), 0, 0x40000);
|
|
}
|
|
|
|
g_progr_pdone++;
|
|
}
|
|
});
|
|
|
|
// Join all threads
|
|
while (!thread_queue.empty())
|
|
{
|
|
thread_queue.pop_front();
|
|
}
|
|
|
|
if (Emu.IsStopped())
|
|
{
|
|
LOG_ERROR(SPU, "SPU Runtime: Cache building aborted.");
|
|
return;
|
|
}
|
|
|
|
if (fail_flag)
|
|
{
|
|
LOG_ERROR(SPU, "SPU Runtime: Cache building failed (too much data). SPU Cache will be disabled.");
|
|
spu_runtime::passive_lock _passive_lock(compilers[0]->get_runtime());
|
|
compilers[0]->get_runtime().reset(0);
|
|
return;
|
|
}
|
|
|
|
if (compilers.size() && !func_list.empty())
|
|
{
|
|
LOG_SUCCESS(SPU, "SPU Runtime: Built %u functions.", func_list.size());
|
|
}
|
|
|
|
// Register cache instance
|
|
fxm::import<spu_cache>([&]() -> std::shared_ptr<spu_cache>&&
|
|
{
|
|
return std::move(cache);
|
|
});
|
|
}
|
|
|
|
bool spu_runtime::func_compare::operator()(const std::vector<u32>& lhs, const std::vector<u32>& rhs) const
|
|
{
|
|
if (lhs.empty())
|
|
return !rhs.empty();
|
|
else if (rhs.empty())
|
|
return false;
|
|
|
|
const u32 lhs_addr = lhs[0];
|
|
const u32 rhs_addr = rhs[0];
|
|
|
|
if (lhs_addr < rhs_addr)
|
|
return true;
|
|
else if (lhs_addr > rhs_addr)
|
|
return false;
|
|
|
|
// Select range for comparison
|
|
std::basic_string_view<u32> lhs_data(lhs.data() + 1, lhs.size() - 1);
|
|
std::basic_string_view<u32> rhs_data(rhs.data() + 1, rhs.size() - 1);
|
|
|
|
if (lhs_data.empty())
|
|
return !rhs_data.empty();
|
|
else if (rhs_data.empty())
|
|
return false;
|
|
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::giga)
|
|
{
|
|
// In Giga mode, compare instructions starting from the entry point first
|
|
lhs_data.remove_prefix(lhs_addr / 4);
|
|
rhs_data.remove_prefix(rhs_addr / 4);
|
|
const auto cmp0 = lhs_data.compare(rhs_data);
|
|
|
|
if (cmp0 < 0)
|
|
return true;
|
|
else if (cmp0 > 0)
|
|
return false;
|
|
|
|
// Compare from address 0 to the point before the entry point (undesirable)
|
|
lhs_data = {lhs.data() + 1, lhs_addr / 4};
|
|
rhs_data = {rhs.data() + 1, rhs_addr / 4};
|
|
return lhs_data < rhs_data;
|
|
}
|
|
else
|
|
{
|
|
return lhs_data < rhs_data;
|
|
}
|
|
}
|
|
|
|
spu_runtime::spu_runtime()
|
|
{
|
|
// Initialize "empty" block
|
|
m_map[std::vector<u32>()] = &spu_recompiler_base::dispatch;
|
|
|
|
// Clear LLVM output
|
|
m_cache_path = Emu.PPUCache();
|
|
fs::create_dir(m_cache_path + "llvm/");
|
|
fs::remove_all(m_cache_path + "llvm/", false);
|
|
|
|
if (g_cfg.core.spu_debug)
|
|
{
|
|
fs::file(m_cache_path + "spu.log", fs::rewrite);
|
|
}
|
|
|
|
workload.reserve(250);
|
|
|
|
LOG_SUCCESS(SPU, "SPU Recompiler Runtime initialized...");
|
|
}
|
|
|
|
bool spu_runtime::add(u64 last_reset_count, void* _where, spu_function_t compiled)
|
|
{
|
|
writer_lock lock(*this);
|
|
|
|
// Check reset count (makes where invalid)
|
|
if (!_where || last_reset_count != m_reset_count)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Use opaque pointer
|
|
auto& where = *static_cast<decltype(m_map)::value_type*>(_where);
|
|
|
|
// Function info
|
|
const std::vector<u32>& func = where.first;
|
|
|
|
//
|
|
const u32 start = func[0] * (g_cfg.core.spu_block_size != spu_block_size_type::giga);
|
|
|
|
// Set pointer to the compiled function
|
|
where.second = compiled;
|
|
|
|
// Generate a dispatcher (übertrampoline)
|
|
addrv[0] = func[0];
|
|
const auto beg = m_map.lower_bound(addrv);
|
|
addrv[0] += 4;
|
|
const auto _end = m_map.lower_bound(addrv);
|
|
const u32 size0 = std::distance(beg, _end);
|
|
|
|
if (size0 == 1)
|
|
{
|
|
g_dispatcher[func[0] / 4] = compiled;
|
|
}
|
|
else
|
|
{
|
|
// Allocate some writable executable memory
|
|
u8* const wxptr = jit_runtime::alloc(size0 * 20, 16);
|
|
|
|
if (!wxptr)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Raw assembly pointer
|
|
u8* raw = wxptr;
|
|
|
|
// Write jump instruction with rel32 immediate
|
|
auto make_jump = [&](u8 op, auto target)
|
|
{
|
|
verify("Asm overflow" HERE), raw + 6 <= wxptr + size0 * 20;
|
|
|
|
// Fallback to dispatch if no target
|
|
const u64 taddr = target ? reinterpret_cast<u64>(target) : reinterpret_cast<u64>(tr_dispatch);
|
|
|
|
// Compute the distance
|
|
const s64 rel = taddr - reinterpret_cast<u64>(raw) - (op != 0xe9 ? 6 : 5);
|
|
|
|
verify(HERE), rel >= INT32_MIN, rel <= INT32_MAX;
|
|
|
|
if (op != 0xe9)
|
|
{
|
|
// First jcc byte
|
|
*raw++ = 0x0f;
|
|
verify(HERE), (op >> 4) == 0x8;
|
|
}
|
|
|
|
*raw++ = op;
|
|
|
|
const s32 r32 = static_cast<s32>(rel);
|
|
|
|
std::memcpy(raw, &r32, 4);
|
|
raw += 4;
|
|
};
|
|
|
|
workload.clear();
|
|
workload.reserve(size0);
|
|
workload.emplace_back();
|
|
workload.back().size = size0;
|
|
workload.back().level = 1;
|
|
workload.back().from = 0;
|
|
workload.back().rel32 = 0;
|
|
workload.back().beg = beg;
|
|
workload.back().end = _end;
|
|
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::giga)
|
|
{
|
|
// In Giga mode, start comparing instructions from the actual entry point
|
|
verify("spu_runtime::work::level overflow" HERE), workload.back().level += func[0] / 4;
|
|
}
|
|
|
|
for (std::size_t i = 0; i < workload.size(); i++)
|
|
{
|
|
// Get copy of the workload info
|
|
auto w = workload[i];
|
|
|
|
// Split range in two parts
|
|
auto it = w.beg;
|
|
auto it2 = w.beg;
|
|
u32 size1 = w.size / 2;
|
|
u32 size2 = w.size - size1;
|
|
std::advance(it2, w.size / 2);
|
|
|
|
while (verify("spu_runtime::work::level overflow" HERE, w.level))
|
|
{
|
|
it = it2;
|
|
size1 = w.size - size2;
|
|
|
|
if (w.level >= w.beg->first.size())
|
|
{
|
|
// Cannot split: smallest function is a prefix of bigger ones (TODO)
|
|
break;
|
|
}
|
|
|
|
const u32 x1 = w.beg->first.at(w.level);
|
|
|
|
if (!x1)
|
|
{
|
|
// Cannot split: some functions contain holes at this level
|
|
w.level++;
|
|
continue;
|
|
}
|
|
|
|
// Adjust ranges (forward)
|
|
while (it != w.end && x1 == it->first.at(w.level))
|
|
{
|
|
it++;
|
|
size1++;
|
|
}
|
|
|
|
if (it == w.end)
|
|
{
|
|
// Cannot split: words are identical within the range at this level
|
|
w.level++;
|
|
}
|
|
else
|
|
{
|
|
size2 = w.size - size1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (w.rel32)
|
|
{
|
|
// Patch rel32 linking it to the current location if necessary
|
|
const s32 r32 = ::narrow<s32>(raw - w.rel32, HERE);
|
|
std::memcpy(w.rel32 - 4, &r32, 4);
|
|
}
|
|
|
|
if (w.level >= w.beg->first.size())
|
|
{
|
|
// If functions cannot be compared, assume smallest function
|
|
LOG_ERROR(SPU, "Trampoline simplified at 0x%x (level=%u)", func[0], w.level);
|
|
make_jump(0xe9, w.beg->second); // jmp rel32
|
|
continue;
|
|
}
|
|
|
|
// Value for comparison
|
|
const u32 x = it->first.at(w.level);
|
|
|
|
// Adjust ranges (backward)
|
|
while (true)
|
|
{
|
|
it--;
|
|
|
|
if (it->first.at(w.level) != x)
|
|
{
|
|
it++;
|
|
break;
|
|
}
|
|
|
|
verify(HERE), it != w.beg;
|
|
size1--;
|
|
size2++;
|
|
}
|
|
|
|
// Emit 32-bit comparison: cmp [ls+addr], imm32
|
|
verify("Asm overflow" HERE), raw + 11 <= wxptr + size0 * 20;
|
|
|
|
if (w.from != w.level)
|
|
{
|
|
// If necessary (level has advanced), emit load: mov eax, [ls + addr]
|
|
#ifdef _WIN32
|
|
*raw++ = 0x8b;
|
|
*raw++ = 0x82; // ls = rdx
|
|
#else
|
|
*raw++ = 0x8b;
|
|
*raw++ = 0x86; // ls = rsi
|
|
#endif
|
|
const u32 cmp_lsa = start + (w.level - 1) * 4;
|
|
std::memcpy(raw, &cmp_lsa, 4);
|
|
raw += 4;
|
|
}
|
|
|
|
// Emit comparison: cmp eax, imm32
|
|
*raw++ = 0x3d;
|
|
std::memcpy(raw, &x, 4);
|
|
raw += 4;
|
|
|
|
// Low subrange target
|
|
if (size1 == 1)
|
|
{
|
|
make_jump(0x82, w.beg->second); // jb rel32
|
|
}
|
|
else
|
|
{
|
|
make_jump(0x82, raw); // jb rel32 (stub)
|
|
auto& to = workload.emplace_back(w);
|
|
to.end = it;
|
|
to.size = size1;
|
|
to.rel32 = raw;
|
|
to.from = w.level;
|
|
}
|
|
|
|
// Second subrange target
|
|
if (size2 == 1)
|
|
{
|
|
make_jump(0xe9, it->second); // jmp rel32
|
|
}
|
|
else
|
|
{
|
|
it2 = it;
|
|
|
|
// Select additional midrange for equality comparison
|
|
while (it2 != w.end && it2->first.at(w.level) == x)
|
|
{
|
|
size2--;
|
|
it2++;
|
|
}
|
|
|
|
if (it2 != w.end)
|
|
{
|
|
// High subrange target
|
|
if (size2 == 1)
|
|
{
|
|
make_jump(0x87, it2->second); // ja rel32
|
|
}
|
|
else
|
|
{
|
|
make_jump(0x87, raw); // ja rel32 (stub)
|
|
auto& to = workload.emplace_back(w);
|
|
to.beg = it2;
|
|
to.size = size2;
|
|
to.rel32 = raw;
|
|
to.from = w.level;
|
|
}
|
|
|
|
const u32 size3 = w.size - size1 - size2;
|
|
|
|
if (size3 == 1)
|
|
{
|
|
make_jump(0xe9, it->second); // jmp rel32
|
|
}
|
|
else
|
|
{
|
|
make_jump(0xe9, raw); // jmp rel32 (stub)
|
|
auto& to = workload.emplace_back(w);
|
|
to.beg = it;
|
|
to.end = it2;
|
|
to.size = size3;
|
|
to.rel32 = raw;
|
|
to.from = w.level;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
make_jump(0xe9, raw); // jmp rel32 (stub)
|
|
auto& to = workload.emplace_back(w);
|
|
to.beg = it;
|
|
to.size = w.size - size1;
|
|
to.rel32 = raw;
|
|
to.from = w.level;
|
|
}
|
|
}
|
|
}
|
|
|
|
workload.clear();
|
|
g_dispatcher[func[0] / 4] = reinterpret_cast<spu_function_t>(reinterpret_cast<u64>(wxptr));
|
|
}
|
|
|
|
// Notify in lock destructor
|
|
lock.notify = true;
|
|
return true;
|
|
}
|
|
|
|
void* spu_runtime::find(u64 last_reset_count, const std::vector<u32>& func)
|
|
{
|
|
writer_lock lock(*this);
|
|
|
|
// Check reset count
|
|
if (last_reset_count != m_reset_count)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
// Try to find existing function, register new one if necessary
|
|
const auto result = m_map.try_emplace(func, nullptr);
|
|
|
|
// Pointer to the value in the map (pair)
|
|
const auto fn_location = &*result.first;
|
|
|
|
if (fn_location->second)
|
|
{
|
|
// Already compiled
|
|
return g_dispatcher;
|
|
}
|
|
else if (!result.second)
|
|
{
|
|
// Wait if already in progress
|
|
while (!fn_location->second)
|
|
{
|
|
m_cond.wait(m_mutex);
|
|
|
|
// If reset count changed, fn_location is invalidated; also requires return
|
|
if (last_reset_count != m_reset_count)
|
|
{
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return g_dispatcher;
|
|
}
|
|
|
|
// Return location to compile and use in add()
|
|
return fn_location;
|
|
}
|
|
|
|
spu_function_t spu_runtime::find(const se_t<u32, false>* ls, u32 addr) const
|
|
{
|
|
const u64 reset_count = m_reset_count;
|
|
|
|
reader_lock lock(*this);
|
|
|
|
if (reset_count != m_reset_count)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
const u32 start = addr * (g_cfg.core.spu_block_size != spu_block_size_type::giga);
|
|
|
|
addrv[0] = addr;
|
|
const auto beg = m_map.lower_bound(addrv);
|
|
addrv[0] += 4;
|
|
const auto _end = m_map.lower_bound(addrv);
|
|
|
|
for (auto it = beg; it != _end; ++it)
|
|
{
|
|
bool bad = false;
|
|
|
|
for (u32 i = 1; i < it->first.size(); ++i)
|
|
{
|
|
const u32 x = it->first[i];
|
|
const u32 y = ls[start / 4 + i - 1];
|
|
|
|
if (x && x != y)
|
|
{
|
|
bad = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!bad)
|
|
{
|
|
return it->second;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
spu_function_t spu_runtime::make_branch_patchpoint(u32 target) const
|
|
{
|
|
u8* const raw = jit_runtime::alloc(16, 16);
|
|
|
|
if (!raw)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
// Save address of the following jmp
|
|
#ifdef _WIN32
|
|
raw[0] = 0x4c; // lea r8, [rip+1]
|
|
raw[1] = 0x8d;
|
|
raw[2] = 0x05;
|
|
#else
|
|
raw[0] = 0x48; // lea rdx, [rip+1]
|
|
raw[1] = 0x8d;
|
|
raw[2] = 0x15;
|
|
#endif
|
|
raw[3] = 0x01;
|
|
raw[4] = 0x00;
|
|
raw[5] = 0x00;
|
|
raw[6] = 0x00;
|
|
raw[7] = 0x90; // nop
|
|
|
|
// Jump to spu_recompiler_base::branch
|
|
raw[8] = 0xe9;
|
|
// Compute the distance
|
|
const s64 rel = reinterpret_cast<u64>(tr_branch) - reinterpret_cast<u64>(raw + 8) - 5;
|
|
std::memcpy(raw + 9, &rel, 4);
|
|
raw[13] = 0xcc;
|
|
|
|
// Write compressed target address
|
|
raw[14] = target >> 2;
|
|
raw[15] = target >> 10;
|
|
|
|
return reinterpret_cast<spu_function_t>(raw);
|
|
}
|
|
|
|
u64 spu_runtime::reset(std::size_t last_reset_count)
|
|
{
|
|
writer_lock lock(*this);
|
|
|
|
if (last_reset_count != m_reset_count || !m_reset_count.compare_and_swap_test(last_reset_count, last_reset_count + 1))
|
|
{
|
|
// Probably already reset
|
|
return m_reset_count;
|
|
}
|
|
|
|
// Notify SPU threads
|
|
idm::select<named_thread<spu_thread>>([](u32, cpu_thread& cpu)
|
|
{
|
|
if (!cpu.state.test_and_set(cpu_flag::jit_return))
|
|
{
|
|
cpu.notify();
|
|
}
|
|
});
|
|
|
|
// Reset function map (may take some time)
|
|
m_map.clear();
|
|
|
|
// Wait for threads to catch on jit_return flag
|
|
while (m_passive_locks)
|
|
{
|
|
busy_wait();
|
|
}
|
|
|
|
// Reinitialize (TODO)
|
|
jit_runtime::finalize();
|
|
jit_runtime::initialize();
|
|
return ++m_reset_count;
|
|
}
|
|
|
|
void spu_runtime::handle_return(spu_thread* _spu)
|
|
{
|
|
// Wait until the runtime becomes available
|
|
writer_lock lock(*this);
|
|
|
|
// Reset stack mirror
|
|
std::memset(_spu->stack_mirror.data(), 0xff, sizeof(spu_thread::stack_mirror));
|
|
|
|
// Reset the flag
|
|
_spu->state -= cpu_flag::jit_return;
|
|
}
|
|
|
|
spu_recompiler_base::spu_recompiler_base()
|
|
{
|
|
result.reserve(8192);
|
|
}
|
|
|
|
spu_recompiler_base::~spu_recompiler_base()
|
|
{
|
|
}
|
|
|
|
void spu_recompiler_base::make_function(const std::vector<u32>& data)
|
|
{
|
|
for (u64 reset_count = m_spurt->get_reset_count();;)
|
|
{
|
|
if (LIKELY(compile(reset_count, data)))
|
|
{
|
|
break;
|
|
}
|
|
|
|
reset_count = m_spurt->reset(reset_count);
|
|
}
|
|
}
|
|
|
|
void spu_recompiler_base::dispatch(spu_thread& spu, void*, u8* rip)
|
|
{
|
|
// If code verification failed from a patched patchpoint, clear it with a dispatcher jump
|
|
if (rip)
|
|
{
|
|
const u32 target = *(u16*)(rip + 6) * 4;
|
|
const s64 rel = reinterpret_cast<u64>(spu_runtime::g_dispatcher) + 2 * target - reinterpret_cast<u64>(rip - 8) - 6;
|
|
|
|
union
|
|
{
|
|
u8 bytes[8];
|
|
u64 result;
|
|
};
|
|
|
|
bytes[0] = 0xff; // jmp [rip + 0x...]
|
|
bytes[1] = 0x25;
|
|
std::memcpy(bytes + 2, &rel, 4);
|
|
bytes[6] = 0x90;
|
|
bytes[7] = 0x90;
|
|
|
|
atomic_storage<u64>::release(*reinterpret_cast<u64*>(rip - 8), result);
|
|
}
|
|
|
|
// Second attempt (recover from the recursion after repeated unsuccessful trampoline call)
|
|
if (spu.block_counter != spu.block_recover && &dispatch != spu_runtime::g_dispatcher[spu.pc / 4])
|
|
{
|
|
spu.block_recover = spu.block_counter;
|
|
return;
|
|
}
|
|
|
|
// Compile
|
|
spu.jit->make_function(spu.jit->analyse(spu._ptr<u32>(0), spu.pc));
|
|
|
|
// Diagnostic
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::giga)
|
|
{
|
|
const v128 _info = spu.stack_mirror[(spu.gpr[1]._u32[3] & 0x3fff0) >> 4];
|
|
|
|
if (_info._u64[0] + 1)
|
|
{
|
|
LOG_TRACE(SPU, "Called from 0x%x", _info._u32[2] - 4);
|
|
}
|
|
}
|
|
}
|
|
|
|
void spu_recompiler_base::branch(spu_thread& spu, void*, u8* rip)
|
|
{
|
|
// Find function
|
|
const auto func = spu.jit->get_runtime().find(spu._ptr<se_t<u32, false>>(0), *(u16*)(rip + 6) * 4);
|
|
|
|
if (!func)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Overwrite jump to this function with jump to the compiled function
|
|
const s64 rel = reinterpret_cast<u64>(func) - reinterpret_cast<u64>(rip) - 5;
|
|
|
|
union
|
|
{
|
|
u8 bytes[8];
|
|
u64 result;
|
|
};
|
|
|
|
if (rel >= INT32_MIN && rel <= INT32_MAX)
|
|
{
|
|
const s64 rel8 = (rel + 5) - 2;
|
|
|
|
if (rel8 >= INT8_MIN && rel8 <= INT8_MAX)
|
|
{
|
|
bytes[0] = 0xeb; // jmp rel8
|
|
bytes[1] = static_cast<s8>(rel8);
|
|
std::memset(bytes + 2, 0xcc, 4);
|
|
}
|
|
else
|
|
{
|
|
bytes[0] = 0xe9; // jmp rel32
|
|
std::memcpy(bytes + 1, &rel, 4);
|
|
bytes[5] = 0xcc;
|
|
}
|
|
|
|
// Preserve target address
|
|
bytes[6] = rip[6];
|
|
bytes[7] = rip[7];
|
|
}
|
|
else
|
|
{
|
|
fmt::throw_exception("Impossible far jump: %p -> %p", rip, func);
|
|
}
|
|
|
|
atomic_storage<u64>::release(*reinterpret_cast<u64*>(rip), result);
|
|
}
|
|
|
|
const std::vector<u32>& spu_recompiler_base::analyse(const be_t<u32>* ls, u32 entry_point)
|
|
{
|
|
// Result: addr + raw instruction data
|
|
result.clear();
|
|
result.push_back(entry_point);
|
|
|
|
// Initialize block entries
|
|
m_block_info.reset();
|
|
m_block_info.set(entry_point / 4);
|
|
m_entry_info.reset();
|
|
m_entry_info.set(entry_point / 4);
|
|
m_ret_info.reset();
|
|
|
|
// Simple block entry workload list
|
|
workload.clear();
|
|
workload.push_back(entry_point);
|
|
|
|
std::memset(m_regmod.data(), 0xff, sizeof(m_regmod));
|
|
std::memset(m_use_ra.data(), 0xff, sizeof(m_use_ra));
|
|
std::memset(m_use_rb.data(), 0xff, sizeof(m_use_rb));
|
|
std::memset(m_use_rc.data(), 0xff, sizeof(m_use_rc));
|
|
m_targets.clear();
|
|
m_preds.clear();
|
|
m_preds[entry_point];
|
|
m_bbs.clear();
|
|
m_chunks.clear();
|
|
m_funcs.clear();
|
|
|
|
// Value flags (TODO)
|
|
enum class vf : u32
|
|
{
|
|
is_const,
|
|
is_mask,
|
|
|
|
__bitset_enum_max
|
|
};
|
|
|
|
// Weak constant propagation context (for guessing branch targets)
|
|
std::array<bs_t<vf>, 128> vflags{};
|
|
|
|
// Associated constant values for 32-bit preferred slot
|
|
std::array<u32, 128> values;
|
|
|
|
// SYNC instruction found
|
|
bool sync = false;
|
|
|
|
u32 hbr_loc = 0;
|
|
u32 hbr_tg = -1;
|
|
|
|
// Result bounds
|
|
u32 lsa = entry_point;
|
|
u32 limit = 0x40000;
|
|
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::giga)
|
|
{
|
|
// In Giga mode, all data starts from the address 0
|
|
lsa = 0;
|
|
}
|
|
|
|
for (u32 wi = 0, wa = workload[0]; wi < workload.size();)
|
|
{
|
|
const auto next_block = [&]
|
|
{
|
|
// Reset value information
|
|
vflags.fill({});
|
|
sync = false;
|
|
hbr_loc = 0;
|
|
hbr_tg = -1;
|
|
wi++;
|
|
|
|
if (wi < workload.size())
|
|
{
|
|
wa = workload[wi];
|
|
}
|
|
};
|
|
|
|
const u32 pos = wa;
|
|
|
|
const auto add_block = [&](u32 target)
|
|
{
|
|
// Validate new target (TODO)
|
|
if (target >= lsa && target < limit)
|
|
{
|
|
// Check for redundancy
|
|
if (!m_block_info[target / 4])
|
|
{
|
|
m_block_info[target / 4] = true;
|
|
workload.push_back(target);
|
|
}
|
|
|
|
// Add predecessor
|
|
if (m_preds[target].find_first_of(pos) + 1 == 0)
|
|
{
|
|
m_preds[target].push_back(pos);
|
|
}
|
|
}
|
|
};
|
|
|
|
if (pos < lsa || pos >= limit)
|
|
{
|
|
// Don't analyse if already beyond the limit
|
|
next_block();
|
|
continue;
|
|
}
|
|
|
|
const u32 data = ls[pos / 4];
|
|
const auto op = spu_opcode_t{data};
|
|
|
|
wa += 4;
|
|
|
|
m_targets.erase(pos);
|
|
|
|
// Fill register access info
|
|
if (auto iflags = s_spu_iflag.decode(data))
|
|
{
|
|
if (iflags & spu_iflag::use_ra)
|
|
m_use_ra[pos / 4] = op.ra;
|
|
if (iflags & spu_iflag::use_rb)
|
|
m_use_rb[pos / 4] = op.rb;
|
|
if (iflags & spu_iflag::use_rc)
|
|
m_use_rc[pos / 4] = op.rc;
|
|
}
|
|
|
|
// Analyse instruction
|
|
switch (const auto type = s_spu_itype.decode(data))
|
|
{
|
|
case spu_itype::UNK:
|
|
case spu_itype::DFCEQ:
|
|
case spu_itype::DFCMEQ:
|
|
case spu_itype::DFCGT:
|
|
case spu_itype::DFCMGT:
|
|
case spu_itype::DFTSV:
|
|
{
|
|
// Stop before invalid instructions (TODO)
|
|
next_block();
|
|
continue;
|
|
}
|
|
|
|
case spu_itype::SYNC:
|
|
case spu_itype::DSYNC:
|
|
case spu_itype::STOP:
|
|
case spu_itype::STOPD:
|
|
{
|
|
if (data == 0)
|
|
{
|
|
// Stop before null data
|
|
next_block();
|
|
continue;
|
|
}
|
|
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::safe)
|
|
{
|
|
// Stop on special instructions (TODO)
|
|
m_targets[pos];
|
|
next_block();
|
|
break;
|
|
}
|
|
|
|
if (type == spu_itype::SYNC)
|
|
{
|
|
// Remember
|
|
sync = true;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case spu_itype::IRET:
|
|
{
|
|
if (op.d && op.e)
|
|
{
|
|
LOG_ERROR(SPU, "[0x%x] Invalid interrupt flags (DE)", pos);
|
|
}
|
|
|
|
m_targets[pos];
|
|
next_block();
|
|
break;
|
|
}
|
|
|
|
case spu_itype::BI:
|
|
case spu_itype::BISL:
|
|
case spu_itype::BISLED:
|
|
case spu_itype::BIZ:
|
|
case spu_itype::BINZ:
|
|
case spu_itype::BIHZ:
|
|
case spu_itype::BIHNZ:
|
|
{
|
|
if (op.d && op.e)
|
|
{
|
|
LOG_ERROR(SPU, "[0x%x] Invalid interrupt flags (DE)", pos);
|
|
}
|
|
|
|
const auto af = vflags[op.ra];
|
|
const auto av = values[op.ra];
|
|
const bool sl = type == spu_itype::BISL || type == spu_itype::BISLED;
|
|
|
|
if (sl)
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = +vf::is_const;
|
|
values[op.rt] = pos + 4;
|
|
}
|
|
|
|
if (af & vf::is_const)
|
|
{
|
|
const u32 target = spu_branch_target(av);
|
|
|
|
if (target == pos + 4)
|
|
{
|
|
LOG_WARNING(SPU, "[0x%x] At 0x%x: indirect branch to next%s", result[0], pos, op.d ? " (D)" : op.e ? " (E)" : "");
|
|
}
|
|
else
|
|
{
|
|
LOG_WARNING(SPU, "[0x%x] At 0x%x: indirect branch to 0x%x", result[0], pos, target);
|
|
}
|
|
|
|
m_targets[pos].push_back(target);
|
|
|
|
if (!sl)
|
|
{
|
|
if (sync)
|
|
{
|
|
LOG_NOTICE(SPU, "[0x%x] At 0x%x: ignoring branch to 0x%x (SYNC)", result[0], pos, target);
|
|
|
|
if (entry_point < target)
|
|
{
|
|
limit = std::min<u32>(limit, target);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (op.d || op.e)
|
|
{
|
|
m_entry_info[target / 4] = true;
|
|
}
|
|
|
|
add_block(target);
|
|
}
|
|
}
|
|
|
|
if (sl && g_cfg.core.spu_block_size == spu_block_size_type::giga)
|
|
{
|
|
if (sync)
|
|
{
|
|
LOG_NOTICE(SPU, "[0x%x] At 0x%x: ignoring call to 0x%x (SYNC)", result[0], pos, target);
|
|
|
|
if (target > entry_point)
|
|
{
|
|
limit = std::min<u32>(limit, target);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_entry_info[target / 4] = true;
|
|
add_block(target);
|
|
}
|
|
}
|
|
else if (sl && target > entry_point)
|
|
{
|
|
limit = std::min<u32>(limit, target);
|
|
}
|
|
|
|
if (sl && g_cfg.core.spu_block_size != spu_block_size_type::safe)
|
|
{
|
|
m_ret_info[pos / 4 + 1] = true;
|
|
m_entry_info[pos / 4 + 1] = true;
|
|
m_targets[pos].push_back(pos + 4);
|
|
add_block(pos + 4);
|
|
}
|
|
}
|
|
else if (type == spu_itype::BI && g_cfg.core.spu_block_size != spu_block_size_type::safe && !op.d && !op.e && !sync)
|
|
{
|
|
// Analyse jump table (TODO)
|
|
std::basic_string<u32> jt_abs;
|
|
std::basic_string<u32> jt_rel;
|
|
const u32 start = pos + 4;
|
|
u64 dabs = 0;
|
|
u64 drel = 0;
|
|
|
|
for (u32 i = start; i < limit; i += 4)
|
|
{
|
|
const u32 target = ls[i / 4];
|
|
|
|
if (target == 0 || target % 4)
|
|
{
|
|
// Address cannot be misaligned: abort
|
|
break;
|
|
}
|
|
|
|
if (target >= lsa && target < 0x40000)
|
|
{
|
|
// Possible jump table entry (absolute)
|
|
jt_abs.push_back(target);
|
|
}
|
|
|
|
if (target + start >= lsa && target + start < 0x40000)
|
|
{
|
|
// Possible jump table entry (relative)
|
|
jt_rel.push_back(target + start);
|
|
}
|
|
|
|
if (std::max(jt_abs.size(), jt_rel.size()) * 4 + start <= i)
|
|
{
|
|
// Neither type of jump table completes
|
|
jt_abs.clear();
|
|
jt_rel.clear();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Choose position after the jt as an anchor and compute the average distance
|
|
for (u32 target : jt_abs)
|
|
{
|
|
dabs += std::abs(static_cast<s32>(target - start - jt_abs.size() * 4));
|
|
}
|
|
|
|
for (u32 target : jt_rel)
|
|
{
|
|
drel += std::abs(static_cast<s32>(target - start - jt_rel.size() * 4));
|
|
}
|
|
|
|
// Add detected jump table blocks
|
|
if (jt_abs.size() >= 3 || jt_rel.size() >= 3)
|
|
{
|
|
if (jt_abs.size() == jt_rel.size())
|
|
{
|
|
if (dabs < drel)
|
|
{
|
|
jt_rel.clear();
|
|
}
|
|
|
|
if (dabs > drel)
|
|
{
|
|
jt_abs.clear();
|
|
}
|
|
|
|
verify(HERE), jt_abs.size() != jt_rel.size();
|
|
}
|
|
|
|
if (jt_abs.size() >= jt_rel.size())
|
|
{
|
|
const u32 new_size = (start - lsa) / 4 + 1 + jt_abs.size();
|
|
|
|
if (result.size() < new_size)
|
|
{
|
|
result.resize(new_size);
|
|
}
|
|
|
|
for (u32 i = 0; i < jt_abs.size(); i++)
|
|
{
|
|
add_block(jt_abs[i]);
|
|
result[(start - lsa) / 4 + 1 + i] = se_storage<u32>::swap(jt_abs[i]);
|
|
m_targets[start + i * 4];
|
|
}
|
|
|
|
m_targets.emplace(pos, std::move(jt_abs));
|
|
}
|
|
|
|
if (jt_rel.size() >= jt_abs.size())
|
|
{
|
|
const u32 new_size = (start - lsa) / 4 + 1 + jt_rel.size();
|
|
|
|
if (result.size() < new_size)
|
|
{
|
|
result.resize(new_size);
|
|
}
|
|
|
|
for (u32 i = 0; i < jt_rel.size(); i++)
|
|
{
|
|
add_block(jt_rel[i]);
|
|
result[(start - lsa) / 4 + 1 + i] = se_storage<u32>::swap(jt_rel[i] - start);
|
|
m_targets[start + i * 4];
|
|
}
|
|
|
|
m_targets.emplace(pos, std::move(jt_rel));
|
|
}
|
|
}
|
|
else if (start + 12 * 4 < limit &&
|
|
ls[start / 4 + 0] == 0x1ce00408 &&
|
|
ls[start / 4 + 1] == 0x24000389 &&
|
|
ls[start / 4 + 2] == 0x24004809 &&
|
|
ls[start / 4 + 3] == 0x24008809 &&
|
|
ls[start / 4 + 4] == 0x2400c809 &&
|
|
ls[start / 4 + 5] == 0x24010809 &&
|
|
ls[start / 4 + 6] == 0x24014809 &&
|
|
ls[start / 4 + 7] == 0x24018809 &&
|
|
ls[start / 4 + 8] == 0x1c200807 &&
|
|
ls[start / 4 + 9] == 0x2401c809)
|
|
{
|
|
LOG_WARNING(SPU, "[0x%x] Pattern 1 detected (hbr=0x%x:0x%x)", pos, hbr_loc, hbr_tg);
|
|
|
|
// Add 8 targets (TODO)
|
|
for (u32 addr = start + 4; addr < start + 36; addr += 4)
|
|
{
|
|
m_targets[pos].push_back(addr);
|
|
add_block(addr);
|
|
}
|
|
}
|
|
else if (hbr_loc > start && hbr_loc < limit && hbr_tg == start)
|
|
{
|
|
LOG_WARNING(SPU, "[0x%x] No patterns detected (hbr=0x%x:0x%x)", pos, hbr_loc, hbr_tg);
|
|
}
|
|
}
|
|
else if (type == spu_itype::BI && sync)
|
|
{
|
|
LOG_NOTICE(SPU, "[0x%x] At 0x%x: ignoring indirect branch (SYNC)", result[0], pos);
|
|
}
|
|
|
|
if (type == spu_itype::BI || sl)
|
|
{
|
|
if (type == spu_itype::BI || g_cfg.core.spu_block_size == spu_block_size_type::safe)
|
|
{
|
|
m_targets[pos];
|
|
}
|
|
else
|
|
{
|
|
m_ret_info[pos / 4 + 1] = true;
|
|
m_entry_info[pos / 4 + 1] = true;
|
|
m_targets[pos].push_back(pos + 4);
|
|
add_block(pos + 4);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_targets[pos].push_back(pos + 4);
|
|
add_block(pos + 4);
|
|
}
|
|
|
|
next_block();
|
|
break;
|
|
}
|
|
|
|
case spu_itype::BRSL:
|
|
case spu_itype::BRASL:
|
|
{
|
|
const u32 target = spu_branch_target(type == spu_itype::BRASL ? 0 : pos, op.i16);
|
|
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = +vf::is_const;
|
|
values[op.rt] = pos + 4;
|
|
|
|
if (target == pos + 4)
|
|
{
|
|
// Get next instruction address idiom
|
|
break;
|
|
}
|
|
|
|
m_targets[pos].push_back(target);
|
|
|
|
if (g_cfg.core.spu_block_size != spu_block_size_type::safe)
|
|
{
|
|
m_ret_info[pos / 4 + 1] = true;
|
|
m_entry_info[pos / 4 + 1] = true;
|
|
m_targets[pos].push_back(pos + 4);
|
|
add_block(pos + 4);
|
|
}
|
|
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::giga && !sync)
|
|
{
|
|
m_entry_info[target / 4] = true;
|
|
add_block(target);
|
|
}
|
|
else
|
|
{
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::giga)
|
|
{
|
|
LOG_NOTICE(SPU, "[0x%x] At 0x%x: ignoring fixed call to 0x%x (SYNC)", result[0], pos, target);
|
|
}
|
|
|
|
if (target > entry_point)
|
|
{
|
|
limit = std::min<u32>(limit, target);
|
|
}
|
|
}
|
|
|
|
next_block();
|
|
break;
|
|
}
|
|
|
|
case spu_itype::BR:
|
|
case spu_itype::BRA:
|
|
case spu_itype::BRZ:
|
|
case spu_itype::BRNZ:
|
|
case spu_itype::BRHZ:
|
|
case spu_itype::BRHNZ:
|
|
{
|
|
const u32 target = spu_branch_target(type == spu_itype::BRA ? 0 : pos, op.i16);
|
|
|
|
if (target == pos + 4)
|
|
{
|
|
// Nop
|
|
break;
|
|
}
|
|
|
|
m_targets[pos].push_back(target);
|
|
add_block(target);
|
|
|
|
if (type != spu_itype::BR && type != spu_itype::BRA)
|
|
{
|
|
m_targets[pos].push_back(pos + 4);
|
|
add_block(pos + 4);
|
|
}
|
|
|
|
next_block();
|
|
break;
|
|
}
|
|
|
|
case spu_itype::HEQ:
|
|
case spu_itype::HEQI:
|
|
case spu_itype::HGT:
|
|
case spu_itype::HGTI:
|
|
case spu_itype::HLGT:
|
|
case spu_itype::HLGTI:
|
|
case spu_itype::LNOP:
|
|
case spu_itype::NOP:
|
|
case spu_itype::MTSPR:
|
|
case spu_itype::FSCRWR:
|
|
case spu_itype::STQA:
|
|
case spu_itype::STQD:
|
|
case spu_itype::STQR:
|
|
case spu_itype::STQX:
|
|
{
|
|
// Do nothing
|
|
break;
|
|
}
|
|
|
|
case spu_itype::WRCH:
|
|
{
|
|
switch (op.ra)
|
|
{
|
|
case MFC_EAL:
|
|
{
|
|
m_regmod[pos / 4] = s_reg_mfc_eal;
|
|
break;
|
|
}
|
|
case MFC_LSA:
|
|
{
|
|
m_regmod[pos / 4] = s_reg_mfc_lsa;
|
|
break;
|
|
}
|
|
case MFC_TagID:
|
|
{
|
|
m_regmod[pos / 4] = s_reg_mfc_tag;
|
|
break;
|
|
}
|
|
case MFC_Size:
|
|
{
|
|
m_regmod[pos / 4] = s_reg_mfc_size;
|
|
break;
|
|
}
|
|
case MFC_Cmd:
|
|
{
|
|
m_use_rb[pos / 4] = s_reg_mfc_eal;
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case spu_itype::LQA:
|
|
case spu_itype::LQD:
|
|
case spu_itype::LQR:
|
|
case spu_itype::LQX:
|
|
{
|
|
// Unconst
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = {};
|
|
break;
|
|
}
|
|
|
|
case spu_itype::HBR:
|
|
{
|
|
hbr_loc = spu_branch_target(pos, op.roh << 7 | op.rt);
|
|
hbr_tg = vflags[op.ra] & vf::is_const && !op.c ? values[op.ra] & 0x3fffc : -1;
|
|
break;
|
|
}
|
|
|
|
case spu_itype::HBRA:
|
|
{
|
|
hbr_loc = spu_branch_target(pos, op.r0h << 7 | op.rt);
|
|
hbr_tg = spu_branch_target(0x0, op.i16);
|
|
break;
|
|
}
|
|
|
|
case spu_itype::HBRR:
|
|
{
|
|
hbr_loc = spu_branch_target(pos, op.r0h << 7 | op.rt);
|
|
hbr_tg = spu_branch_target(pos, op.i16);
|
|
break;
|
|
}
|
|
|
|
case spu_itype::IL:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = +vf::is_const;
|
|
values[op.rt] = op.si16;
|
|
break;
|
|
}
|
|
case spu_itype::ILA:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = +vf::is_const;
|
|
values[op.rt] = op.i18;
|
|
break;
|
|
}
|
|
case spu_itype::ILH:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = +vf::is_const;
|
|
values[op.rt] = op.i16 << 16 | op.i16;
|
|
break;
|
|
}
|
|
case spu_itype::ILHU:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = +vf::is_const;
|
|
values[op.rt] = op.i16 << 16;
|
|
break;
|
|
}
|
|
case spu_itype::IOHL:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
values[op.rt] = values[op.rt] | op.i16;
|
|
break;
|
|
}
|
|
case spu_itype::ORI:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = vflags[op.ra] & vf::is_const;
|
|
values[op.rt] = values[op.ra] | op.si10;
|
|
break;
|
|
}
|
|
case spu_itype::OR:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = vflags[op.ra] & vflags[op.rb] & vf::is_const;
|
|
values[op.rt] = values[op.ra] | values[op.rb];
|
|
break;
|
|
}
|
|
case spu_itype::ANDI:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = vflags[op.ra] & vf::is_const;
|
|
values[op.rt] = values[op.ra] & op.si10;
|
|
break;
|
|
}
|
|
case spu_itype::AND:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = vflags[op.ra] & vflags[op.rb] & vf::is_const;
|
|
values[op.rt] = values[op.ra] & values[op.rb];
|
|
break;
|
|
}
|
|
case spu_itype::AI:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = vflags[op.ra] & vf::is_const;
|
|
values[op.rt] = values[op.ra] + op.si10;
|
|
break;
|
|
}
|
|
case spu_itype::A:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = vflags[op.ra] & vflags[op.rb] & vf::is_const;
|
|
values[op.rt] = values[op.ra] + values[op.rb];
|
|
break;
|
|
}
|
|
case spu_itype::SFI:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = vflags[op.ra] & vf::is_const;
|
|
values[op.rt] = op.si10 - values[op.ra];
|
|
break;
|
|
}
|
|
case spu_itype::SF:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
vflags[op.rt] = vflags[op.ra] & vflags[op.rb] & vf::is_const;
|
|
values[op.rt] = values[op.rb] - values[op.ra];
|
|
break;
|
|
}
|
|
case spu_itype::ROTMI:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
|
|
if (-op.i7 & 0x20)
|
|
{
|
|
vflags[op.rt] = +vf::is_const;
|
|
values[op.rt] = 0;
|
|
break;
|
|
}
|
|
|
|
vflags[op.rt] = vflags[op.ra] & vf::is_const;
|
|
values[op.rt] = values[op.ra] >> (-op.i7 & 0x1f);
|
|
break;
|
|
}
|
|
case spu_itype::SHLI:
|
|
{
|
|
m_regmod[pos / 4] = op.rt;
|
|
|
|
if (op.i7 & 0x20)
|
|
{
|
|
vflags[op.rt] = +vf::is_const;
|
|
values[op.rt] = 0;
|
|
break;
|
|
}
|
|
|
|
vflags[op.rt] = vflags[op.ra] & vf::is_const;
|
|
values[op.rt] = values[op.ra] << (op.i7 & 0x1f);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
// Unconst
|
|
const u32 op_rt = type & spu_itype::_quadrop ? +op.rt4 : +op.rt;
|
|
m_regmod[pos / 4] = op_rt;
|
|
vflags[op_rt] = {};
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Insert raw instruction value
|
|
if (result.size() - 1 <= (pos - lsa) / 4)
|
|
{
|
|
if (result.size() - 1 < (pos - lsa) / 4)
|
|
{
|
|
result.resize((pos - lsa) / 4 + 1);
|
|
}
|
|
|
|
result.emplace_back(se_storage<u32>::swap(data));
|
|
}
|
|
else if (u32& raw_val = result[(pos - lsa) / 4 + 1])
|
|
{
|
|
verify(HERE), raw_val == se_storage<u32>::swap(data);
|
|
}
|
|
else
|
|
{
|
|
raw_val = se_storage<u32>::swap(data);
|
|
}
|
|
}
|
|
|
|
while (g_cfg.core.spu_block_size != spu_block_size_type::giga || limit < 0x40000)
|
|
{
|
|
const u32 initial_size = result.size();
|
|
|
|
// Check unreachable blocks
|
|
limit = std::min<u32>(limit, lsa + initial_size * 4 - 4);
|
|
|
|
for (auto& pair : m_preds)
|
|
{
|
|
bool reachable = false;
|
|
|
|
if (pair.first >= limit)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// All (direct and indirect) predecessors to check
|
|
std::basic_string<u32> workload;
|
|
|
|
// Bit array used to deduplicate workload list
|
|
workload.push_back(pair.first);
|
|
m_bits[pair.first / 4] = true;
|
|
|
|
for (std::size_t i = 0; !reachable && i < workload.size(); i++)
|
|
{
|
|
for (u32 j = workload[i];; j -= 4)
|
|
{
|
|
// Go backward from an address until the entry point is reached
|
|
if (j == result[0])
|
|
{
|
|
reachable = true;
|
|
break;
|
|
}
|
|
|
|
const auto found = m_preds.find(j);
|
|
|
|
bool had_fallthrough = false;
|
|
|
|
if (found != m_preds.end())
|
|
{
|
|
for (u32 new_pred : found->second)
|
|
{
|
|
// Check whether the predecessor is previous instruction
|
|
if (new_pred == j - 4)
|
|
{
|
|
had_fallthrough = true;
|
|
continue;
|
|
}
|
|
|
|
// Check whether in range and not already added
|
|
if (new_pred >= lsa && new_pred < limit && !m_bits[new_pred / 4])
|
|
{
|
|
workload.push_back(new_pred);
|
|
m_bits[new_pred / 4] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for possible fallthrough predecessor
|
|
if (!had_fallthrough)
|
|
{
|
|
if (result.at((j - lsa) / 4) == 0 || m_targets.count(j - 4))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == 0)
|
|
{
|
|
// TODO
|
|
}
|
|
}
|
|
}
|
|
|
|
for (u32 pred : workload)
|
|
{
|
|
m_bits[pred / 4] = false;
|
|
}
|
|
|
|
if (!reachable && pair.first < limit)
|
|
{
|
|
limit = pair.first;
|
|
}
|
|
}
|
|
|
|
result.resize((limit - lsa) / 4 + 1);
|
|
|
|
// Check holes in safe mode (TODO)
|
|
u32 valid_size = 0;
|
|
|
|
for (u32 i = 1; i < result.size(); i++)
|
|
{
|
|
if (result[i] == 0)
|
|
{
|
|
const u32 pos = lsa + (i - 1) * 4;
|
|
const u32 data = ls[pos / 4];
|
|
|
|
// Allow only NOP or LNOP instructions in holes
|
|
if (data == 0x200000 || (data & 0xffffff80) == 0x40200000)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (g_cfg.core.spu_block_size != spu_block_size_type::giga)
|
|
{
|
|
result.resize(valid_size + 1);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
valid_size = i;
|
|
}
|
|
}
|
|
|
|
// Even if NOP or LNOP, should be removed at the end
|
|
result.resize(valid_size + 1);
|
|
|
|
// Repeat if blocks were removed
|
|
if (result.size() == initial_size)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
limit = std::min<u32>(limit, lsa + ::size32(result) * 4 - 4);
|
|
|
|
// Cleanup block info
|
|
for (u32 i = 0; i < workload.size(); i++)
|
|
{
|
|
const u32 addr = workload[i];
|
|
|
|
if (addr < lsa || addr >= limit || !result[(addr - lsa) / 4 + 1])
|
|
{
|
|
m_block_info[addr / 4] = false;
|
|
m_entry_info[addr / 4] = false;
|
|
m_ret_info[addr / 4] = false;
|
|
m_preds.erase(addr);
|
|
}
|
|
}
|
|
|
|
// Complete m_preds and associated m_targets for adjacent blocks
|
|
for (auto it = m_preds.begin(); it != m_preds.end();)
|
|
{
|
|
if (it->first < lsa || it->first >= limit)
|
|
{
|
|
it = m_preds.erase(it);
|
|
continue;
|
|
}
|
|
|
|
// Erase impossible predecessors
|
|
const auto new_end = std::remove_if(it->second.begin(), it->second.end(), [&](u32 addr)
|
|
{
|
|
return addr < lsa || addr >= limit;
|
|
});
|
|
|
|
it->second.erase(new_end, it->second.end());
|
|
|
|
// Don't add fallthrough target if all predecessors are removed
|
|
if (it->second.empty() && !m_entry_info[it->first / 4])
|
|
{
|
|
// If not an entry point, remove the block completely
|
|
m_block_info[it->first / 4] = false;
|
|
it = m_preds.erase(it);
|
|
continue;
|
|
}
|
|
|
|
// Previous instruction address
|
|
const u32 prev = (it->first - 4) & 0x3fffc;
|
|
|
|
// TODO: check the correctness
|
|
if (m_targets.count(prev) == 0 && prev >= lsa && prev < limit && result[(prev - lsa) / 4 + 1])
|
|
{
|
|
// Add target and the predecessor
|
|
m_targets[prev].push_back(it->first);
|
|
it->second.push_back(prev);
|
|
}
|
|
|
|
it++;
|
|
}
|
|
|
|
// Remove unnecessary target lists
|
|
for (auto it = m_targets.begin(); it != m_targets.end();)
|
|
{
|
|
if (it->first < lsa || it->first >= limit)
|
|
{
|
|
it = m_targets.erase(it);
|
|
continue;
|
|
}
|
|
|
|
// Erase unreachable targets
|
|
const auto new_end = std::remove_if(it->second.begin(), it->second.end(), [&](u32 addr)
|
|
{
|
|
return addr < lsa || addr >= limit;
|
|
});
|
|
|
|
it->second.erase(new_end, it->second.end());
|
|
|
|
it++;
|
|
}
|
|
|
|
// Fill holes which contain only NOP and LNOP instructions (TODO: compile)
|
|
for (u32 i = 1, nnop = 0, vsize = 0; i <= result.size(); i++)
|
|
{
|
|
if (i >= result.size() || result[i])
|
|
{
|
|
if (nnop && nnop == i - vsize - 1)
|
|
{
|
|
// Write only complete NOP sequence
|
|
for (u32 j = vsize + 1; j < i; j++)
|
|
{
|
|
result[j] = se_storage<u32>::swap(ls[lsa / 4 + j - 1]);
|
|
}
|
|
}
|
|
|
|
nnop = 0;
|
|
vsize = i;
|
|
}
|
|
else
|
|
{
|
|
const u32 pos = lsa + (i - 1) * 4;
|
|
const u32 data = ls[pos / 4];
|
|
|
|
if (data == 0x200000 || (data & 0xffffff80) == 0x40200000)
|
|
{
|
|
nnop++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Skip some steps for asmjit
|
|
if (g_cfg.core.spu_decoder == spu_decoder_type::asmjit)
|
|
{
|
|
if (result.size() == 1)
|
|
{
|
|
result.clear();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Fill block info
|
|
for (auto& pred : m_preds)
|
|
{
|
|
auto& block = m_bbs[pred.first];
|
|
|
|
// Copy predeccessors (wrong at this point, needs a fixup later)
|
|
block.preds = pred.second;
|
|
|
|
// Fill register usage info
|
|
for (u32 ia = pred.first; ia < 0x40000; ia += 4)
|
|
{
|
|
block.size++;
|
|
|
|
// Decode instruction
|
|
const spu_opcode_t op{se_storage<u32>::swap(result[(ia - lsa) / 4 + 1])};
|
|
|
|
const auto type = s_spu_itype.decode(op.opcode);
|
|
|
|
u8 reg_save = 255;
|
|
|
|
if (type == spu_itype::STQD && op.ra == s_reg_sp && !block.reg_mod[op.rt] && !block.reg_use[op.rt])
|
|
{
|
|
// Register saved onto the stack before use
|
|
block.reg_save_dom[op.rt] = true;
|
|
|
|
reg_save = op.rt;
|
|
}
|
|
|
|
for (auto* _use : {&m_use_ra, &m_use_rb, &m_use_rc})
|
|
{
|
|
if (u8 reg = (*_use)[ia / 4]; reg < s_reg_max)
|
|
{
|
|
// Register reg use only if it happens before reg mod
|
|
if (!block.reg_mod[reg])
|
|
{
|
|
block.reg_use.set(reg);
|
|
|
|
if (reg_save != reg && block.reg_save_dom[reg])
|
|
{
|
|
// Register is still used after saving; probably not eligible for optimization
|
|
block.reg_save_dom[reg] = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_use_rb[ia / 4] == s_reg_mfc_eal)
|
|
{
|
|
// Expand MFC_Cmd reg use
|
|
for (u8 reg : {s_reg_mfc_lsa, s_reg_mfc_tag, s_reg_mfc_size})
|
|
{
|
|
if (!block.reg_mod[reg])
|
|
block.reg_use.set(reg);
|
|
}
|
|
}
|
|
|
|
// Register reg modification
|
|
if (u8 reg = m_regmod[ia / 4]; reg < s_reg_max)
|
|
{
|
|
block.reg_mod.set(reg);
|
|
block.reg_mod_xf.set(reg, type & spu_itype::xfloat);
|
|
|
|
if (type == spu_itype::SELB && (block.reg_mod_xf[op.ra] || block.reg_mod_xf[op.rb]))
|
|
block.reg_mod_xf.set(reg);
|
|
|
|
// Possible post-dominating register load
|
|
if (type == spu_itype::LQD && op.ra == s_reg_sp)
|
|
block.reg_load_mod[reg] = ia + 1;
|
|
else
|
|
block.reg_load_mod[reg] = 0;
|
|
}
|
|
|
|
// Find targets (also means end of the block)
|
|
const auto tfound = m_targets.find(ia);
|
|
|
|
if (tfound != m_targets.end())
|
|
{
|
|
// Copy targets
|
|
block.targets = tfound->second;
|
|
|
|
// Assume that the call reads and modifies all volatile registers (TODO)
|
|
bool is_call = false;
|
|
bool is_tail = false;
|
|
switch (type)
|
|
{
|
|
case spu_itype::BRSL:
|
|
is_call = spu_branch_target(ia, op.i16) != ia + 4;
|
|
break;
|
|
case spu_itype::BRASL:
|
|
is_call = spu_branch_target(0, op.i16) != ia + 4;
|
|
break;
|
|
case spu_itype::BISL:
|
|
case spu_itype::BISLED:
|
|
is_call = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (is_call)
|
|
{
|
|
for (u32 i = 0; i < s_reg_max; ++i)
|
|
{
|
|
if (i == s_reg_lr || (i >= 2 && i < s_reg_80) || i > s_reg_127)
|
|
{
|
|
if (!block.reg_mod[i])
|
|
block.reg_use.set(i);
|
|
|
|
if (!is_tail)
|
|
{
|
|
block.reg_mod.set(i);
|
|
block.reg_mod_xf[i] = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fixup block predeccessors to point to basic blocks, not last instructions
|
|
for (auto& bb : m_bbs)
|
|
{
|
|
const u32 addr = bb.first;
|
|
|
|
for (u32& pred : bb.second.preds)
|
|
{
|
|
pred = std::prev(m_bbs.upper_bound(pred))->first;
|
|
}
|
|
|
|
if (m_entry_info[addr / 4] && g_cfg.core.spu_block_size == spu_block_size_type::giga)
|
|
{
|
|
// Register empty chunk
|
|
m_chunks.push_back(addr);
|
|
|
|
// Register function if necessary
|
|
if (!m_ret_info[addr / 4])
|
|
{
|
|
m_funcs[addr];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Ensure there is a function at the lowest address
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::giga)
|
|
{
|
|
if (auto emp = m_funcs.try_emplace(m_bbs.begin()->first); emp.second)
|
|
{
|
|
const u32 addr = emp.first->first;
|
|
LOG_ERROR(SPU, "[0x%05x] Fixed first function at 0x%05x", entry_point, addr);
|
|
m_entry_info[addr / 4] = true;
|
|
m_ret_info[addr / 4] = false;
|
|
}
|
|
}
|
|
|
|
// Split functions
|
|
while (g_cfg.core.spu_block_size == spu_block_size_type::giga)
|
|
{
|
|
bool need_repeat = false;
|
|
|
|
u32 start = 0;
|
|
u32 limit = 0x40000;
|
|
|
|
// Walk block list in ascending order
|
|
for (auto& block : m_bbs)
|
|
{
|
|
const u32 addr = block.first;
|
|
|
|
if (m_entry_info[addr / 4] && !m_ret_info[addr / 4])
|
|
{
|
|
const auto upper = m_funcs.upper_bound(addr);
|
|
start = addr;
|
|
limit = upper == m_funcs.end() ? 0x40000 : upper->first;
|
|
}
|
|
|
|
// Find targets that exceed [start; limit) range and make new functions from them
|
|
for (u32 target : block.second.targets)
|
|
{
|
|
const auto tfound = m_bbs.find(target);
|
|
|
|
if (tfound == m_bbs.end())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (target < start || target >= limit)
|
|
{
|
|
if (!m_entry_info[target / 4] || m_ret_info[target / 4])
|
|
{
|
|
// Create new function entry (likely a tail call)
|
|
m_entry_info[target / 4] = true;
|
|
|
|
m_ret_info[target / 4] = false;
|
|
|
|
m_funcs.try_emplace(target);
|
|
|
|
if (target < limit)
|
|
{
|
|
need_repeat = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
block.second.func = start;
|
|
}
|
|
|
|
if (!need_repeat)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Fill entry map
|
|
while (true)
|
|
{
|
|
workload.clear();
|
|
workload.push_back(entry_point);
|
|
|
|
std::basic_string<u32> new_entries;
|
|
|
|
for (u32 wi = 0; wi < workload.size(); wi++)
|
|
{
|
|
const u32 addr = workload[wi];
|
|
auto& block = m_bbs.at(addr);
|
|
const u32 _new = block.chunk;
|
|
|
|
if (!m_entry_info[addr / 4])
|
|
{
|
|
// Check block predecessors
|
|
for (u32 pred : block.preds)
|
|
{
|
|
const u32 _old = m_bbs.at(pred).chunk;
|
|
|
|
if (_old < 0x40000 && _old != _new)
|
|
{
|
|
// If block has multiple 'entry' points, it becomes an entry point itself
|
|
new_entries.push_back(addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update chunk address
|
|
block.chunk = m_entry_info[addr / 4] ? addr : _new;
|
|
|
|
// Process block targets
|
|
for (u32 target : block.targets)
|
|
{
|
|
const auto tfound = m_bbs.find(target);
|
|
|
|
if (tfound == m_bbs.end())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
auto& tb = tfound->second;
|
|
|
|
const u32 value = m_entry_info[target / 4] ? target : block.chunk;
|
|
|
|
if (u32& tval = tb.chunk; tval < 0x40000)
|
|
{
|
|
// TODO: fix condition
|
|
if (tval != value && !m_entry_info[target / 4])
|
|
{
|
|
new_entries.push_back(target);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tval = value;
|
|
workload.emplace_back(target);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (new_entries.empty())
|
|
{
|
|
break;
|
|
}
|
|
|
|
for (u32 entry : new_entries)
|
|
{
|
|
m_entry_info[entry / 4] = true;
|
|
|
|
// Acknowledge artificial (reversible) chunk entry point
|
|
m_ret_info[entry / 4] = true;
|
|
}
|
|
|
|
for (auto& bb : m_bbs)
|
|
{
|
|
// Reset chunk info
|
|
bb.second.chunk = 0x40000;
|
|
}
|
|
}
|
|
|
|
workload.clear();
|
|
workload.push_back(entry_point);
|
|
|
|
// Fill workload adding targets
|
|
for (u32 wi = 0; wi < workload.size(); wi++)
|
|
{
|
|
const u32 addr = workload[wi];
|
|
auto& block = m_bbs.at(addr);
|
|
block.analysed = true;
|
|
|
|
for (u32 target : block.targets)
|
|
{
|
|
const auto tfound = m_bbs.find(target);
|
|
|
|
if (tfound == m_bbs.end())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
auto& tb = tfound->second;
|
|
|
|
if (!tb.analysed)
|
|
{
|
|
workload.push_back(target);
|
|
tb.analysed = true;
|
|
}
|
|
|
|
// Limited xfloat hint propagation (possibly TODO)
|
|
if (tb.chunk == block.chunk)
|
|
{
|
|
tb.reg_maybe_xf &= block.reg_mod_xf;
|
|
}
|
|
else
|
|
{
|
|
tb.reg_maybe_xf.reset();
|
|
}
|
|
}
|
|
|
|
block.reg_origin.fill(0x80000000);
|
|
block.reg_origin_abs.fill(0x80000000);
|
|
}
|
|
|
|
// Fill register origin info
|
|
while (true)
|
|
{
|
|
bool must_repeat = false;
|
|
|
|
for (u32 wi = 0; wi < workload.size(); wi++)
|
|
{
|
|
const u32 addr = workload[wi];
|
|
auto& block = m_bbs.at(addr);
|
|
|
|
// Initialize entry point with default value: unknown origin (requires load)
|
|
if (m_entry_info[addr / 4])
|
|
{
|
|
for (u32 i = 0; i < s_reg_max; i++)
|
|
{
|
|
if (block.reg_origin[i] == 0x80000000)
|
|
block.reg_origin[i] = 0x40000;
|
|
}
|
|
}
|
|
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::giga && m_entry_info[addr / 4] && !m_ret_info[addr / 4])
|
|
{
|
|
for (u32 i = 0; i < s_reg_max; i++)
|
|
{
|
|
if (block.reg_origin_abs[i] == 0x80000000)
|
|
block.reg_origin_abs[i] = 0x40000;
|
|
else if (block.reg_origin_abs[i] + 1 == 0)
|
|
block.reg_origin_abs[i] = -2;
|
|
}
|
|
}
|
|
|
|
for (u32 target : block.targets)
|
|
{
|
|
const auto tfound = m_bbs.find(target);
|
|
|
|
if (tfound == m_bbs.end())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
auto& tb = tfound->second;
|
|
|
|
for (u32 i = 0; i < s_reg_max; i++)
|
|
{
|
|
if (tb.chunk == block.chunk && tb.reg_origin[i] + 1)
|
|
{
|
|
const u32 expected = block.reg_mod[i] ? addr : block.reg_origin[i];
|
|
|
|
if (tb.reg_origin[i] == 0x80000000)
|
|
{
|
|
tb.reg_origin[i] = expected;
|
|
}
|
|
else if (tb.reg_origin[i] != expected)
|
|
{
|
|
// Set -1 if multiple origins merged (requires PHI node)
|
|
tb.reg_origin[i] = -1;
|
|
|
|
must_repeat |= !tb.targets.empty();
|
|
}
|
|
}
|
|
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::giga && tb.func == block.func && tb.reg_origin_abs[i] + 2)
|
|
{
|
|
const u32 expected = block.reg_mod[i] ? addr : block.reg_origin_abs[i];
|
|
|
|
if (tb.reg_origin_abs[i] == 0x80000000)
|
|
{
|
|
tb.reg_origin_abs[i] = expected;
|
|
}
|
|
else if (tb.reg_origin_abs[i] != expected)
|
|
{
|
|
if (tb.reg_origin_abs[i] == 0x40000 || expected + 2 == 0 || expected == 0x40000)
|
|
{
|
|
// Set -2: sticky value indicating possible external reg origin (0x40000)
|
|
tb.reg_origin_abs[i] = -2;
|
|
|
|
must_repeat |= !tb.targets.empty();
|
|
}
|
|
else if (tb.reg_origin_abs[i] + 1)
|
|
{
|
|
tb.reg_origin_abs[i] = -1;
|
|
|
|
must_repeat |= !tb.targets.empty();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!must_repeat)
|
|
{
|
|
break;
|
|
}
|
|
|
|
for (u32 wi = 0; wi < workload.size(); wi++)
|
|
{
|
|
const u32 addr = workload[wi];
|
|
auto& block = m_bbs.at(addr);
|
|
|
|
// Reset values for the next attempt (keep negative values)
|
|
for (u32 i = 0; i < s_reg_max; i++)
|
|
{
|
|
if (block.reg_origin[i] <= 0x40000)
|
|
block.reg_origin[i] = 0x80000000;
|
|
if (block.reg_origin_abs[i] <= 0x40000)
|
|
block.reg_origin_abs[i] = 0x80000000;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fill more block info
|
|
for (u32 wi = 0; wi < workload.size(); wi++)
|
|
{
|
|
if (g_cfg.core.spu_block_size != spu_block_size_type::giga)
|
|
{
|
|
break;
|
|
}
|
|
|
|
const u32 addr = workload[wi];
|
|
auto& bb = m_bbs.at(addr);
|
|
auto& func = m_funcs.at(bb.func);
|
|
|
|
// Update function size
|
|
func.size = std::max<u16>(func.size, bb.size + (addr - bb.func) / 4);
|
|
|
|
// Copy constants according to reg origin info
|
|
for (u32 i = 0; i < s_reg_max; i++)
|
|
{
|
|
const u32 orig = bb.reg_origin_abs[i];
|
|
|
|
if (orig < 0x40000)
|
|
{
|
|
auto& src = m_bbs.at(orig);
|
|
bb.reg_const[i] = src.reg_const[i];
|
|
bb.reg_val32[i] = src.reg_val32[i];
|
|
}
|
|
|
|
if (!bb.reg_save_dom[i] && bb.reg_use[i] && (orig == 0x40000 || orig + 2 == 0))
|
|
{
|
|
// Destroy offset if external reg value is used
|
|
func.reg_save_off[i] = -1;
|
|
}
|
|
}
|
|
|
|
if (u32 orig = bb.reg_origin_abs[s_reg_sp]; orig < 0x40000)
|
|
{
|
|
auto& prologue = m_bbs.at(orig);
|
|
|
|
// Copy stack offset (from the assumed prologue)
|
|
bb.stack_sub = prologue.stack_sub;
|
|
}
|
|
else if (orig > 0x40000)
|
|
{
|
|
// Unpredictable stack
|
|
bb.stack_sub = 0x80000000;
|
|
}
|
|
|
|
spu_opcode_t op;
|
|
|
|
auto last_inst = spu_itype::UNK;
|
|
|
|
for (u32 ia = addr; ia < addr + bb.size * 4; ia += 4)
|
|
{
|
|
// Decode instruction again
|
|
op.opcode = se_storage<u32>::swap(result[(ia - lsa) / 4 + 1]);
|
|
last_inst = s_spu_itype.decode(op.opcode);
|
|
|
|
// Propagate some constants
|
|
switch (last_inst)
|
|
{
|
|
case spu_itype::IL:
|
|
{
|
|
bb.reg_const[op.rt] = true;
|
|
bb.reg_val32[op.rt] = op.si16;
|
|
break;
|
|
}
|
|
case spu_itype::ILA:
|
|
{
|
|
bb.reg_const[op.rt] = true;
|
|
bb.reg_val32[op.rt] = op.i18;
|
|
break;
|
|
}
|
|
case spu_itype::ILHU:
|
|
{
|
|
bb.reg_const[op.rt] = true;
|
|
bb.reg_val32[op.rt] = op.i16 << 16;
|
|
break;
|
|
}
|
|
case spu_itype::ILH:
|
|
{
|
|
bb.reg_const[op.rt] = true;
|
|
bb.reg_val32[op.rt] = op.i16 << 16 | op.i16;
|
|
break;
|
|
}
|
|
case spu_itype::IOHL:
|
|
{
|
|
bb.reg_val32[op.rt] = bb.reg_val32[op.rt] | op.i16;
|
|
break;
|
|
}
|
|
case spu_itype::ORI:
|
|
{
|
|
bb.reg_const[op.rt] = bb.reg_const[op.ra];
|
|
bb.reg_val32[op.rt] = bb.reg_val32[op.ra] | op.si10;
|
|
break;
|
|
}
|
|
case spu_itype::OR:
|
|
{
|
|
bb.reg_const[op.rt] = bb.reg_const[op.ra] & bb.reg_const[op.rb];
|
|
bb.reg_val32[op.rt] = bb.reg_val32[op.ra] | bb.reg_val32[op.rb];
|
|
break;
|
|
}
|
|
case spu_itype::AI:
|
|
{
|
|
bb.reg_const[op.rt] = bb.reg_const[op.ra];
|
|
bb.reg_val32[op.rt] = bb.reg_val32[op.ra] + op.si10;
|
|
break;
|
|
}
|
|
case spu_itype::A:
|
|
{
|
|
bb.reg_const[op.rt] = bb.reg_const[op.ra] & bb.reg_const[op.rb];
|
|
bb.reg_val32[op.rt] = bb.reg_val32[op.ra] + bb.reg_val32[op.rb];
|
|
break;
|
|
}
|
|
case spu_itype::SFI:
|
|
{
|
|
bb.reg_const[op.rt] = bb.reg_const[op.ra];
|
|
bb.reg_val32[op.rt] = op.si10 - bb.reg_val32[op.ra];
|
|
break;
|
|
}
|
|
case spu_itype::SF:
|
|
{
|
|
bb.reg_const[op.rt] = bb.reg_const[op.ra] & bb.reg_const[op.rb];
|
|
bb.reg_val32[op.rt] = bb.reg_val32[op.rb] - bb.reg_val32[op.ra];
|
|
break;
|
|
}
|
|
case spu_itype::STQD:
|
|
{
|
|
if (op.ra == s_reg_sp && bb.stack_sub != 0x80000000 && bb.reg_save_dom[op.rt])
|
|
{
|
|
const u32 offset = 0x80000000 + op.si10 * 16 - bb.stack_sub;
|
|
|
|
if (func.reg_save_off[op.rt] == 0)
|
|
{
|
|
// Store reg save offset
|
|
func.reg_save_off[op.rt] = offset;
|
|
}
|
|
else if (func.reg_save_off[op.rt] != offset)
|
|
{
|
|
// Conflict of different offsets
|
|
func.reg_save_off[op.rt] = -1;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case spu_itype::LQD:
|
|
{
|
|
if (op.ra == s_reg_sp && bb.stack_sub != 0x80000000 && bb.reg_load_mod[op.rt] == ia + 1)
|
|
{
|
|
// Adjust reg load offset
|
|
bb.reg_load_mod[op.rt] = 0x80000000 + op.si10 * 16 - bb.stack_sub;
|
|
}
|
|
|
|
// Clear const
|
|
bb.reg_const[op.rt] = false;
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
// Clear const if reg is modified here
|
|
if (u8 reg = m_regmod[ia / 4]; reg < s_reg_max)
|
|
bb.reg_const[reg] = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// $SP is modified
|
|
if (m_regmod[ia / 4] == s_reg_sp)
|
|
{
|
|
if (bb.reg_const[s_reg_sp])
|
|
{
|
|
// Making $SP a constant is a funny thing too.
|
|
bb.stack_sub = 0x80000000;
|
|
}
|
|
|
|
if (bb.stack_sub != 0x80000000)
|
|
{
|
|
switch (last_inst)
|
|
{
|
|
case spu_itype::AI:
|
|
{
|
|
if (op.ra == s_reg_sp)
|
|
bb.stack_sub -= op.si10;
|
|
else
|
|
bb.stack_sub = 0x80000000;
|
|
break;
|
|
}
|
|
case spu_itype::A:
|
|
{
|
|
if (op.ra == s_reg_sp && bb.reg_const[op.rb])
|
|
bb.stack_sub -= bb.reg_val32[op.rb];
|
|
else if (op.rb == s_reg_sp && bb.reg_const[op.ra])
|
|
bb.stack_sub -= bb.reg_val32[op.ra];
|
|
else
|
|
bb.stack_sub = 0x80000000;
|
|
break;
|
|
}
|
|
case spu_itype::SF:
|
|
{
|
|
if (op.rb == s_reg_sp && bb.reg_const[op.ra])
|
|
bb.stack_sub += bb.reg_val32[op.ra];
|
|
else
|
|
bb.stack_sub = 0x80000000;
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
bb.stack_sub = 0x80000000;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for funny values.
|
|
if (bb.stack_sub >= 0x40000 || bb.stack_sub % 16)
|
|
{
|
|
bb.stack_sub = 0x80000000;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Analyse terminator instruction
|
|
const u32 tia = addr + bb.size * 4 - 4;
|
|
|
|
switch (last_inst)
|
|
{
|
|
case spu_itype::BR:
|
|
case spu_itype::BRA:
|
|
case spu_itype::BRNZ:
|
|
case spu_itype::BRZ:
|
|
case spu_itype::BRHNZ:
|
|
case spu_itype::BRHZ:
|
|
case spu_itype::BRSL:
|
|
case spu_itype::BRASL:
|
|
{
|
|
const u32 target = spu_branch_target(last_inst == spu_itype::BRA || last_inst == spu_itype::BRASL ? 0 : tia, op.i16);
|
|
|
|
if (target == tia + 4)
|
|
{
|
|
bb.terminator = term_type::fallthrough;
|
|
}
|
|
else if (last_inst != spu_itype::BRSL && last_inst != spu_itype::BRASL)
|
|
{
|
|
// No-op terminator or simple branch instruction
|
|
bb.terminator = term_type::br;
|
|
|
|
if (target == bb.func)
|
|
{
|
|
// Recursive tail call
|
|
bb.terminator = term_type::ret;
|
|
}
|
|
}
|
|
else if (op.rt == s_reg_lr)
|
|
{
|
|
bb.terminator = term_type::call;
|
|
}
|
|
else
|
|
{
|
|
bb.terminator = term_type::interrupt_call;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case spu_itype::BI:
|
|
{
|
|
if (op.d || op.e || bb.targets.size() == 1)
|
|
{
|
|
bb.terminator = term_type::interrupt_call;
|
|
}
|
|
else if (bb.targets.size() > 1)
|
|
{
|
|
// Jump table
|
|
bb.terminator = term_type::br;
|
|
}
|
|
else if (op.ra == s_reg_lr)
|
|
{
|
|
// Return (TODO)
|
|
bb.terminator = term_type::ret;
|
|
}
|
|
else
|
|
{
|
|
// Indirect tail call (TODO)
|
|
bb.terminator = term_type::interrupt_call;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case spu_itype::BISLED:
|
|
case spu_itype::IRET:
|
|
{
|
|
bb.terminator = term_type::interrupt_call;
|
|
break;
|
|
}
|
|
case spu_itype::BISL:
|
|
case spu_itype::BIZ:
|
|
case spu_itype::BINZ:
|
|
case spu_itype::BIHZ:
|
|
case spu_itype::BIHNZ:
|
|
{
|
|
if (op.d || op.e || bb.targets.size() != 1)
|
|
{
|
|
bb.terminator = term_type::interrupt_call;
|
|
}
|
|
else if (last_inst != spu_itype::BISL && bb.targets[0] == tia + 4 && op.ra == s_reg_lr)
|
|
{
|
|
// Conditional return (TODO)
|
|
bb.terminator = term_type::ret;
|
|
}
|
|
else if (last_inst == spu_itype::BISL)
|
|
{
|
|
// Indirect call
|
|
bb.terminator = term_type::indirect_call;
|
|
}
|
|
else
|
|
{
|
|
// TODO
|
|
bb.terminator = term_type::interrupt_call;
|
|
}
|
|
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
// Normal instruction
|
|
bb.terminator = term_type::fallthrough;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check function blocks, verify and print some reasons
|
|
for (auto& f : m_funcs)
|
|
{
|
|
if (g_cfg.core.spu_block_size != spu_block_size_type::giga)
|
|
{
|
|
break;
|
|
}
|
|
|
|
bool is_ok = true;
|
|
|
|
u32 used_stack = 0;
|
|
|
|
for (auto it = m_bbs.lower_bound(f.first); it != m_bbs.end() && it->second.func == f.first; ++it)
|
|
{
|
|
auto& bb = it->second;
|
|
auto& func = m_funcs.at(bb.func);
|
|
const u32 addr = it->first;
|
|
const u32 flim = bb.func + func.size * 4;
|
|
|
|
used_stack |= bb.stack_sub;
|
|
|
|
if (is_ok && bb.terminator >= term_type::indirect_call)
|
|
{
|
|
is_ok = false;
|
|
}
|
|
|
|
if (is_ok && bb.terminator == term_type::ret)
|
|
{
|
|
// Check $LR (alternative return registers are currently not supported)
|
|
if (u32 lr_orig = bb.reg_mod[s_reg_lr] ? addr : bb.reg_origin_abs[s_reg_lr]; lr_orig < 0x40000)
|
|
{
|
|
auto& src = m_bbs.at(lr_orig);
|
|
|
|
if (src.reg_load_mod[s_reg_lr] != func.reg_save_off[s_reg_lr])
|
|
{
|
|
LOG_ERROR(SPU, "Function 0x%05x: [0x%05x] $LR mismatch (src=0x%x; 0x%x vs 0x%x)", f.first, addr, lr_orig, src.reg_load_mod[0], func.reg_save_off[0]);
|
|
is_ok = false;
|
|
}
|
|
else if (src.reg_load_mod[s_reg_lr] == 0)
|
|
{
|
|
LOG_ERROR(SPU, "Function 0x%05x: [0x%05x] $LR modified (src=0x%x)", f.first, addr, lr_orig);
|
|
is_ok = false;
|
|
}
|
|
}
|
|
else if (lr_orig > 0x40000)
|
|
{
|
|
LOG_TODO(SPU, "Function 0x%05x: [0x%05x] $LR unpredictable (src=0x%x)", f.first, addr, lr_orig);
|
|
is_ok = false;
|
|
}
|
|
|
|
// Check $80..$127 (should be restored or unmodified)
|
|
for (u32 i = s_reg_80; is_ok && i <= s_reg_127; i++)
|
|
{
|
|
if (u32 orig = bb.reg_mod[i] ? addr : bb.reg_origin_abs[i]; orig < 0x40000)
|
|
{
|
|
auto& src = m_bbs.at(orig);
|
|
|
|
if (src.reg_load_mod[i] != func.reg_save_off[i])
|
|
{
|
|
LOG_ERROR(SPU, "Function 0x%05x: [0x%05x] $%u mismatch (src=0x%x; 0x%x vs 0x%x)", f.first, addr, i, orig, src.reg_load_mod[i], func.reg_save_off[i]);
|
|
is_ok = false;
|
|
}
|
|
}
|
|
else if (orig > 0x40000)
|
|
{
|
|
LOG_TODO(SPU, "Function 0x%05x: [0x%05x] $%u unpredictable (src=0x%x)", f.first, addr, i, orig);
|
|
is_ok = false;
|
|
}
|
|
|
|
if (func.reg_save_off[i] + 1 == 0)
|
|
{
|
|
LOG_ERROR(SPU, "Function 0x%05x: [0x%05x] $%u used incorrectly", f.first, addr, i);
|
|
is_ok = false;
|
|
}
|
|
}
|
|
|
|
// Check $SP (should be restored or unmodified)
|
|
if (bb.stack_sub != 0 && bb.stack_sub != 0x80000000)
|
|
{
|
|
LOG_ERROR(SPU, "Function 0x%05x: [0x%05x] return with stack frame 0x%x", f.first, addr, bb.stack_sub);
|
|
is_ok = false;
|
|
}
|
|
}
|
|
|
|
if (is_ok && bb.terminator == term_type::call)
|
|
{
|
|
// Check call instruction (TODO)
|
|
if (bb.stack_sub == 0)
|
|
{
|
|
// Call without a stack frame
|
|
LOG_ERROR(SPU, "Function 0x%05x: [0x%05x] frameless call", f.first, addr);
|
|
is_ok = false;
|
|
}
|
|
}
|
|
|
|
if (is_ok && bb.terminator == term_type::fallthrough)
|
|
{
|
|
// Can't just fall out of the function
|
|
if (bb.targets.size() != 1 || bb.targets[0] >= flim)
|
|
{
|
|
LOG_ERROR(SPU, "Function 0x%05x: [0x%05x] bad fallthrough to 0x%x", f.first, addr, bb.targets[0]);
|
|
is_ok = false;
|
|
}
|
|
}
|
|
|
|
if (is_ok && bb.stack_sub == 0x80000000)
|
|
{
|
|
LOG_ERROR(SPU, "Function 0x%05x: [0x%05x] bad stack frame", f.first, addr);
|
|
is_ok = false;
|
|
}
|
|
|
|
// Fill external function targets (calls, possibly tail calls)
|
|
for (u32 target : bb.targets)
|
|
{
|
|
if (target < bb.func || target >= flim || (bb.terminator == term_type::call && target == bb.func))
|
|
{
|
|
if (func.calls.find_first_of(target) + 1 == 0)
|
|
{
|
|
func.calls.push_back(target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_ok && used_stack && f.first == entry_point)
|
|
{
|
|
LOG_ERROR(SPU, "Function 0x%05x: considered possible chunk", f.first);
|
|
is_ok = false;
|
|
}
|
|
|
|
// if (is_ok && f.first > 0x1d240 && f.first < 0x1e000)
|
|
// {
|
|
// LOG_ERROR(SPU, "Function 0x%05x: manually disabled", f.first);
|
|
// is_ok = false;
|
|
// }
|
|
|
|
f.second.good = is_ok;
|
|
}
|
|
|
|
// Check function call graph
|
|
while (g_cfg.core.spu_block_size == spu_block_size_type::giga)
|
|
{
|
|
bool need_repeat = false;
|
|
|
|
for (auto& f : m_funcs)
|
|
{
|
|
if (!f.second.good)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
for (u32 call : f.second.calls)
|
|
{
|
|
const auto ffound = std::as_const(m_funcs).find(call);
|
|
|
|
if (ffound == m_funcs.cend() || ffound->second.good == false)
|
|
{
|
|
need_repeat = true;
|
|
|
|
if (f.second.good)
|
|
{
|
|
LOG_ERROR(SPU, "Function 0x%05x: calls bad function (0x%05x)", f.first, ffound->first);
|
|
f.second.good = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!need_repeat)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (result.size() == 1)
|
|
{
|
|
// Blocks starting from 0x0 or invalid instruction won't be compiled, may need special interpreter fallback
|
|
result.clear();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void spu_recompiler_base::dump(std::string& out)
|
|
{
|
|
for (auto& bb : m_bbs)
|
|
{
|
|
if (m_block_info[bb.first / 4])
|
|
{
|
|
fmt::append(out, "A: [0x%05x] %s\n", bb.first, m_entry_info[bb.first / 4] ? (m_ret_info[bb.first / 4] ? "Chunk" : "Entry") : "Block");
|
|
|
|
fmt::append(out, "\tF: 0x%05x\n", bb.second.func);
|
|
|
|
for (u32 pred : bb.second.preds)
|
|
{
|
|
fmt::append(out, "\t<- 0x%05x\n", pred);
|
|
}
|
|
|
|
for (u32 target : bb.second.targets)
|
|
{
|
|
fmt::append(out, "\t-> 0x%05x%s\n", target, m_bbs.count(target) ? "" : " (null)");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
fmt::append(out, "A: [0x%05x] ?\n", bb.first);
|
|
}
|
|
}
|
|
|
|
for (auto& f : m_funcs)
|
|
{
|
|
fmt::append(out, "F: [0x%05x]%s\n", f.first, f.second.good ? " (good)" : " (bad)");
|
|
|
|
fmt::append(out, "\tN: 0x%05x\n", f.second.size * 4 + f.first);
|
|
|
|
for (u32 call : f.second.calls)
|
|
{
|
|
fmt::append(out, "\t>> 0x%05x%s\n", call, m_funcs.count(call) ? "" : " (null)");
|
|
}
|
|
}
|
|
|
|
out += '\n';
|
|
}
|
|
|
|
#ifdef LLVM_AVAILABLE
|
|
|
|
#include "Emu/CPU/CPUTranslator.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Analysis/Lint.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/Vectorize.h"
|
|
|
|
class spu_llvm_recompiler : public spu_recompiler_base, public cpu_translator
|
|
{
|
|
// JIT Instance
|
|
jit_compiler m_jit{{}, jit_compiler::cpu(g_cfg.core.llvm_cpu)};
|
|
|
|
// Interpreter table size power
|
|
const u8 m_interp_magn;
|
|
|
|
// Constant opcode bits
|
|
u32 m_op_const_mask = -1;
|
|
|
|
// Current function chunk entry point
|
|
u32 m_entry;
|
|
|
|
// Main entry point offset
|
|
u32 m_base;
|
|
|
|
// Current function (chunk)
|
|
llvm::Function* m_function;
|
|
|
|
llvm::Value* m_thread;
|
|
llvm::Value* m_lsptr;
|
|
llvm::Value* m_interp_op;
|
|
llvm::Value* m_interp_pc;
|
|
llvm::Value* m_interp_table;
|
|
llvm::Value* m_interp_7f0;
|
|
llvm::Value* m_interp_regs;
|
|
|
|
// Helpers
|
|
llvm::Value* m_base_pc;
|
|
llvm::Value* m_interp_pc_next;
|
|
llvm::BasicBlock* m_interp_bblock;
|
|
|
|
// i8*, contains constant vm::g_base_addr value
|
|
llvm::Value* m_memptr;
|
|
|
|
// Pointers to registers in the thread context
|
|
std::array<llvm::Value*, s_reg_max> m_reg_addr;
|
|
|
|
// Global variable (function table)
|
|
llvm::GlobalVariable* m_function_table{};
|
|
|
|
// Helpers (interpreter)
|
|
llvm::GlobalVariable* m_scale_float_to{};
|
|
llvm::GlobalVariable* m_scale_to_float{};
|
|
|
|
// Helper for check_state
|
|
llvm::GlobalVariable* m_fake_global1{};
|
|
|
|
// Function for check_state execution
|
|
llvm::Function* m_test_state{};
|
|
|
|
llvm::MDNode* m_md_unlikely;
|
|
llvm::MDNode* m_md_likely;
|
|
|
|
struct block_info
|
|
{
|
|
// Pointer to the analyser
|
|
spu_recompiler_base::block_info* bb{};
|
|
|
|
// Current block's entry block
|
|
llvm::BasicBlock* block;
|
|
|
|
// Final block (for PHI nodes, set after completion)
|
|
llvm::BasicBlock* block_end{};
|
|
|
|
// Current register values
|
|
std::array<llvm::Value*, s_reg_max> reg{};
|
|
|
|
// PHI nodes created for this block (if any)
|
|
std::array<llvm::PHINode*, s_reg_max> phi{};
|
|
|
|
// Store instructions
|
|
std::array<llvm::StoreInst*, s_reg_max> store{};
|
|
};
|
|
|
|
struct function_info
|
|
{
|
|
// Standard callable chunk
|
|
llvm::Function* chunk{};
|
|
|
|
// Callable function
|
|
llvm::Function* fn{};
|
|
|
|
// Registers possibly loaded in the entry block
|
|
std::array<llvm::Value*, s_reg_max> load{};
|
|
};
|
|
|
|
// Current block
|
|
block_info* m_block;
|
|
|
|
// Current function or chunk
|
|
function_info* m_finfo;
|
|
|
|
// All blocks in the current function chunk
|
|
std::unordered_map<u32, block_info, value_hash<u32, 2>> m_blocks;
|
|
|
|
// Block list for processing
|
|
std::vector<u32> m_block_queue;
|
|
|
|
// All function chunks in current SPU compile unit
|
|
std::unordered_map<u32, function_info, value_hash<u32, 2>> m_functions;
|
|
|
|
// Function chunk list for processing
|
|
std::vector<u32> m_function_queue;
|
|
|
|
// Add or get the function chunk
|
|
function_info* add_function(u32 addr)
|
|
{
|
|
// Enqueue if necessary
|
|
const auto empl = m_functions.try_emplace(addr);
|
|
|
|
if (!empl.second)
|
|
{
|
|
return &empl.first->second;
|
|
}
|
|
|
|
// Chunk function type
|
|
// 0. Result (void)
|
|
// 1. Thread context
|
|
// 2. Local storage pointer
|
|
// 3.
|
|
const auto chunk_type = get_ftype<void, u8*, u8*, u32>();
|
|
|
|
// Get function chunk name
|
|
const std::string name = fmt::format("spu-chunk-0x%05x", addr);
|
|
llvm::Function* result = llvm::cast<llvm::Function>(m_module->getOrInsertFunction(name, chunk_type).getCallee());
|
|
|
|
// Set parameters
|
|
result->setLinkage(llvm::GlobalValue::InternalLinkage);
|
|
result->addAttribute(1, llvm::Attribute::NoAlias);
|
|
result->addAttribute(2, llvm::Attribute::NoAlias);
|
|
result->setCallingConv(llvm::CallingConv::GHC);
|
|
|
|
empl.first->second.chunk = result;
|
|
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::giga)
|
|
{
|
|
// Find good real function
|
|
const auto ffound = m_funcs.find(addr);
|
|
|
|
if (ffound != m_funcs.end() && ffound->second.good)
|
|
{
|
|
// Real function type (not equal to chunk type)
|
|
// 4. $SP (only 32 bit value)
|
|
const auto func_type = get_ftype<u32[4][2], u8*, u8*, u32, u32, u32[4], u32[4]>();
|
|
|
|
const std::string fname = fmt::format("spu-function-0x%05x", addr);
|
|
llvm::Function* fn = llvm::cast<llvm::Function>(m_module->getOrInsertFunction(fname, func_type).getCallee());
|
|
|
|
fn->setLinkage(llvm::GlobalValue::InternalLinkage);
|
|
fn->addAttribute(1, llvm::Attribute::NoAlias);
|
|
fn->addAttribute(2, llvm::Attribute::NoAlias);
|
|
fn->setCallingConv(llvm::CallingConv::GHC);
|
|
empl.first->second.fn = fn;
|
|
}
|
|
}
|
|
|
|
// Enqueue
|
|
m_function_queue.push_back(addr);
|
|
|
|
return &empl.first->second;
|
|
}
|
|
|
|
// Create tail call to the function chunk (non-tail calls are just out of question)
|
|
void tail_chunk(llvm::Value* chunk, llvm::Value* base_pc = nullptr)
|
|
{
|
|
auto call = m_ir->CreateCall(chunk, {m_thread, m_lsptr, base_pc ? base_pc : m_base_pc});
|
|
call->setCallingConv(llvm::CallingConv::GHC);
|
|
call->setTailCall();
|
|
m_ir->CreateRetVoid();
|
|
}
|
|
|
|
// Call the real function
|
|
void call_function(llvm::Function* fn, bool tail = false)
|
|
{
|
|
llvm::Value* lr{};
|
|
llvm::Value* sp{};
|
|
llvm::Value* args[2]{};
|
|
|
|
if (!m_finfo->fn && !m_block)
|
|
{
|
|
lr = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::gpr, +s_reg_lr, &v128::_u32, 3));
|
|
sp = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::gpr, +s_reg_sp, &v128::_u32, 3));
|
|
|
|
for (u32 i = 3; i < 3 + std::size(args); i++)
|
|
{
|
|
args[i - 3] = m_ir->CreateLoad(spu_ptr<u32[4]>(&spu_thread::gpr, +i));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
lr = m_ir->CreateExtractElement(get_reg_fixed<u32[4]>(s_reg_lr).value, 3);
|
|
sp = m_ir->CreateExtractElement(get_reg_fixed<u32[4]>(s_reg_sp).value, 3);
|
|
|
|
for (u32 i = 3; i < 3 + std::size(args); i++)
|
|
{
|
|
args[i - 3] = get_reg_fixed<u32[4]>(i).value;
|
|
}
|
|
}
|
|
|
|
const auto _call = m_ir->CreateCall(verify(HERE, fn), {m_thread, m_lsptr, m_base_pc, sp, args[0], args[1]});
|
|
|
|
_call->setCallingConv(llvm::CallingConv::GHC);
|
|
|
|
// Tail call using loaded LR value (gateway from a chunk)
|
|
if (!m_finfo->fn)
|
|
{
|
|
lr = m_ir->CreateAnd(lr, 0x3fffc);
|
|
m_ir->CreateStore(lr, spu_ptr<u32>(&spu_thread::pc));
|
|
m_ir->CreateStore(_call, spu_ptr<u32[4][2]>(&spu_thread::gpr, 3));
|
|
m_ir->CreateBr(add_block_indirect({}, value<u32>(lr)));
|
|
}
|
|
else if (tail)
|
|
{
|
|
_call->setTailCall();
|
|
m_ir->CreateRet(_call);
|
|
}
|
|
else
|
|
{
|
|
// TODO: initialize $LR with a constant
|
|
for (u32 i = 0; i < s_reg_max; i++)
|
|
{
|
|
if (i != s_reg_lr && i != s_reg_sp && (i < s_reg_80 || i > s_reg_127))
|
|
{
|
|
m_block->reg[i] = m_ir->CreateLoad(init_reg_fixed(i));
|
|
}
|
|
}
|
|
|
|
for (u32 i = 3; i < 3 + std::size(args); i++)
|
|
{
|
|
m_block->reg[i] = m_ir->CreateExtractValue(_call, {i - 3});
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit return from the real function
|
|
void ret_function()
|
|
{
|
|
llvm::Value* r = llvm::ConstantAggregateZero::get(get_type<u32[4][2]>());
|
|
|
|
for (u32 i = 3; i < 5; i++)
|
|
{
|
|
r = m_ir->CreateInsertValue(r, get_reg_fixed<u32[4]>(i).value, {i - 3});
|
|
}
|
|
|
|
m_ir->CreateRet(r);
|
|
}
|
|
|
|
void set_function(llvm::Function* func)
|
|
{
|
|
m_function = func;
|
|
m_thread = &*func->arg_begin();
|
|
m_lsptr = &*(func->arg_begin() + 1);
|
|
m_base_pc = &*(func->arg_begin() + 2);
|
|
|
|
m_reg_addr.fill(nullptr);
|
|
m_block = nullptr;
|
|
m_finfo = nullptr;
|
|
m_blocks.clear();
|
|
m_block_queue.clear();
|
|
m_ir->SetInsertPoint(llvm::BasicBlock::Create(m_context, "", m_function));
|
|
m_memptr = m_ir->CreateLoad(spu_ptr<u8*>(&spu_thread::memory_base_addr));
|
|
}
|
|
|
|
// Add block with current block as a predecessor
|
|
llvm::BasicBlock* add_block(u32 target)
|
|
{
|
|
// Check the predecessor
|
|
const bool pred_found = m_block_info[target / 4] && m_preds[target].find_first_of(m_pos) + 1;
|
|
|
|
if (m_blocks.empty())
|
|
{
|
|
// Special case: first block, proceed normally
|
|
if (auto fn = std::exchange(m_finfo->fn, nullptr))
|
|
{
|
|
// Create a gateway
|
|
call_function(fn, true);
|
|
|
|
m_finfo->fn = fn;
|
|
m_function = fn;
|
|
m_thread = &*fn->arg_begin();
|
|
m_lsptr = &*(fn->arg_begin() + 1);
|
|
m_base_pc = &*(fn->arg_begin() + 2);
|
|
m_ir->SetInsertPoint(llvm::BasicBlock::Create(m_context, "", fn));
|
|
m_memptr = m_ir->CreateLoad(spu_ptr<u8*>(&spu_thread::memory_base_addr));
|
|
|
|
// Load registers at the entry chunk
|
|
for (u32 i = 0; i < s_reg_max; i++)
|
|
{
|
|
if (i >= s_reg_80 && i <= s_reg_127)
|
|
{
|
|
// TODO
|
|
//m_finfo->load[i] = llvm::UndefValue::get(get_reg_type(i));
|
|
}
|
|
|
|
m_finfo->load[i] = m_ir->CreateLoad(init_reg_fixed(i));
|
|
}
|
|
|
|
// Load $SP
|
|
//m_finfo->load[s_reg_sp] = m_ir->CreateVectorSplat(4, &*(fn->arg_begin() + 3));
|
|
|
|
// Load first args
|
|
for (u32 i = 3; i < 5; i++)
|
|
{
|
|
m_finfo->load[i] = &*(fn->arg_begin() + i + 1);
|
|
}
|
|
}
|
|
}
|
|
else if (m_block_info[target / 4] && m_entry_info[target / 4] && !(pred_found && m_entry == target) && (!m_finfo->fn || !m_ret_info[target / 4]))
|
|
{
|
|
// Generate a tail call to the function chunk
|
|
const auto cblock = m_ir->GetInsertBlock();
|
|
const auto result = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->SetInsertPoint(result);
|
|
const auto pfinfo = add_function(target);
|
|
|
|
if (pfinfo->fn)
|
|
{
|
|
// Tail call to the real function
|
|
call_function(pfinfo->fn, true);
|
|
|
|
if (!result->getTerminator())
|
|
ret_function();
|
|
}
|
|
else
|
|
{
|
|
// Just a boring tail call to another chunk
|
|
update_pc(target);
|
|
tail_chunk(pfinfo->chunk);
|
|
}
|
|
|
|
m_ir->SetInsertPoint(cblock);
|
|
return result;
|
|
}
|
|
else if (!pred_found || !m_block_info[target / 4])
|
|
{
|
|
if (m_block_info[target / 4])
|
|
{
|
|
LOG_ERROR(SPU, "[0x%x] Predecessor not found for target 0x%x (chunk=0x%x, entry=0x%x, size=%u)", m_pos, target, m_entry, m_function_queue[0], m_size / 4);
|
|
}
|
|
|
|
const auto cblock = m_ir->GetInsertBlock();
|
|
const auto result = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->SetInsertPoint(result);
|
|
update_pc(target);
|
|
m_ir->CreateRetVoid();
|
|
m_ir->SetInsertPoint(cblock);
|
|
return result;
|
|
}
|
|
|
|
auto& result = m_blocks[target].block;
|
|
|
|
if (!result)
|
|
{
|
|
result = llvm::BasicBlock::Create(m_context, fmt::format("b-0x%x", target), m_function);
|
|
|
|
// Add the block to the queue
|
|
m_block_queue.push_back(target);
|
|
}
|
|
else if (m_block && m_blocks[target].block_end)
|
|
{
|
|
// Connect PHI nodes if necessary
|
|
for (u32 i = 0; i < s_reg_max; i++)
|
|
{
|
|
if (const auto phi = m_blocks[target].phi[i])
|
|
{
|
|
const auto typ = phi->getType() == get_type<f64[4]>() ? get_type<f64[4]>() : get_reg_type(i);
|
|
phi->addIncoming(get_reg_fixed(i, typ), m_block->block_end);
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
template <typename T = u8>
|
|
llvm::Value* _ptr(llvm::Value* base, u32 offset)
|
|
{
|
|
const auto off = m_ir->CreateGEP(base, m_ir->getInt64(offset));
|
|
const auto ptr = m_ir->CreateBitCast(off, get_type<T*>());
|
|
return ptr;
|
|
}
|
|
|
|
template <typename T, typename... Args>
|
|
llvm::Value* spu_ptr(Args... offset_args)
|
|
{
|
|
return _ptr<T>(m_thread, ::offset32(offset_args...));
|
|
}
|
|
|
|
template <typename T, typename... Args>
|
|
llvm::Value* spu_ptr(value_t<u64> add, Args... offset_args)
|
|
{
|
|
const auto off = m_ir->CreateGEP(m_thread, m_ir->getInt64(::offset32(offset_args...)));
|
|
const auto ptr = m_ir->CreateBitCast(m_ir->CreateAdd(off, add.value), get_type<T*>());
|
|
return ptr;
|
|
}
|
|
|
|
// Return default register type
|
|
llvm::Type* get_reg_type(u32 index)
|
|
{
|
|
if (index < 128)
|
|
{
|
|
return get_type<u32[4]>();
|
|
}
|
|
|
|
switch (index)
|
|
{
|
|
case s_reg_mfc_eal:
|
|
case s_reg_mfc_lsa:
|
|
return get_type<u32>();
|
|
case s_reg_mfc_tag:
|
|
return get_type<u8>();
|
|
case s_reg_mfc_size:
|
|
return get_type<u16>();
|
|
default:
|
|
fmt::throw_exception("get_reg_type(%u): invalid register index" HERE, index);
|
|
}
|
|
}
|
|
|
|
u32 get_reg_offset(u32 index)
|
|
{
|
|
if (index < 128)
|
|
{
|
|
return ::offset32(&spu_thread::gpr, index);
|
|
}
|
|
|
|
switch (index)
|
|
{
|
|
case s_reg_mfc_eal: return ::offset32(&spu_thread::ch_mfc_cmd, &spu_mfc_cmd::eal);
|
|
case s_reg_mfc_lsa: return ::offset32(&spu_thread::ch_mfc_cmd, &spu_mfc_cmd::lsa);
|
|
case s_reg_mfc_tag: return ::offset32(&spu_thread::ch_mfc_cmd, &spu_mfc_cmd::tag);
|
|
case s_reg_mfc_size: return ::offset32(&spu_thread::ch_mfc_cmd, &spu_mfc_cmd::size);
|
|
default:
|
|
fmt::throw_exception("get_reg_offset(%u): invalid register index" HERE, index);
|
|
}
|
|
}
|
|
|
|
llvm::Value* init_reg_fixed(u32 index)
|
|
{
|
|
if (!m_block)
|
|
{
|
|
return m_ir->CreateBitCast(_ptr<u8>(m_thread, get_reg_offset(index)), get_reg_type(index)->getPointerTo());
|
|
}
|
|
|
|
auto& ptr = m_reg_addr.at(index);
|
|
|
|
if (!ptr)
|
|
{
|
|
// Save and restore current insert point if necessary
|
|
const auto block_cur = m_ir->GetInsertBlock();
|
|
|
|
// Emit register pointer at the beginning of the function chunk
|
|
m_ir->SetInsertPoint(m_function->getEntryBlock().getTerminator());
|
|
ptr = _ptr<u8>(m_thread, get_reg_offset(index));
|
|
ptr = m_ir->CreateBitCast(ptr, get_reg_type(index)->getPointerTo());
|
|
m_ir->SetInsertPoint(block_cur);
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
// Get pointer to the vector register (interpreter only)
|
|
template <typename T, uint I>
|
|
llvm::Value* init_vr(const bf_t<u32, I, 7>& index)
|
|
{
|
|
if (!m_interp_magn)
|
|
{
|
|
m_interp_7f0 = m_ir->getInt32(0x7f0);
|
|
m_interp_regs = _ptr(m_thread, get_reg_offset(0));
|
|
}
|
|
|
|
// Extract reg index
|
|
const auto isl = I >= 4 ? m_interp_op : m_ir->CreateShl(m_interp_op, u64{4 - I});
|
|
const auto isr = I <= 4 ? m_interp_op : m_ir->CreateLShr(m_interp_op, u64{I - 4});
|
|
const auto idx = m_ir->CreateAnd(I > 4 ? isr : isl, m_interp_7f0);
|
|
|
|
// Pointer to the register
|
|
return m_ir->CreateBitCast(m_ir->CreateGEP(m_interp_regs, m_ir->CreateZExt(idx, get_type<u64>())), get_type<T*>());
|
|
}
|
|
|
|
llvm::Value* double_as_uint64(llvm::Value* val)
|
|
{
|
|
return bitcast<u64[4]>(val);
|
|
}
|
|
|
|
llvm::Value* uint64_as_double(llvm::Value* val)
|
|
{
|
|
return bitcast<f64[4]>(val);
|
|
}
|
|
|
|
llvm::Value* double_to_xfloat(llvm::Value* val)
|
|
{
|
|
verify("double_to_xfloat" HERE), val, val->getType() == get_type<f64[4]>();
|
|
|
|
const auto d = double_as_uint64(val);
|
|
const auto s = m_ir->CreateAnd(m_ir->CreateLShr(d, 32), 0x80000000);
|
|
const auto m = m_ir->CreateXor(m_ir->CreateLShr(d, 29), 0x40000000);
|
|
const auto r = m_ir->CreateOr(m_ir->CreateAnd(m, 0x7fffffff), s);
|
|
return m_ir->CreateTrunc(m_ir->CreateSelect(m_ir->CreateIsNotNull(d), r, splat<u64[4]>(0).eval(m_ir)), get_type<u32[4]>());
|
|
}
|
|
|
|
llvm::Value* xfloat_to_double(llvm::Value* val)
|
|
{
|
|
verify("xfloat_to_double" HERE), val, val->getType() == get_type<u32[4]>();
|
|
|
|
const auto x = m_ir->CreateZExt(val, get_type<u64[4]>());
|
|
const auto s = m_ir->CreateShl(m_ir->CreateAnd(x, 0x80000000), 32);
|
|
const auto a = m_ir->CreateAnd(x, 0x7fffffff);
|
|
const auto m = m_ir->CreateShl(m_ir->CreateAdd(a, splat<u64[4]>(0x1c0000000).eval(m_ir)), 29);
|
|
const auto r = m_ir->CreateSelect(m_ir->CreateICmpSGT(a, splat<u64[4]>(0x7fffff).eval(m_ir)), m, splat<u64[4]>(0).eval(m_ir));
|
|
const auto f = m_ir->CreateOr(s, r);
|
|
return uint64_as_double(f);
|
|
}
|
|
|
|
// Clamp double values to ±Smax, flush values smaller than ±Smin to positive zero
|
|
llvm::Value* xfloat_in_double(llvm::Value* val)
|
|
{
|
|
verify("xfloat_in_double" HERE), val, val->getType() == get_type<f64[4]>();
|
|
|
|
const auto smax = uint64_as_double(splat<u64[4]>(0x47ffffffe0000000).eval(m_ir));
|
|
const auto smin = uint64_as_double(splat<u64[4]>(0x3810000000000000).eval(m_ir));
|
|
|
|
const auto d = double_as_uint64(val);
|
|
const auto s = m_ir->CreateAnd(d, 0x8000000000000000);
|
|
const auto a = uint64_as_double(m_ir->CreateAnd(d, 0x7fffffffe0000000));
|
|
const auto n = m_ir->CreateFCmpOLT(a, smax);
|
|
const auto z = m_ir->CreateFCmpOLT(a, smin);
|
|
const auto c = double_as_uint64(m_ir->CreateSelect(n, a, smax));
|
|
return m_ir->CreateSelect(z, fsplat<f64[4]>(0.).eval(m_ir), uint64_as_double(m_ir->CreateOr(c, s)));
|
|
}
|
|
|
|
// Expand 32-bit mask for xfloat values to 64-bit, 29 least significant bits are always zero
|
|
llvm::Value* conv_xfloat_mask(llvm::Value* val)
|
|
{
|
|
const auto d = m_ir->CreateZExt(val, get_type<u64[4]>());
|
|
const auto s = m_ir->CreateShl(m_ir->CreateAnd(d, 0x80000000), 32);
|
|
const auto e = m_ir->CreateLShr(m_ir->CreateAShr(m_ir->CreateShl(d, 33), 4), 1);
|
|
return m_ir->CreateOr(s, e);
|
|
}
|
|
|
|
llvm::Value* get_reg_raw(u32 index)
|
|
{
|
|
if (!m_block || index >= m_block->reg.size())
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
return m_block->reg[index];
|
|
}
|
|
|
|
llvm::Value* get_reg_fixed(u32 index, llvm::Type* type)
|
|
{
|
|
llvm::Value* dummy{};
|
|
|
|
auto& reg = *(m_block ? &m_block->reg.at(index) : &dummy);
|
|
|
|
if (!reg)
|
|
{
|
|
// Load register value if necessary
|
|
reg = m_finfo && m_finfo->load[index] ? m_finfo->load[index] : m_ir->CreateLoad(init_reg_fixed(index));
|
|
}
|
|
|
|
if (reg->getType() == get_type<f64[4]>())
|
|
{
|
|
if (type == reg->getType())
|
|
{
|
|
return reg;
|
|
}
|
|
|
|
return bitcast(double_to_xfloat(reg), type);
|
|
}
|
|
|
|
if (type == get_type<f64[4]>())
|
|
{
|
|
return xfloat_to_double(bitcast<u32[4]>(reg));
|
|
}
|
|
|
|
return bitcast(reg, type);
|
|
}
|
|
|
|
template <typename T = u32[4]>
|
|
value_t<T> get_reg_fixed(u32 index)
|
|
{
|
|
value_t<T> r;
|
|
r.value = get_reg_fixed(index, get_type<T>());
|
|
return r;
|
|
}
|
|
|
|
template <typename T = u32[4], uint I>
|
|
value_t<T> get_vr(const bf_t<u32, I, 7>& index)
|
|
{
|
|
value_t<T> r;
|
|
|
|
if ((m_op_const_mask & index.data_mask()) != index.data_mask())
|
|
{
|
|
// Update const mask if necessary
|
|
if (I >= (32u - m_interp_magn))
|
|
{
|
|
m_op_const_mask |= index.data_mask();
|
|
}
|
|
|
|
// Load reg
|
|
if (get_type<T>() == get_type<f64[4]>())
|
|
{
|
|
r.value = xfloat_to_double(m_ir->CreateLoad(init_vr<u32[4]>(index)));
|
|
}
|
|
else
|
|
{
|
|
r.value = m_ir->CreateLoad(init_vr<T>(index));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
r.value = get_reg_fixed(index, get_type<T>());
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
template <typename U, uint I>
|
|
auto get_vr_as(U&&, const bf_t<u32, I, 7>& index)
|
|
{
|
|
return get_vr<typename llvm_expr_t<U>::type>(index);
|
|
}
|
|
|
|
template <typename T = u32[4], typename... Args>
|
|
std::tuple<std::conditional_t<false, Args, value_t<T>>...> get_vrs(const Args&... args)
|
|
{
|
|
return {get_vr<T>(args)...};
|
|
}
|
|
|
|
template <typename T = u32[4], uint I>
|
|
llvm_match_t<T> match_vr(const bf_t<u32, I, 7>& index)
|
|
{
|
|
llvm_match_t<T> r;
|
|
|
|
if (m_block)
|
|
{
|
|
auto v = m_block->reg.at(index);
|
|
|
|
if (v && v->getType() == get_type<T>())
|
|
{
|
|
r.value = v;
|
|
return r;
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
template <typename U, uint I>
|
|
auto match_vr_as(U&&, const bf_t<u32, I, 7>& index)
|
|
{
|
|
return match_vr<typename llvm_expr_t<U>::type>(index);
|
|
}
|
|
|
|
template <typename... Types, uint I, typename F>
|
|
bool match_vr(const bf_t<u32, I, 7>& index, F&& pred)
|
|
{
|
|
return (( match_vr<Types>(index) ? pred(match_vr<Types>(index), match<Types>()) : false ) || ...);
|
|
}
|
|
|
|
template <typename T = u32[4], typename... Args>
|
|
std::tuple<std::conditional_t<false, Args, llvm_match_t<T>>...> match_vrs(const Args&... args)
|
|
{
|
|
return {match_vr<T>(args)...};
|
|
}
|
|
|
|
// Extract scalar value from the preferred slot
|
|
template <typename T>
|
|
auto get_scalar(value_t<T> value)
|
|
{
|
|
using e_type = std::remove_extent_t<T>;
|
|
|
|
static_assert(sizeof(T) == 16 || std::is_same_v<f64[4], T>, "Unknown vector type");
|
|
|
|
if (auto [ok, v] = match_expr(value, vsplat<T>(match<e_type>())); ok)
|
|
{
|
|
return eval(v);
|
|
}
|
|
|
|
if constexpr (sizeof(e_type) == 1)
|
|
{
|
|
return eval(extract(value, 12));
|
|
}
|
|
else if constexpr (sizeof(e_type) == 2)
|
|
{
|
|
return eval(extract(value, 6));
|
|
}
|
|
else if constexpr (sizeof(e_type) == 4 || sizeof(T) == 32)
|
|
{
|
|
return eval(extract(value, 3));
|
|
}
|
|
else
|
|
{
|
|
return eval(extract(value, 1));
|
|
}
|
|
}
|
|
|
|
void set_reg_fixed(u32 index, llvm::Value* value, bool fixup = true)
|
|
{
|
|
llvm::StoreInst* dummy{};
|
|
|
|
// Check
|
|
verify(HERE), !m_block || m_regmod[m_pos / 4] == index;
|
|
|
|
// Test for special case
|
|
const bool is_xfloat = value->getType() == get_type<f64[4]>();
|
|
|
|
// Clamp value if necessary
|
|
const auto saved_value = is_xfloat && fixup ? xfloat_in_double(value) : value;
|
|
|
|
// Set register value
|
|
if (m_block)
|
|
{
|
|
m_block->reg.at(index) = saved_value;
|
|
}
|
|
|
|
// Get register location
|
|
const auto addr = init_reg_fixed(index);
|
|
|
|
auto& _store = *(m_block ? &m_block->store[index] : &dummy);
|
|
|
|
// Erase previous dead store instruction if necessary
|
|
if (_store)
|
|
{
|
|
// TODO: better cross-block dead store elimination
|
|
_store->eraseFromParent();
|
|
}
|
|
|
|
if (m_finfo && m_finfo->fn)
|
|
{
|
|
if (index == s_reg_lr || (index >= 3 && index <= 4) || (index >= s_reg_80 && index <= s_reg_127))
|
|
{
|
|
// Don't save some registers in true functions
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Write register to the context
|
|
_store = m_ir->CreateStore(is_xfloat ? double_to_xfloat(saved_value) : m_ir->CreateBitCast(value, addr->getType()->getPointerElementType()), addr);
|
|
}
|
|
|
|
template <typename T, uint I>
|
|
void set_vr(const bf_t<u32, I, 7>& index, T expr, bool fixup = true)
|
|
{
|
|
// Process expression
|
|
const auto value = expr.eval(m_ir);
|
|
|
|
// Test for special case
|
|
const bool is_xfloat = value->getType() == get_type<f64[4]>();
|
|
|
|
if ((m_op_const_mask & index.data_mask()) != index.data_mask())
|
|
{
|
|
// Update const mask if necessary
|
|
if (I >= (32u - m_interp_magn))
|
|
{
|
|
m_op_const_mask |= index.data_mask();
|
|
}
|
|
|
|
// Clamp value if necessary
|
|
const auto saved_value = is_xfloat && fixup ? xfloat_in_double(value) : value;
|
|
|
|
// Store value
|
|
m_ir->CreateStore(is_xfloat ? double_to_xfloat(saved_value) : m_ir->CreateBitCast(value, get_type<u32[4]>()), init_vr<u32[4]>(index));
|
|
return;
|
|
}
|
|
|
|
set_reg_fixed(index, value, fixup);
|
|
}
|
|
|
|
template <typename T = u32[4], uint I, uint N>
|
|
value_t<T> get_imm(const bf_t<u32, I, N>& imm, bool mask = true)
|
|
{
|
|
if ((m_op_const_mask & imm.data_mask()) != imm.data_mask())
|
|
{
|
|
// Update const mask if necessary
|
|
if (I >= (32u - m_interp_magn))
|
|
{
|
|
m_op_const_mask |= imm.data_mask();
|
|
}
|
|
|
|
// Extract unsigned immediate (skip AND if mask == false or truncated anyway)
|
|
value_t<T> r;
|
|
r.value = m_interp_op;
|
|
r.value = I == 0 ? r.value : m_ir->CreateLShr(r.value, u64{I});
|
|
r.value = !mask || N >= r.esize ? r.value : m_ir->CreateAnd(r.value, imm.data_mask() >> I);
|
|
|
|
if (r.esize != 32)
|
|
{
|
|
r.value = m_ir->CreateZExtOrTrunc(r.value, get_type<T>()->getScalarType());
|
|
}
|
|
|
|
if (r.is_vector)
|
|
{
|
|
r.value = m_ir->CreateVectorSplat(r.is_vector, r.value);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
return eval(splat<T>(imm));
|
|
}
|
|
|
|
template <typename T = u32[4], uint I, uint N>
|
|
value_t<T> get_imm(const bf_t<s32, I, N>& imm)
|
|
{
|
|
if ((m_op_const_mask & imm.data_mask()) != imm.data_mask())
|
|
{
|
|
// Update const mask if necessary
|
|
if (I >= (32u - m_interp_magn))
|
|
{
|
|
m_op_const_mask |= imm.data_mask();
|
|
}
|
|
|
|
// Extract signed immediate (skip sign ext if truncated anyway)
|
|
value_t<T> r;
|
|
r.value = m_interp_op;
|
|
r.value = I + N == 32 || N >= r.esize ? r.value : m_ir->CreateShl(r.value, u64{32u - I - N});
|
|
r.value = N == 32 || N >= r.esize ? r.value : m_ir->CreateAShr(r.value, u64{32u - N});
|
|
r.value = I == 0 || N < r.esize ? r.value : m_ir->CreateLShr(r.value, u64{I});
|
|
|
|
if (r.esize != 32)
|
|
{
|
|
r.value = m_ir->CreateSExtOrTrunc(r.value, get_type<T>()->getScalarType());
|
|
}
|
|
|
|
if (r.is_vector)
|
|
{
|
|
r.value = m_ir->CreateVectorSplat(r.is_vector, r.value);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
return eval(splat<T>(imm));
|
|
}
|
|
|
|
// Get PC for given instruction address
|
|
llvm::Value* get_pc(u32 addr)
|
|
{
|
|
return m_ir->CreateAdd(m_base_pc, m_ir->getInt32(addr - m_base));
|
|
}
|
|
|
|
// Update PC for current or explicitly specified instruction address
|
|
void update_pc(u32 target = -1)
|
|
{
|
|
m_ir->CreateStore(get_pc(target + 1 ? target : m_pos), spu_ptr<u32>(&spu_thread::pc), true);
|
|
}
|
|
|
|
// Call cpu_thread::check_state if necessary and return or continue (full check)
|
|
void check_state(u32 addr)
|
|
{
|
|
const auto pstate = spu_ptr<u32>(&spu_thread::state);
|
|
const auto _body = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto check = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(m_ir->CreateICmpEQ(m_ir->CreateLoad(pstate, true), m_ir->getInt32(0)), _body, check, m_md_likely);
|
|
m_ir->SetInsertPoint(check);
|
|
update_pc(addr);
|
|
m_ir->CreateStore(m_ir->getFalse(), m_fake_global1, true);
|
|
m_ir->CreateBr(_body);
|
|
m_ir->SetInsertPoint(_body);
|
|
}
|
|
|
|
public:
|
|
spu_llvm_recompiler(u8 interp_magn = 0)
|
|
: spu_recompiler_base()
|
|
, cpu_translator(nullptr, false)
|
|
, m_interp_magn(interp_magn)
|
|
{
|
|
}
|
|
|
|
virtual void init() override
|
|
{
|
|
// Initialize if necessary
|
|
if (!m_spurt)
|
|
{
|
|
m_cache = fxm::get<spu_cache>();
|
|
m_spurt = fxm::get_always<spu_runtime>();
|
|
cpu_translator::initialize(m_jit.get_context(), m_jit.get_engine());
|
|
|
|
const auto md_name = llvm::MDString::get(m_context, "branch_weights");
|
|
const auto md_low = llvm::ValueAsMetadata::get(llvm::ConstantInt::get(GetType<u32>(), 1));
|
|
const auto md_high = llvm::ValueAsMetadata::get(llvm::ConstantInt::get(GetType<u32>(), 999));
|
|
|
|
// Metadata for branch weights
|
|
m_md_likely = llvm::MDTuple::get(m_context, {md_name, md_high, md_low});
|
|
m_md_unlikely = llvm::MDTuple::get(m_context, {md_name, md_low, md_high});
|
|
}
|
|
}
|
|
|
|
virtual spu_function_t compile(u64 last_reset_count, const std::vector<u32>& func) override
|
|
{
|
|
if (func.empty() && last_reset_count == 0 && m_interp_magn)
|
|
{
|
|
return compile_interpreter();
|
|
}
|
|
|
|
const auto fn_location = m_spurt->find(last_reset_count, func);
|
|
|
|
if (fn_location == spu_runtime::g_dispatcher)
|
|
{
|
|
return &dispatch;
|
|
}
|
|
|
|
if (!fn_location)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
if (m_cache && g_cfg.core.spu_cache)
|
|
{
|
|
m_cache->add(func);
|
|
}
|
|
|
|
std::string hash;
|
|
{
|
|
sha1_context ctx;
|
|
u8 output[20];
|
|
|
|
sha1_starts(&ctx);
|
|
sha1_update(&ctx, reinterpret_cast<const u8*>(func.data() + 1), func.size() * 4 - 4);
|
|
sha1_finish(&ctx, output);
|
|
|
|
fmt::append(hash, "spu-0x%05x-%s", func[0], fmt::base57(output));
|
|
}
|
|
|
|
if (m_cache)
|
|
{
|
|
LOG_SUCCESS(SPU, "LLVM: Building %s (size %u)...", hash, func.size() - 1);
|
|
}
|
|
else
|
|
{
|
|
LOG_NOTICE(SPU, "Building function 0x%x... (size %u, %s)", func[0], func.size() - 1, hash);
|
|
}
|
|
|
|
SPUDisAsm dis_asm(CPUDisAsm_InterpreterMode);
|
|
dis_asm.offset = reinterpret_cast<const u8*>(func.data() + 1);
|
|
|
|
if (g_cfg.core.spu_block_size != spu_block_size_type::giga)
|
|
{
|
|
dis_asm.offset -= func[0];
|
|
}
|
|
|
|
m_pos = func[0];
|
|
m_base = func[0];
|
|
m_size = (func.size() - 1) * 4;
|
|
const u32 start = m_pos * (g_cfg.core.spu_block_size != spu_block_size_type::giga);
|
|
const u32 end = start + m_size;
|
|
|
|
if (g_cfg.core.spu_debug)
|
|
{
|
|
std::string log;
|
|
fmt::append(log, "========== SPU BLOCK 0x%05x (size %u, %s) ==========\n\n", func[0], func.size() - 1, hash);
|
|
|
|
// Disassemble if necessary
|
|
for (u32 i = 1; i < func.size(); i++)
|
|
{
|
|
const u32 pos = start + (i - 1) * 4;
|
|
|
|
// Disasm
|
|
dis_asm.dump_pc = pos;
|
|
dis_asm.disasm(pos);
|
|
|
|
if (func[i])
|
|
{
|
|
log += '>';
|
|
log += dis_asm.last_opcode;
|
|
log += '\n';
|
|
}
|
|
else
|
|
{
|
|
fmt::append(log, ">[%08x] xx xx xx xx: <hole>\n", pos);
|
|
}
|
|
}
|
|
|
|
log += '\n';
|
|
this->dump(log);
|
|
fs::file(m_spurt->get_cache_path() + "spu.log", fs::write + fs::append).write(log);
|
|
}
|
|
|
|
using namespace llvm;
|
|
|
|
// Create LLVM module
|
|
std::unique_ptr<Module> module = std::make_unique<Module>(hash + ".obj", m_context);
|
|
module->setTargetTriple(Triple::normalize(sys::getProcessTriple()));
|
|
module->setDataLayout(m_jit.get_engine().getTargetMachine()->createDataLayout());
|
|
m_module = module.get();
|
|
|
|
// Initialize IR Builder
|
|
IRBuilder<> irb(m_context);
|
|
m_ir = &irb;
|
|
|
|
// Helper for check_state. Used to not interfere with LICM pass.
|
|
m_fake_global1 = new llvm::GlobalVariable(*m_module, get_type<bool>(), false, llvm::GlobalValue::InternalLinkage, m_ir->getFalse());
|
|
|
|
// Add entry function (contains only state/code check)
|
|
const auto main_func = llvm::cast<llvm::Function>(m_module->getOrInsertFunction(hash, get_ftype<void, u8*, u8*, u8*>()).getCallee());
|
|
const auto main_arg2 = &*(main_func->arg_begin() + 2);
|
|
set_function(main_func);
|
|
|
|
// Start compilation
|
|
const auto label_test = BasicBlock::Create(m_context, "", m_function);
|
|
const auto label_diff = BasicBlock::Create(m_context, "", m_function);
|
|
const auto label_body = BasicBlock::Create(m_context, "", m_function);
|
|
const auto label_stop = BasicBlock::Create(m_context, "", m_function);
|
|
|
|
// Load PC, which will be the actual value of 'm_base'
|
|
m_base_pc = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::pc));
|
|
|
|
// Emit state check
|
|
const auto pstate = spu_ptr<u32>(&spu_thread::state);
|
|
m_ir->CreateCondBr(m_ir->CreateICmpNE(m_ir->CreateLoad(pstate, true), m_ir->getInt32(0)), label_stop, label_test, m_md_unlikely);
|
|
|
|
// Emit code check
|
|
u32 check_iterations = 0;
|
|
m_ir->SetInsertPoint(label_test);
|
|
|
|
if (!g_cfg.core.spu_verification)
|
|
{
|
|
// Disable check (unsafe)
|
|
m_ir->CreateBr(label_body);
|
|
}
|
|
else if (func.size() - 1 == 1)
|
|
{
|
|
const auto pu32 = m_ir->CreateBitCast(m_ir->CreateGEP(m_lsptr, m_base_pc), get_type<u32*>());
|
|
const auto cond = m_ir->CreateICmpNE(m_ir->CreateLoad(pu32), m_ir->getInt32(func[1]));
|
|
m_ir->CreateCondBr(cond, label_diff, label_body, m_md_unlikely);
|
|
}
|
|
else if (func.size() - 1 == 2 && g_cfg.core.spu_block_size != spu_block_size_type::giga)
|
|
{
|
|
const auto pu64 = m_ir->CreateBitCast(m_ir->CreateGEP(m_lsptr, m_base_pc), get_type<u64*>());
|
|
const auto cond = m_ir->CreateICmpNE(m_ir->CreateLoad(pu64), m_ir->getInt64(static_cast<u64>(func[2]) << 32 | func[1]));
|
|
m_ir->CreateCondBr(cond, label_diff, label_body, m_md_unlikely);
|
|
}
|
|
else
|
|
{
|
|
u32 starta = start;
|
|
|
|
// Skip holes at the beginning (giga only)
|
|
for (u32 j = start; j < end; j += 4)
|
|
{
|
|
if (!func[(j - start) / 4 + 1])
|
|
{
|
|
starta += 4;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Get actual pc corresponding to the found beginning of the data
|
|
llvm::Value* starta_pc = m_ir->CreateAnd(get_pc(starta), 0x3fffc);
|
|
llvm::Value* data_addr = m_ir->CreateGEP(m_lsptr, starta_pc);
|
|
|
|
llvm::Value* acc = nullptr;
|
|
|
|
for (u32 j = starta; j < end; j += 32)
|
|
{
|
|
u32 indices[8];
|
|
bool holes = false;
|
|
bool data = false;
|
|
|
|
for (u32 i = 0; i < 8; i++)
|
|
{
|
|
const u32 k = j + i * 4;
|
|
|
|
if (k < start || k >= end || !func[(k - start) / 4 + 1])
|
|
{
|
|
indices[i] = 8;
|
|
holes = true;
|
|
}
|
|
else
|
|
{
|
|
indices[i] = i;
|
|
data = true;
|
|
}
|
|
}
|
|
|
|
if (!data)
|
|
{
|
|
// Skip full-sized holes
|
|
continue;
|
|
}
|
|
|
|
// Load unaligned code block from LS
|
|
llvm::Value* vls = m_ir->CreateAlignedLoad(_ptr<u32[8]>(data_addr, j - starta), 4);
|
|
|
|
// Mask if necessary
|
|
if (holes)
|
|
{
|
|
vls = m_ir->CreateShuffleVector(vls, ConstantVector::getSplat(8, m_ir->getInt32(0)), indices);
|
|
}
|
|
|
|
// Perform bitwise comparison and accumulate
|
|
u32 words[8];
|
|
|
|
for (u32 i = 0; i < 8; i++)
|
|
{
|
|
const u32 k = j + i * 4;
|
|
words[i] = k >= start && k < end ? func[(k - start) / 4 + 1] : 0;
|
|
}
|
|
|
|
vls = m_ir->CreateXor(vls, ConstantDataVector::get(m_context, words));
|
|
acc = acc ? m_ir->CreateOr(acc, vls) : vls;
|
|
check_iterations++;
|
|
}
|
|
|
|
// Pattern for PTEST
|
|
acc = m_ir->CreateBitCast(acc, get_type<u64[4]>());
|
|
llvm::Value* elem = m_ir->CreateExtractElement(acc, u64{0});
|
|
elem = m_ir->CreateOr(elem, m_ir->CreateExtractElement(acc, 1));
|
|
elem = m_ir->CreateOr(elem, m_ir->CreateExtractElement(acc, 2));
|
|
elem = m_ir->CreateOr(elem, m_ir->CreateExtractElement(acc, 3));
|
|
|
|
// Compare result with zero
|
|
const auto cond = m_ir->CreateICmpNE(elem, m_ir->getInt64(0));
|
|
m_ir->CreateCondBr(cond, label_diff, label_body, m_md_unlikely);
|
|
}
|
|
|
|
// Increase block counter with statistics
|
|
m_ir->SetInsertPoint(label_body);
|
|
const auto pbcount = spu_ptr<u64>(&spu_thread::block_counter);
|
|
m_ir->CreateStore(m_ir->CreateAdd(m_ir->CreateLoad(pbcount), m_ir->getInt64(check_iterations)), pbcount);
|
|
|
|
const auto gateway = llvm::cast<Function>(m_module->getOrInsertFunction("spu_chunk_gateway", get_ftype<void, u8*, u8*, u32>()).getCallee());
|
|
gateway->setLinkage(GlobalValue::InternalLinkage);
|
|
gateway->setCallingConv(CallingConv::GHC);
|
|
|
|
m_ir->CreateCall(gateway, {m_thread, m_lsptr, m_base_pc})->setCallingConv(CallingConv::GHC);
|
|
m_ir->CreateRetVoid();
|
|
m_ir->SetInsertPoint(label_stop);
|
|
m_ir->CreateRetVoid();
|
|
|
|
m_ir->SetInsertPoint(label_diff);
|
|
|
|
if (g_cfg.core.spu_verification)
|
|
{
|
|
const auto pbfail = spu_ptr<u64>(&spu_thread::block_failure);
|
|
m_ir->CreateStore(m_ir->CreateAdd(m_ir->CreateLoad(pbfail), m_ir->getInt64(1)), pbfail);
|
|
call("spu_dispatch", &spu_recompiler_base::dispatch, m_thread, m_ir->getInt32(0), main_arg2)->setTailCall();
|
|
m_ir->CreateRetVoid();
|
|
}
|
|
else
|
|
{
|
|
m_ir->CreateUnreachable();
|
|
}
|
|
|
|
set_function(gateway);
|
|
|
|
// Save host thread's stack pointer in the gateway
|
|
const auto native_sp = spu_ptr<u64>(&spu_thread::saved_native_sp);
|
|
const auto rsp_name = MetadataAsValue::get(m_context, MDNode::get(m_context, {MDString::get(m_context, "rsp")}));
|
|
m_ir->CreateStore(m_ir->CreateCall(get_intrinsic<u64>(Intrinsic::read_register), {rsp_name}), native_sp);
|
|
|
|
// Call the entry function chunk
|
|
const auto entry_chunk = add_function(m_pos);
|
|
tail_chunk(entry_chunk->chunk);
|
|
|
|
// Longjmp analogue (restore saved host thread's stack pointer)
|
|
const auto escape = llvm::cast<llvm::Function>(m_module->getOrInsertFunction("spu_escape", get_ftype<void, u8*>()).getCallee());
|
|
escape->setLinkage(GlobalValue::InternalLinkage);
|
|
m_ir->SetInsertPoint(BasicBlock::Create(m_context, "", escape));
|
|
const auto load_sp = m_ir->CreateLoad(_ptr<u64>(&*escape->arg_begin(), ::offset32(&spu_thread::saved_native_sp)));
|
|
m_ir->CreateCall(get_intrinsic<u64>(Intrinsic::write_register), {rsp_name, load_sp});
|
|
m_ir->CreateRetVoid();
|
|
|
|
// Function that executes check_state and escapes if necessary
|
|
m_test_state = llvm::cast<llvm::Function>(m_module->getOrInsertFunction("spu_test_state", get_ftype<void, u8*>()).getCallee());
|
|
m_test_state->setLinkage(GlobalValue::InternalLinkage);
|
|
m_test_state->setCallingConv(CallingConv::PreserveAll);
|
|
m_ir->SetInsertPoint(BasicBlock::Create(m_context, "", m_test_state));
|
|
const auto escape_yes = BasicBlock::Create(m_context, "", m_test_state);
|
|
const auto escape_no = BasicBlock::Create(m_context, "", m_test_state);
|
|
m_ir->CreateCondBr(call("spu_exec_check_state", &exec_check_state, &*m_test_state->arg_begin()), escape_yes, escape_no);
|
|
m_ir->SetInsertPoint(escape_yes);
|
|
m_ir->CreateCall(escape, {&*m_test_state->arg_begin()});
|
|
m_ir->CreateRetVoid();
|
|
m_ir->SetInsertPoint(escape_no);
|
|
m_ir->CreateRetVoid();
|
|
|
|
// Create function table (uninitialized)
|
|
m_function_table = new llvm::GlobalVariable(*m_module, llvm::ArrayType::get(entry_chunk->chunk->getType(), m_size / 4), true, llvm::GlobalValue::InternalLinkage, nullptr);
|
|
|
|
// Create function chunks
|
|
for (std::size_t fi = 0; fi < m_function_queue.size(); fi++)
|
|
{
|
|
// Initialize function info
|
|
m_entry = m_function_queue[fi];
|
|
set_function(m_functions[m_entry].chunk);
|
|
m_finfo = &m_functions[m_entry];
|
|
m_ir->CreateBr(add_block(m_entry));
|
|
|
|
// Emit instructions for basic blocks
|
|
for (std::size_t bi = 0; bi < m_block_queue.size(); bi++)
|
|
{
|
|
// Initialize basic block info
|
|
const u32 baddr = m_block_queue[bi];
|
|
m_block = &m_blocks[baddr];
|
|
m_ir->SetInsertPoint(m_block->block);
|
|
auto& bb = m_bbs.at(baddr);
|
|
bool need_check = false;
|
|
m_block->bb = &bb;
|
|
|
|
if (bb.preds.size())
|
|
{
|
|
// Initialize registers and build PHI nodes if necessary
|
|
for (u32 i = 0; i < s_reg_max; i++)
|
|
{
|
|
const u32 src = m_finfo->fn ? bb.reg_origin_abs[i] : bb.reg_origin[i];
|
|
|
|
if (src > 0x40000)
|
|
{
|
|
// Use the xfloat hint to create 256-bit (4x double) PHI
|
|
llvm::Type* type = g_cfg.core.spu_accurate_xfloat && bb.reg_maybe_xf[i] ? get_type<f64[4]>() : get_reg_type(i);
|
|
|
|
const auto _phi = m_ir->CreatePHI(type, ::size32(bb.preds), fmt::format("phi0x%05x_r%u", baddr, i));
|
|
m_block->phi[i] = _phi;
|
|
m_block->reg[i] = _phi;
|
|
|
|
for (u32 pred : bb.preds)
|
|
{
|
|
const auto bfound = m_blocks.find(pred);
|
|
|
|
if (bfound != m_blocks.end() && bfound->second.block_end)
|
|
{
|
|
auto& value = bfound->second.reg[i];
|
|
|
|
if (!value || value->getType() != _phi->getType())
|
|
{
|
|
const auto regptr = init_reg_fixed(i);
|
|
const auto cblock = m_ir->GetInsertBlock();
|
|
m_ir->SetInsertPoint(bfound->second.block_end->getTerminator());
|
|
|
|
if (!value)
|
|
{
|
|
// Value hasn't been loaded yet
|
|
value = m_finfo && m_finfo->load[i] ? m_finfo->load[i] : m_ir->CreateLoad(regptr);
|
|
}
|
|
|
|
if (value->getType() == get_type<f64[4]>() && type != get_type<f64[4]>())
|
|
{
|
|
value = double_to_xfloat(value);
|
|
}
|
|
else if (value->getType() != get_type<f64[4]>() && type == get_type<f64[4]>())
|
|
{
|
|
value = xfloat_to_double(bitcast<u32[4]>(value));
|
|
}
|
|
else
|
|
{
|
|
value = bitcast(value, _phi->getType());
|
|
}
|
|
|
|
m_ir->SetInsertPoint(cblock);
|
|
|
|
verify(HERE), bfound->second.block_end->getTerminator();
|
|
}
|
|
|
|
_phi->addIncoming(value, bfound->second.block_end);
|
|
}
|
|
}
|
|
|
|
if (baddr == m_entry)
|
|
{
|
|
// Load value at the function chunk's entry block if necessary
|
|
const auto regptr = init_reg_fixed(i);
|
|
const auto cblock = m_ir->GetInsertBlock();
|
|
m_ir->SetInsertPoint(m_function->getEntryBlock().getTerminator());
|
|
const auto value = m_finfo && m_finfo->load[i] ? m_finfo->load[i] : m_ir->CreateLoad(regptr);
|
|
m_ir->SetInsertPoint(cblock);
|
|
_phi->addIncoming(value, &m_function->getEntryBlock());
|
|
}
|
|
}
|
|
else if (src < 0x40000)
|
|
{
|
|
// Passthrough register value
|
|
const auto bfound = m_blocks.find(src);
|
|
|
|
if (bfound != m_blocks.end())
|
|
{
|
|
m_block->reg[i] = bfound->second.reg[i];
|
|
}
|
|
else
|
|
{
|
|
LOG_ERROR(SPU, "[0x%05x] Value not found ($%u from 0x%05x)", baddr, i, src);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_block->reg[i] = m_finfo->load[i];
|
|
}
|
|
}
|
|
|
|
// Emit state check if necessary (TODO: more conditions)
|
|
for (u32 pred : bb.preds)
|
|
{
|
|
if (pred >= baddr)
|
|
{
|
|
// If this block is a target of a backward branch (possibly loop), emit a check
|
|
need_check = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// State check at the beginning of the chunk
|
|
if (need_check || (bi == 0 && g_cfg.core.spu_block_size != spu_block_size_type::safe))
|
|
{
|
|
check_state(baddr);
|
|
}
|
|
|
|
// Emit instructions
|
|
for (m_pos = baddr; m_pos >= start && m_pos < end && !m_ir->GetInsertBlock()->getTerminator(); m_pos += 4)
|
|
{
|
|
if (m_pos != baddr && m_block_info[m_pos / 4])
|
|
{
|
|
break;
|
|
}
|
|
|
|
const u32 op = se_storage<u32>::swap(func[(m_pos - start) / 4 + 1]);
|
|
|
|
if (!op)
|
|
{
|
|
LOG_ERROR(SPU, "Unexpected fallthrough to 0x%x (chunk=0x%x, entry=0x%x)", m_pos, m_entry, m_function_queue[0]);
|
|
break;
|
|
}
|
|
|
|
// Execute recompiler function (TODO)
|
|
try
|
|
{
|
|
(this->*g_decoder.decode(op))({op});
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
std::string dump;
|
|
raw_string_ostream out(dump);
|
|
out << *module; // print IR
|
|
out.flush();
|
|
LOG_ERROR(SPU, "[0x%x] LLVM dump:\n%s", m_pos, dump);
|
|
throw;
|
|
}
|
|
}
|
|
|
|
// Finalize block with fallthrough if necessary
|
|
if (!m_ir->GetInsertBlock()->getTerminator())
|
|
{
|
|
const u32 target = m_pos == baddr ? baddr : m_pos & 0x3fffc;
|
|
|
|
if (m_pos != baddr)
|
|
{
|
|
m_pos -= 4;
|
|
|
|
if (target >= start && target < end)
|
|
{
|
|
const auto tfound = m_targets.find(m_pos);
|
|
|
|
if (tfound == m_targets.end() || tfound->second.find_first_of(target) + 1 == 0)
|
|
{
|
|
LOG_ERROR(SPU, "Unregistered fallthrough to 0x%x (chunk=0x%x, entry=0x%x)", target, m_entry, m_function_queue[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
m_block->block_end = m_ir->GetInsertBlock();
|
|
m_ir->CreateBr(add_block(target));
|
|
}
|
|
|
|
verify(HERE), m_block->block_end;
|
|
}
|
|
}
|
|
|
|
// Create function table if necessary
|
|
if (m_function_table->getNumUses())
|
|
{
|
|
std::vector<llvm::Constant*> chunks;
|
|
chunks.reserve(m_size / 4);
|
|
|
|
const auto null = cast<Function>(module->getOrInsertFunction("spu-null", entry_chunk->chunk->getFunctionType()).getCallee());
|
|
null->setLinkage(llvm::GlobalValue::InternalLinkage);
|
|
null->setCallingConv(llvm::CallingConv::GHC);
|
|
set_function(null);
|
|
m_ir->CreateRetVoid();
|
|
|
|
for (u32 i = start; i < end; i += 4)
|
|
{
|
|
const auto found = m_functions.find(i);
|
|
|
|
if (found == m_functions.end())
|
|
{
|
|
chunks.push_back(null);
|
|
continue;
|
|
}
|
|
|
|
chunks.push_back(found->second.chunk);
|
|
}
|
|
|
|
m_function_table->setInitializer(llvm::ConstantArray::get(llvm::ArrayType::get(entry_chunk->chunk->getType(), m_size / 4), chunks));
|
|
}
|
|
else
|
|
{
|
|
m_function_table->eraseFromParent();
|
|
}
|
|
|
|
// Initialize pass manager
|
|
legacy::FunctionPassManager pm(module.get());
|
|
|
|
// Basic optimizations
|
|
pm.add(createEarlyCSEPass());
|
|
pm.add(createCFGSimplificationPass());
|
|
pm.add(createNewGVNPass());
|
|
pm.add(createDeadStoreEliminationPass());
|
|
pm.add(createLICMPass());
|
|
pm.add(createAggressiveDCEPass());
|
|
//pm.add(createLintPass()); // Check
|
|
|
|
for (const auto& func : m_functions)
|
|
{
|
|
const auto f = func.second.fn ? func.second.fn : func.second.chunk;
|
|
pm.run(*f);
|
|
|
|
for (auto& bb : *f)
|
|
{
|
|
for (auto& i : bb)
|
|
{
|
|
// Replace volatile fake store with spu_test_state call
|
|
if (auto si = dyn_cast<StoreInst>(&i); si && si->getOperand(1) == m_fake_global1)
|
|
{
|
|
m_ir->SetInsertPoint(si);
|
|
|
|
CallInst* ci{};
|
|
if (si->getOperand(0) == m_ir->getFalse())
|
|
{
|
|
ci = m_ir->CreateCall(m_test_state, {&*f->arg_begin()});
|
|
ci->setCallingConv(CallingConv::PreserveAll);
|
|
}
|
|
else
|
|
{
|
|
continue;
|
|
}
|
|
|
|
si->replaceAllUsesWith(ci);
|
|
si->eraseFromParent();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clear context (TODO)
|
|
m_blocks.clear();
|
|
m_block_queue.clear();
|
|
m_functions.clear();
|
|
m_function_queue.clear();
|
|
m_function_table = nullptr;
|
|
|
|
std::string log;
|
|
|
|
raw_string_ostream out(log);
|
|
|
|
if (g_cfg.core.spu_debug)
|
|
{
|
|
fmt::append(log, "LLVM IR at 0x%x:\n", func[0]);
|
|
out << *module; // print IR
|
|
out << "\n\n";
|
|
}
|
|
|
|
if (verifyModule(*module, &out))
|
|
{
|
|
out.flush();
|
|
LOG_ERROR(SPU, "LLVM: Verification failed at 0x%x:\n%s", func[0], log);
|
|
|
|
if (g_cfg.core.spu_debug)
|
|
{
|
|
fs::file(m_spurt->get_cache_path() + "spu.log", fs::write + fs::append).write(log);
|
|
}
|
|
|
|
fmt::raw_error("Compilation failed");
|
|
}
|
|
|
|
if (g_cfg.core.spu_debug)
|
|
{
|
|
// Testing only
|
|
m_jit.add(std::move(module), m_spurt->get_cache_path() + "llvm/");
|
|
}
|
|
else
|
|
{
|
|
m_jit.add(std::move(module));
|
|
}
|
|
|
|
m_jit.fin();
|
|
|
|
// Register function pointer
|
|
const spu_function_t fn = reinterpret_cast<spu_function_t>(m_jit.get_engine().getPointerToFunction(main_func));
|
|
|
|
if (!m_spurt->add(last_reset_count, fn_location, fn))
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
if (g_cfg.core.spu_debug)
|
|
{
|
|
out.flush();
|
|
fs::file(m_spurt->get_cache_path() + "spu.log", fs::write + fs::append).write(log);
|
|
}
|
|
|
|
return fn;
|
|
}
|
|
|
|
static void interp_check(spu_thread* _spu, bool after)
|
|
{
|
|
static const spu_decoder<spu_interpreter_fast> s_dec;
|
|
|
|
static thread_local std::array<v128, 128> s_gpr;
|
|
|
|
if (!after)
|
|
{
|
|
// Preserve reg state
|
|
s_gpr = _spu->gpr;
|
|
|
|
// Execute interpreter instruction
|
|
const u32 op = *reinterpret_cast<const be_t<u32>*>(_spu->_ptr<u8>(0) + _spu->pc);
|
|
if (!s_dec.decode(op)(*_spu, {op}))
|
|
LOG_FATAL(SPU, "Bad instruction" HERE);
|
|
|
|
// Swap state
|
|
for (u32 i = 0; i < s_gpr.size(); ++i)
|
|
std::swap(_spu->gpr[i], s_gpr[i]);
|
|
}
|
|
else
|
|
{
|
|
// Check saved state
|
|
for (u32 i = 0; i < s_gpr.size(); ++i)
|
|
{
|
|
if (_spu->gpr[i] != s_gpr[i])
|
|
{
|
|
LOG_FATAL(SPU, "Register mismatch: $%u\n%s\n%s", i, _spu->gpr[i], s_gpr[i]);
|
|
_spu->state += cpu_flag::dbg_pause;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
spu_function_t compile_interpreter()
|
|
{
|
|
using namespace llvm;
|
|
|
|
// Create LLVM module
|
|
std::unique_ptr<Module> module = std::make_unique<Module>("spu_interpreter.obj", m_context);
|
|
module->setTargetTriple(Triple::normalize(sys::getProcessTriple()));
|
|
module->setDataLayout(m_jit.get_engine().getTargetMachine()->createDataLayout());
|
|
m_module = module.get();
|
|
|
|
// Initialize IR Builder
|
|
IRBuilder<> irb(m_context);
|
|
m_ir = &irb;
|
|
|
|
// Create interpreter table
|
|
const auto if_type = get_ftype<void, u8*, u8*, u32, u32, u8*, u32, u8*>();
|
|
const auto if_pptr = if_type->getPointerTo()->getPointerTo();
|
|
m_function_table = new GlobalVariable(*m_module, ArrayType::get(if_type->getPointerTo(), 1u << m_interp_magn), true, GlobalValue::InternalLinkage, nullptr);
|
|
|
|
// Add return function
|
|
const auto ret_func = cast<Function>(module->getOrInsertFunction("spu_ret", if_type).getCallee());
|
|
ret_func->setCallingConv(CallingConv::GHC);
|
|
ret_func->setLinkage(GlobalValue::InternalLinkage);
|
|
m_ir->SetInsertPoint(BasicBlock::Create(m_context, "", ret_func));
|
|
m_thread = &*(ret_func->arg_begin() + 1);
|
|
m_interp_pc = &*(ret_func->arg_begin() + 2);
|
|
m_ir->CreateStore(m_interp_pc, spu_ptr<u32>(&spu_thread::pc));
|
|
m_ir->CreateRetVoid();
|
|
|
|
// Add entry function, serves as a trampoline
|
|
const auto main_func = llvm::cast<Function>(m_module->getOrInsertFunction("spu_interpreter", get_ftype<void, u8*, u8*, u8*>()).getCallee());
|
|
set_function(main_func);
|
|
|
|
// Load pc and opcode
|
|
m_interp_pc = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::pc));
|
|
m_interp_op = m_ir->CreateLoad(m_ir->CreateBitCast(m_ir->CreateGEP(m_lsptr, m_ir->CreateZExt(m_interp_pc, get_type<u64>())), get_type<u32*>()));
|
|
m_interp_op = m_ir->CreateCall(get_intrinsic<u32>(Intrinsic::bswap), {m_interp_op});
|
|
|
|
// Pinned constant, address of interpreter table
|
|
m_interp_table = m_ir->CreateBitCast(m_ir->CreateGEP(m_function_table, {m_ir->getInt64(0), m_ir->getInt64(0)}), get_type<u8*>());
|
|
|
|
// Pinned constant, mask for shifted register index
|
|
m_interp_7f0 = m_ir->getInt32(0x7f0);
|
|
|
|
// Pinned constant, address of first register
|
|
m_interp_regs = _ptr(m_thread, get_reg_offset(0));
|
|
|
|
// Save host thread's stack pointer
|
|
const auto native_sp = spu_ptr<u64>(&spu_thread::saved_native_sp);
|
|
const auto rsp_name = MetadataAsValue::get(m_context, MDNode::get(m_context, {MDString::get(m_context, "rsp")}));
|
|
m_ir->CreateStore(m_ir->CreateCall(get_intrinsic<u64>(Intrinsic::read_register), {rsp_name}), native_sp);
|
|
|
|
// Decode (shift) and load function pointer
|
|
const auto first = m_ir->CreateLoad(m_ir->CreateGEP(m_ir->CreateBitCast(m_interp_table, if_pptr), m_ir->CreateLShr(m_interp_op, 32u - m_interp_magn)));
|
|
const auto call0 = m_ir->CreateCall(first, {m_lsptr, m_thread, m_interp_pc, m_interp_op, m_interp_table, m_interp_7f0, m_interp_regs});
|
|
call0->setCallingConv(CallingConv::GHC);
|
|
m_ir->CreateRetVoid();
|
|
|
|
// Create helper globals
|
|
{
|
|
std::vector<llvm::Constant*> float_to;
|
|
std::vector<llvm::Constant*> to_float;
|
|
float_to.reserve(256);
|
|
to_float.reserve(256);
|
|
|
|
for (int i = 0; i < 256; ++i)
|
|
{
|
|
float_to.push_back(ConstantFP::get(get_type<f32>(), std::exp2(173 - i)));
|
|
to_float.push_back(ConstantFP::get(get_type<f32>(), std::exp2(i - 155)));
|
|
}
|
|
|
|
const auto atype = ArrayType::get(get_type<f32>(), 256);
|
|
m_scale_float_to = new GlobalVariable(*m_module, atype, true, GlobalValue::InternalLinkage, ConstantArray::get(atype, float_to));
|
|
m_scale_to_float = new GlobalVariable(*m_module, atype, true, GlobalValue::InternalLinkage, ConstantArray::get(atype, to_float));
|
|
}
|
|
|
|
// Fill interpreter table
|
|
std::vector<llvm::Constant*> iptrs;
|
|
iptrs.reserve(1u << m_interp_magn);
|
|
|
|
m_block = nullptr;
|
|
|
|
auto last_itype = spu_itype::UNK;
|
|
|
|
for (u32 i = 0; i < 1u << m_interp_magn;)
|
|
{
|
|
// Fake opcode
|
|
const u32 op = i << (32u - m_interp_magn);
|
|
|
|
// Instruction type
|
|
const auto itype = s_spu_itype.decode(op);
|
|
|
|
// Function name
|
|
std::string fname = fmt::format("spu_%s", s_spu_iname.decode(op));
|
|
|
|
if (last_itype != itype)
|
|
{
|
|
// Trigger automatic information collection (probing)
|
|
m_op_const_mask = 0;
|
|
}
|
|
else
|
|
{
|
|
// Inject const mask into function name
|
|
fmt::append(fname, "_%X", (i & (m_op_const_mask >> (32u - m_interp_magn))) | (1u << m_interp_magn));
|
|
}
|
|
|
|
// Decode instruction name, access function
|
|
const auto f = cast<Function>(module->getOrInsertFunction(fname, if_type).getCallee());
|
|
|
|
// Build if necessary
|
|
if (f->empty())
|
|
{
|
|
f->setCallingConv(CallingConv::GHC);
|
|
f->setLinkage(GlobalValue::InternalLinkage);
|
|
|
|
m_function = f;
|
|
m_lsptr = &*(f->arg_begin() + 0);
|
|
m_thread = &*(f->arg_begin() + 1);
|
|
m_interp_pc = &*(f->arg_begin() + 2);
|
|
m_interp_op = &*(f->arg_begin() + 3);
|
|
m_interp_table = &*(f->arg_begin() + 4);
|
|
m_interp_7f0 = &*(f->arg_begin() + 5);
|
|
m_interp_regs = &*(f->arg_begin() + 6);
|
|
|
|
m_ir->SetInsertPoint(BasicBlock::Create(m_context, "", f));
|
|
m_memptr = m_ir->CreateLoad(spu_ptr<u8*>(&spu_thread::memory_base_addr));
|
|
|
|
switch (itype)
|
|
{
|
|
case spu_itype::UNK:
|
|
case spu_itype::DFCEQ:
|
|
case spu_itype::DFCMEQ:
|
|
case spu_itype::DFCGT:
|
|
case spu_itype::DFCMGT:
|
|
case spu_itype::DFTSV:
|
|
case spu_itype::STOP:
|
|
case spu_itype::STOPD:
|
|
case spu_itype::RDCH:
|
|
case spu_itype::WRCH:
|
|
{
|
|
// Invalid or abortable instruction. Save current address.
|
|
m_ir->CreateStore(m_interp_pc, spu_ptr<u32>(&spu_thread::pc));
|
|
[[fallthrough]];
|
|
}
|
|
default:
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
try
|
|
{
|
|
m_interp_bblock = nullptr;
|
|
|
|
// Next instruction (no wraparound at the end of LS)
|
|
m_interp_pc_next = m_ir->CreateAdd(m_interp_pc, m_ir->getInt32(4));
|
|
|
|
bool check = false;
|
|
|
|
if (itype == spu_itype::WRCH ||
|
|
itype == spu_itype::RDCH ||
|
|
itype == spu_itype::RCHCNT ||
|
|
itype == spu_itype::STOP ||
|
|
itype == spu_itype::STOPD ||
|
|
itype & spu_itype::floating ||
|
|
itype & spu_itype::branch)
|
|
{
|
|
check = false;
|
|
}
|
|
|
|
if (itype & spu_itype::branch)
|
|
{
|
|
// Instruction changes pc - change order.
|
|
(this->*g_decoder.decode(op))({op});
|
|
|
|
if (m_interp_bblock)
|
|
{
|
|
m_ir->SetInsertPoint(m_interp_bblock);
|
|
m_interp_bblock = nullptr;
|
|
}
|
|
}
|
|
|
|
if (!m_ir->GetInsertBlock()->getTerminator())
|
|
{
|
|
if (check)
|
|
{
|
|
m_ir->CreateStore(m_interp_pc, spu_ptr<u32>(&spu_thread::pc));
|
|
}
|
|
|
|
// Decode next instruction.
|
|
const auto next_pc = itype & spu_itype::branch ? m_interp_pc : m_interp_pc_next;
|
|
const auto be32_op = m_ir->CreateLoad(m_ir->CreateBitCast(m_ir->CreateGEP(m_lsptr, m_ir->CreateZExt(next_pc, get_type<u64>())), get_type<u32*>()));
|
|
const auto next_op = m_ir->CreateCall(get_intrinsic<u32>(Intrinsic::bswap), {be32_op});
|
|
const auto next_if = m_ir->CreateLoad(m_ir->CreateGEP(m_ir->CreateBitCast(m_interp_table, if_pptr), m_ir->CreateLShr(next_op, 32u - m_interp_magn)));
|
|
llvm::cast<LoadInst>(next_if)->setVolatile(true);
|
|
|
|
if (!(itype & spu_itype::branch))
|
|
{
|
|
if (check)
|
|
{
|
|
call("spu_interp_check", &interp_check, m_thread, m_ir->getFalse());
|
|
}
|
|
|
|
// Normal instruction.
|
|
(this->*g_decoder.decode(op))({op});
|
|
|
|
if (check && !m_ir->GetInsertBlock()->getTerminator())
|
|
{
|
|
call("spu_interp_check", &interp_check, m_thread, m_ir->getTrue());
|
|
}
|
|
|
|
m_interp_pc = m_interp_pc_next;
|
|
}
|
|
|
|
if (!m_ir->GetInsertBlock()->getTerminator())
|
|
{
|
|
// Call next instruction.
|
|
const auto _stop = BasicBlock::Create(m_context, "", f);
|
|
const auto _next = BasicBlock::Create(m_context, "", f);
|
|
m_ir->CreateCondBr(m_ir->CreateIsNotNull(m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::state))), _stop, _next, m_md_unlikely);
|
|
m_ir->SetInsertPoint(_next);
|
|
|
|
if (itype == spu_itype::WRCH ||
|
|
itype == spu_itype::RDCH ||
|
|
itype == spu_itype::RCHCNT ||
|
|
itype == spu_itype::STOP ||
|
|
itype == spu_itype::STOPD)
|
|
{
|
|
m_interp_7f0 = m_ir->getInt32(0x7f0);
|
|
m_interp_regs = _ptr(m_thread, get_reg_offset(0));
|
|
}
|
|
|
|
const auto ncall = m_ir->CreateCall(next_if, {m_lsptr, m_thread, m_interp_pc, next_op, m_interp_table, m_interp_7f0, m_interp_regs});
|
|
ncall->setCallingConv(CallingConv::GHC);
|
|
ncall->setTailCall();
|
|
m_ir->CreateRetVoid();
|
|
m_ir->SetInsertPoint(_stop);
|
|
m_ir->CreateStore(m_interp_pc, spu_ptr<u32>(&spu_thread::pc));
|
|
m_ir->CreateRetVoid();
|
|
}
|
|
}
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
std::string dump;
|
|
raw_string_ostream out(dump);
|
|
out << *module; // print IR
|
|
out.flush();
|
|
LOG_ERROR(SPU, "[0x%x] LLVM dump:\n%s", m_pos, dump);
|
|
throw;
|
|
}
|
|
}
|
|
|
|
if (last_itype != itype)
|
|
{
|
|
// Repeat after probing
|
|
last_itype = itype;
|
|
}
|
|
else
|
|
{
|
|
// Add to the table
|
|
iptrs.push_back(f);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
m_function_table->setInitializer(ConstantArray::get(ArrayType::get(if_type->getPointerTo(), 1u << m_interp_magn), iptrs));
|
|
m_function_table = nullptr;
|
|
|
|
// Initialize pass manager
|
|
legacy::FunctionPassManager pm(module.get());
|
|
|
|
// Basic optimizations
|
|
pm.add(createEarlyCSEPass());
|
|
pm.add(createCFGSimplificationPass());
|
|
pm.add(createDeadStoreEliminationPass());
|
|
pm.add(createAggressiveDCEPass());
|
|
//pm.add(createLintPass());
|
|
|
|
std::string log;
|
|
|
|
raw_string_ostream out(log);
|
|
|
|
if (g_cfg.core.spu_debug)
|
|
{
|
|
fmt::append(log, "LLVM IR (interpreter):\n");
|
|
out << *module; // print IR
|
|
out << "\n\n";
|
|
}
|
|
|
|
if (verifyModule(*module, &out))
|
|
{
|
|
out.flush();
|
|
LOG_ERROR(SPU, "LLVM: Verification failed:\n%s", log);
|
|
|
|
if (g_cfg.core.spu_debug)
|
|
{
|
|
fs::file(m_spurt->get_cache_path() + "spu.log", fs::write + fs::append).write(log);
|
|
}
|
|
|
|
fmt::raw_error("Compilation failed");
|
|
}
|
|
|
|
if (g_cfg.core.spu_debug)
|
|
{
|
|
// Testing only
|
|
m_jit.add(std::move(module), m_spurt->get_cache_path() + "llvm/");
|
|
}
|
|
else
|
|
{
|
|
m_jit.add(std::move(module));
|
|
}
|
|
|
|
m_jit.fin();
|
|
|
|
// Register interpreter entry point
|
|
spu_runtime::g_interpreter = reinterpret_cast<spu_function_t>(m_jit.get_engine().getPointerToFunction(main_func));
|
|
|
|
if (!spu_runtime::g_interpreter)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
if (g_cfg.core.spu_debug)
|
|
{
|
|
out.flush();
|
|
fs::file(m_spurt->get_cache_path() + "spu.log", fs::write + fs::append).write(log);
|
|
}
|
|
|
|
return spu_runtime::g_interpreter;
|
|
}
|
|
|
|
static bool exec_check_state(spu_thread* _spu)
|
|
{
|
|
return _spu->check_state();
|
|
}
|
|
|
|
template <spu_inter_func_t F>
|
|
static void exec_fall(spu_thread* _spu, spu_opcode_t op)
|
|
{
|
|
if (F(*_spu, op))
|
|
{
|
|
_spu->pc += 4;
|
|
}
|
|
}
|
|
|
|
template <spu_inter_func_t F>
|
|
void fall(spu_opcode_t op)
|
|
{
|
|
std::string name = fmt::format("spu_%s", s_spu_iname.decode(op.opcode));
|
|
|
|
if (m_interp_magn)
|
|
{
|
|
call(name, F, m_thread, m_interp_op);
|
|
return;
|
|
}
|
|
|
|
update_pc();
|
|
call(name, &exec_fall<F>, m_thread, m_ir->getInt32(op.opcode));
|
|
}
|
|
|
|
static void exec_unk(spu_thread* _spu, u32 op)
|
|
{
|
|
fmt::throw_exception("Unknown/Illegal instruction (0x%08x)" HERE, op);
|
|
}
|
|
|
|
void UNK(spu_opcode_t op_unk)
|
|
{
|
|
if (m_interp_magn)
|
|
{
|
|
m_ir->CreateStore(m_interp_pc, spu_ptr<u32>(&spu_thread::pc));
|
|
call("spu_unknown", &exec_unk, m_thread, m_ir->getInt32(op_unk.opcode));
|
|
return;
|
|
}
|
|
|
|
m_block->block_end = m_ir->GetInsertBlock();
|
|
update_pc();
|
|
call("spu_unknown", &exec_unk, m_thread, m_ir->getInt32(op_unk.opcode));
|
|
m_ir->CreateRetVoid();
|
|
}
|
|
|
|
static bool exec_stop(spu_thread* _spu, u32 code)
|
|
{
|
|
return _spu->stop_and_signal(code);
|
|
}
|
|
|
|
void STOP(spu_opcode_t op) //
|
|
{
|
|
if (m_interp_magn)
|
|
{
|
|
const auto succ = call("spu_syscall", &exec_stop, m_thread, m_ir->CreateAnd(m_interp_op, m_ir->getInt32(0x3fff)));
|
|
const auto next = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto stop = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(succ, next, stop);
|
|
m_ir->SetInsertPoint(stop);
|
|
m_ir->CreateRetVoid();
|
|
m_ir->SetInsertPoint(next);
|
|
return;
|
|
}
|
|
|
|
update_pc();
|
|
const auto succ = call("spu_syscall", &exec_stop, m_thread, m_ir->getInt32(op.opcode & 0x3fff));
|
|
const auto next = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto stop = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(succ, next, stop);
|
|
m_ir->SetInsertPoint(stop);
|
|
m_ir->CreateStore(m_ir->getFalse(), m_fake_global1, true);
|
|
m_ir->CreateBr(next);
|
|
m_ir->SetInsertPoint(next);
|
|
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::safe)
|
|
{
|
|
m_block->block_end = m_ir->GetInsertBlock();
|
|
update_pc(m_pos + 4);
|
|
m_ir->CreateRetVoid();
|
|
}
|
|
else
|
|
{
|
|
check_state(m_pos + 4);
|
|
}
|
|
}
|
|
|
|
void STOPD(spu_opcode_t op) //
|
|
{
|
|
if (m_interp_magn)
|
|
{
|
|
const auto succ = call("spu_syscall", &exec_stop, m_thread, m_ir->getInt32(0x3fff));
|
|
const auto next = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto stop = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(succ, next, stop);
|
|
m_ir->SetInsertPoint(stop);
|
|
m_ir->CreateRetVoid();
|
|
m_ir->SetInsertPoint(next);
|
|
return;
|
|
}
|
|
|
|
STOP(spu_opcode_t{0x3fff});
|
|
}
|
|
|
|
static s64 exec_rdch(spu_thread* _spu, u32 ch)
|
|
{
|
|
return _spu->get_ch_value(ch);
|
|
}
|
|
|
|
static s64 exec_read_in_mbox(spu_thread* _spu)
|
|
{
|
|
// TODO
|
|
return _spu->get_ch_value(SPU_RdInMbox);
|
|
}
|
|
|
|
static u32 exec_read_dec(spu_thread* _spu)
|
|
{
|
|
const u32 res = _spu->ch_dec_value - static_cast<u32>(get_timebased_time() - _spu->ch_dec_start_timestamp);
|
|
|
|
if (res > 1500 && g_cfg.core.spu_loop_detection)
|
|
{
|
|
std::this_thread::yield();
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static s64 exec_read_events(spu_thread* _spu)
|
|
{
|
|
if (const u32 events = _spu->get_events())
|
|
{
|
|
return events;
|
|
}
|
|
|
|
// TODO
|
|
return _spu->get_ch_value(SPU_RdEventStat);
|
|
}
|
|
|
|
llvm::Value* get_rdch(spu_opcode_t op, u32 off, bool atomic)
|
|
{
|
|
const auto ptr = _ptr<u64>(m_thread, off);
|
|
llvm::Value* val0;
|
|
|
|
if (atomic)
|
|
{
|
|
const auto val = m_ir->CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, ptr, m_ir->getInt64(0), llvm::AtomicOrdering::Acquire);
|
|
val0 = val;
|
|
}
|
|
else
|
|
{
|
|
const auto val = m_ir->CreateLoad(ptr, true);
|
|
m_ir->CreateStore(m_ir->getInt64(0), ptr, true);
|
|
val0 = val;
|
|
}
|
|
|
|
const auto _cur = m_ir->GetInsertBlock();
|
|
const auto done = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto wait = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto stop = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(m_ir->CreateICmpSLT(val0, m_ir->getInt64(0)), done, wait);
|
|
m_ir->SetInsertPoint(wait);
|
|
const auto val1 = call("spu_read_channel", &exec_rdch, m_thread, m_ir->getInt32(op.ra));
|
|
m_ir->CreateCondBr(m_ir->CreateICmpSLT(val1, m_ir->getInt64(0)), stop, done);
|
|
m_ir->SetInsertPoint(stop);
|
|
m_ir->CreateStore(m_ir->getFalse(), m_fake_global1, true);
|
|
m_ir->CreateBr(done);
|
|
m_ir->SetInsertPoint(done);
|
|
const auto rval = m_ir->CreatePHI(get_type<u64>(), 2);
|
|
rval->addIncoming(val0, _cur);
|
|
rval->addIncoming(val1, wait);
|
|
rval->addIncoming(m_ir->getInt64(0), stop);
|
|
return m_ir->CreateTrunc(rval, get_type<u32>());
|
|
}
|
|
|
|
void RDCH(spu_opcode_t op) //
|
|
{
|
|
value_t<u32> res;
|
|
|
|
if (m_interp_magn)
|
|
{
|
|
res.value = call("spu_read_channel", &exec_rdch, m_thread, get_imm<u32>(op.ra).value);
|
|
const auto next = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto stop = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(m_ir->CreateICmpSLT(res.value, m_ir->getInt64(0)), stop, next);
|
|
m_ir->SetInsertPoint(stop);
|
|
m_ir->CreateRetVoid();
|
|
m_ir->SetInsertPoint(next);
|
|
res.value = m_ir->CreateTrunc(res.value, get_type<u32>());
|
|
set_vr(op.rt, insert(splat<u32[4]>(0), 3, res));
|
|
return;
|
|
}
|
|
|
|
switch (op.ra)
|
|
{
|
|
case SPU_RdSRR0:
|
|
{
|
|
res.value = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::srr0));
|
|
break;
|
|
}
|
|
case SPU_RdInMbox:
|
|
{
|
|
update_pc();
|
|
res.value = call("spu_read_in_mbox", &exec_read_in_mbox, m_thread);
|
|
const auto next = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto stop = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(m_ir->CreateICmpSLT(res.value, m_ir->getInt64(0)), stop, next);
|
|
m_ir->SetInsertPoint(stop);
|
|
m_ir->CreateStore(m_ir->getFalse(), m_fake_global1, true);
|
|
m_ir->CreateBr(next);
|
|
m_ir->SetInsertPoint(next);
|
|
res.value = m_ir->CreateTrunc(res.value, get_type<u32>());
|
|
break;
|
|
}
|
|
case MFC_RdTagStat:
|
|
{
|
|
res.value = get_rdch(op, ::offset32(&spu_thread::ch_tag_stat), false);
|
|
break;
|
|
}
|
|
case MFC_RdTagMask:
|
|
{
|
|
res.value = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::ch_tag_mask));
|
|
break;
|
|
}
|
|
case SPU_RdSigNotify1:
|
|
{
|
|
res.value = get_rdch(op, ::offset32(&spu_thread::ch_snr1), true);
|
|
break;
|
|
}
|
|
case SPU_RdSigNotify2:
|
|
{
|
|
res.value = get_rdch(op, ::offset32(&spu_thread::ch_snr2), true);
|
|
break;
|
|
}
|
|
case MFC_RdAtomicStat:
|
|
{
|
|
res.value = get_rdch(op, ::offset32(&spu_thread::ch_atomic_stat), false);
|
|
break;
|
|
}
|
|
case MFC_RdListStallStat:
|
|
{
|
|
res.value = get_rdch(op, ::offset32(&spu_thread::ch_stall_stat), false);
|
|
break;
|
|
}
|
|
case SPU_RdDec:
|
|
{
|
|
res.value = call("spu_read_decrementer", &exec_read_dec, m_thread);
|
|
break;
|
|
}
|
|
case SPU_RdEventMask:
|
|
{
|
|
res.value = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::ch_event_mask));
|
|
break;
|
|
}
|
|
case SPU_RdEventStat:
|
|
{
|
|
update_pc();
|
|
res.value = call("spu_read_events", &exec_read_events, m_thread);
|
|
const auto next = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto stop = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(m_ir->CreateICmpSLT(res.value, m_ir->getInt64(0)), stop, next);
|
|
m_ir->SetInsertPoint(stop);
|
|
m_ir->CreateStore(m_ir->getFalse(), m_fake_global1, true);
|
|
m_ir->CreateBr(next);
|
|
m_ir->SetInsertPoint(next);
|
|
res.value = m_ir->CreateTrunc(res.value, get_type<u32>());
|
|
break;
|
|
}
|
|
case SPU_RdMachStat:
|
|
{
|
|
res.value = m_ir->CreateZExt(m_ir->CreateLoad(spu_ptr<u8>(&spu_thread::interrupts_enabled)), get_type<u32>());
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
update_pc();
|
|
res.value = call("spu_read_channel", &exec_rdch, m_thread, m_ir->getInt32(op.ra));
|
|
const auto next = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto stop = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(m_ir->CreateICmpSLT(res.value, m_ir->getInt64(0)), stop, next);
|
|
m_ir->SetInsertPoint(stop);
|
|
m_ir->CreateStore(m_ir->getFalse(), m_fake_global1, true);
|
|
m_ir->CreateBr(next);
|
|
m_ir->SetInsertPoint(next);
|
|
res.value = m_ir->CreateTrunc(res.value, get_type<u32>());
|
|
break;
|
|
}
|
|
}
|
|
|
|
set_vr(op.rt, insert(splat<u32[4]>(0), 3, res));
|
|
}
|
|
|
|
static u32 exec_rchcnt(spu_thread* _spu, u32 ch)
|
|
{
|
|
return _spu->get_ch_count(ch);
|
|
}
|
|
|
|
static u32 exec_get_events(spu_thread* _spu)
|
|
{
|
|
return _spu->get_events();
|
|
}
|
|
|
|
llvm::Value* get_rchcnt(u32 off, u64 inv = 0)
|
|
{
|
|
const auto val = m_ir->CreateLoad(_ptr<u64>(m_thread, off), true);
|
|
const auto shv = m_ir->CreateLShr(val, spu_channel::off_count);
|
|
return m_ir->CreateTrunc(m_ir->CreateXor(shv, u64{inv}), get_type<u32>());
|
|
}
|
|
|
|
void RCHCNT(spu_opcode_t op) //
|
|
{
|
|
value_t<u32> res;
|
|
|
|
if (m_interp_magn)
|
|
{
|
|
res.value = call("spu_read_channel_count", &exec_rchcnt, m_thread, get_imm<u32>(op.ra).value);
|
|
set_vr(op.rt, insert(splat<u32[4]>(0), 3, res));
|
|
return;
|
|
}
|
|
|
|
switch (op.ra)
|
|
{
|
|
case SPU_WrOutMbox:
|
|
{
|
|
res.value = get_rchcnt(::offset32(&spu_thread::ch_out_mbox), true);
|
|
break;
|
|
}
|
|
case SPU_WrOutIntrMbox:
|
|
{
|
|
res.value = get_rchcnt(::offset32(&spu_thread::ch_out_intr_mbox), true);
|
|
break;
|
|
}
|
|
case MFC_RdTagStat:
|
|
{
|
|
res.value = get_rchcnt(::offset32(&spu_thread::ch_tag_stat));
|
|
break;
|
|
}
|
|
case MFC_RdListStallStat:
|
|
{
|
|
res.value = get_rchcnt(::offset32(&spu_thread::ch_stall_stat));
|
|
break;
|
|
}
|
|
case SPU_RdSigNotify1:
|
|
{
|
|
res.value = get_rchcnt(::offset32(&spu_thread::ch_snr1));
|
|
break;
|
|
}
|
|
case SPU_RdSigNotify2:
|
|
{
|
|
res.value = get_rchcnt(::offset32(&spu_thread::ch_snr2));
|
|
break;
|
|
}
|
|
case MFC_RdAtomicStat:
|
|
{
|
|
res.value = get_rchcnt(::offset32(&spu_thread::ch_atomic_stat));
|
|
break;
|
|
}
|
|
case MFC_WrTagUpdate:
|
|
{
|
|
res.value = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::ch_tag_upd), true);
|
|
res.value = m_ir->CreateICmpEQ(res.value, m_ir->getInt32(0));
|
|
res.value = m_ir->CreateZExt(res.value, get_type<u32>());
|
|
break;
|
|
}
|
|
case MFC_Cmd:
|
|
{
|
|
res.value = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::mfc_size), true);
|
|
res.value = m_ir->CreateSub(m_ir->getInt32(16), res.value);
|
|
break;
|
|
}
|
|
case SPU_RdInMbox:
|
|
{
|
|
res.value = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::ch_in_mbox), true);
|
|
res.value = m_ir->CreateLShr(res.value, 8);
|
|
res.value = m_ir->CreateAnd(res.value, 7);
|
|
break;
|
|
}
|
|
case SPU_RdEventStat:
|
|
{
|
|
res.value = call("spu_get_events", &exec_get_events, m_thread);
|
|
res.value = m_ir->CreateICmpNE(res.value, m_ir->getInt32(0));
|
|
res.value = m_ir->CreateZExt(res.value, get_type<u32>());
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
res.value = call("spu_read_channel_count", &exec_rchcnt, m_thread, m_ir->getInt32(op.ra));
|
|
break;
|
|
}
|
|
}
|
|
|
|
set_vr(op.rt, insert(splat<u32[4]>(0), 3, res));
|
|
}
|
|
|
|
static bool exec_wrch(spu_thread* _spu, u32 ch, u32 value)
|
|
{
|
|
return _spu->set_ch_value(ch, value);
|
|
}
|
|
|
|
static void exec_mfc(spu_thread* _spu)
|
|
{
|
|
return _spu->do_mfc();
|
|
}
|
|
|
|
static void exec_list_unstall(spu_thread* _spu, u32 tag)
|
|
{
|
|
for (u32 i = 0; i < _spu->mfc_size; i++)
|
|
{
|
|
if (_spu->mfc_queue[i].tag == (tag | 0x80))
|
|
{
|
|
_spu->mfc_queue[i].tag &= 0x7f;
|
|
}
|
|
}
|
|
|
|
return exec_mfc(_spu);
|
|
}
|
|
|
|
static bool exec_mfc_cmd(spu_thread* _spu)
|
|
{
|
|
return _spu->process_mfc_cmd();
|
|
}
|
|
|
|
void WRCH(spu_opcode_t op) //
|
|
{
|
|
const auto val = eval(extract(get_vr(op.rt), 3));
|
|
|
|
if (m_interp_magn)
|
|
{
|
|
const auto succ = call("spu_write_channel", &exec_wrch, m_thread, get_imm<u32>(op.ra).value, val.value);
|
|
const auto next = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto stop = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(succ, next, stop);
|
|
m_ir->SetInsertPoint(stop);
|
|
m_ir->CreateRetVoid();
|
|
m_ir->SetInsertPoint(next);
|
|
return;
|
|
}
|
|
|
|
switch (op.ra)
|
|
{
|
|
case SPU_WrSRR0:
|
|
{
|
|
m_ir->CreateStore(val.value, spu_ptr<u32>(&spu_thread::srr0));
|
|
return;
|
|
}
|
|
case SPU_WrOutIntrMbox:
|
|
{
|
|
// TODO
|
|
break;
|
|
}
|
|
case SPU_WrOutMbox:
|
|
{
|
|
// TODO
|
|
break;
|
|
}
|
|
case MFC_WrTagMask:
|
|
{
|
|
// TODO
|
|
m_ir->CreateStore(val.value, spu_ptr<u32>(&spu_thread::ch_tag_mask));
|
|
return;
|
|
}
|
|
case MFC_WrTagUpdate:
|
|
{
|
|
if (auto ci = llvm::dyn_cast<llvm::ConstantInt>(val.value))
|
|
{
|
|
const u64 upd = ci->getZExtValue();
|
|
|
|
const auto tag_mask = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::ch_tag_mask));
|
|
const auto mfc_fence = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::mfc_fence));
|
|
const auto completed = m_ir->CreateAnd(tag_mask, m_ir->CreateNot(mfc_fence));
|
|
const auto upd_ptr = spu_ptr<u32>(&spu_thread::ch_tag_upd);
|
|
const auto stat_ptr = spu_ptr<u64>(&spu_thread::ch_tag_stat);
|
|
const auto stat_val = m_ir->CreateOr(m_ir->CreateZExt(completed, get_type<u64>()), INT64_MIN);
|
|
|
|
if (upd == 0)
|
|
{
|
|
m_ir->CreateStore(m_ir->getInt32(0), upd_ptr);
|
|
m_ir->CreateStore(stat_val, stat_ptr);
|
|
return;
|
|
}
|
|
else if (upd == 1)
|
|
{
|
|
const auto cond = m_ir->CreateICmpNE(completed, m_ir->getInt32(0));
|
|
m_ir->CreateStore(m_ir->CreateSelect(cond, m_ir->getInt32(1), m_ir->getInt32(0)), upd_ptr);
|
|
m_ir->CreateStore(m_ir->CreateSelect(cond, stat_val, m_ir->getInt64(0)), stat_ptr);
|
|
return;
|
|
}
|
|
else if (upd == 2)
|
|
{
|
|
const auto cond = m_ir->CreateICmpEQ(completed, tag_mask);
|
|
m_ir->CreateStore(m_ir->CreateSelect(cond, m_ir->getInt32(2), m_ir->getInt32(0)), upd_ptr);
|
|
m_ir->CreateStore(m_ir->CreateSelect(cond, stat_val, m_ir->getInt64(0)), stat_ptr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
LOG_WARNING(SPU, "[0x%x] MFC_WrTagUpdate: $%u is not a good constant", m_pos, +op.rt);
|
|
break;
|
|
}
|
|
case MFC_LSA:
|
|
{
|
|
set_reg_fixed(s_reg_mfc_lsa, val.value);
|
|
return;
|
|
}
|
|
case MFC_EAH:
|
|
{
|
|
if (auto ci = llvm::dyn_cast<llvm::ConstantInt>(val.value))
|
|
{
|
|
if (ci->getZExtValue() == 0)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
LOG_WARNING(SPU, "[0x%x] MFC_EAH: $%u is not a zero constant", m_pos, +op.rt);
|
|
//m_ir->CreateStore(val.value, spu_ptr<u32>(&spu_thread::ch_mfc_cmd, &spu_mfc_cmd::eah));
|
|
return;
|
|
}
|
|
case MFC_EAL:
|
|
{
|
|
set_reg_fixed(s_reg_mfc_eal, val.value);
|
|
return;
|
|
}
|
|
case MFC_Size:
|
|
{
|
|
set_reg_fixed(s_reg_mfc_size, trunc<u16>(val & 0x7fff).eval(m_ir));
|
|
return;
|
|
}
|
|
case MFC_TagID:
|
|
{
|
|
set_reg_fixed(s_reg_mfc_tag, trunc<u8>(val & 0x1f).eval(m_ir));
|
|
return;
|
|
}
|
|
case MFC_Cmd:
|
|
{
|
|
// Prevent store elimination (TODO)
|
|
m_block->store[s_reg_mfc_eal] = nullptr;
|
|
m_block->store[s_reg_mfc_lsa] = nullptr;
|
|
m_block->store[s_reg_mfc_tag] = nullptr;
|
|
m_block->store[s_reg_mfc_size] = nullptr;
|
|
|
|
if (!g_use_rtm)
|
|
{
|
|
// TODO: don't require TSX (current implementation is TSX-only)
|
|
break;
|
|
}
|
|
|
|
if (auto ci = llvm::dyn_cast<llvm::ConstantInt>(trunc<u8>(val).eval(m_ir)))
|
|
{
|
|
const auto eal = get_reg_fixed<u32>(s_reg_mfc_eal);
|
|
const auto lsa = get_reg_fixed<u32>(s_reg_mfc_lsa);
|
|
const auto tag = get_reg_fixed<u8>(s_reg_mfc_tag);
|
|
|
|
const auto size = get_reg_fixed<u16>(s_reg_mfc_size);
|
|
const auto mask = m_ir->CreateShl(m_ir->getInt32(1), zext<u32>(tag).eval(m_ir));
|
|
const auto exec = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto fail = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto next = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
|
|
const auto pf = spu_ptr<u32>(&spu_thread::mfc_fence);
|
|
const auto pb = spu_ptr<u32>(&spu_thread::mfc_barrier);
|
|
|
|
switch (u64 cmd = ci->getZExtValue())
|
|
{
|
|
case MFC_GETLLAR_CMD:
|
|
case MFC_PUTLLC_CMD:
|
|
case MFC_PUTLLUC_CMD:
|
|
case MFC_PUTQLLUC_CMD:
|
|
case MFC_PUTL_CMD:
|
|
case MFC_PUTLB_CMD:
|
|
case MFC_PUTLF_CMD:
|
|
case MFC_PUTRL_CMD:
|
|
case MFC_PUTRLB_CMD:
|
|
case MFC_PUTRLF_CMD:
|
|
case MFC_GETL_CMD:
|
|
case MFC_GETLB_CMD:
|
|
case MFC_GETLF_CMD:
|
|
{
|
|
// TODO
|
|
m_ir->CreateBr(next);
|
|
m_ir->SetInsertPoint(exec);
|
|
m_ir->CreateUnreachable();
|
|
m_ir->SetInsertPoint(fail);
|
|
m_ir->CreateUnreachable();
|
|
m_ir->SetInsertPoint(next);
|
|
m_ir->CreateStore(ci, spu_ptr<u8>(&spu_thread::ch_mfc_cmd, &spu_mfc_cmd::cmd));
|
|
call("spu_exec_mfc_cmd", &exec_mfc_cmd, m_thread);
|
|
return;
|
|
}
|
|
case MFC_SNDSIG_CMD:
|
|
case MFC_SNDSIGB_CMD:
|
|
case MFC_SNDSIGF_CMD:
|
|
case MFC_PUT_CMD:
|
|
case MFC_PUTB_CMD:
|
|
case MFC_PUTF_CMD:
|
|
case MFC_PUTR_CMD:
|
|
case MFC_PUTRB_CMD:
|
|
case MFC_PUTRF_CMD:
|
|
case MFC_GET_CMD:
|
|
case MFC_GETB_CMD:
|
|
case MFC_GETF_CMD:
|
|
{
|
|
// Try to obtain constant size
|
|
u64 csize = -1;
|
|
|
|
if (auto ci = llvm::dyn_cast<llvm::ConstantInt>(size.value))
|
|
{
|
|
csize = ci->getZExtValue();
|
|
}
|
|
|
|
if (cmd >= MFC_SNDSIG_CMD && csize != 4)
|
|
{
|
|
csize = -1;
|
|
}
|
|
|
|
llvm::Value* src = m_ir->CreateGEP(m_lsptr, zext<u64>(lsa).eval(m_ir));
|
|
llvm::Value* dst = m_ir->CreateGEP(m_memptr, zext<u64>(eal).eval(m_ir));
|
|
|
|
if (cmd & MFC_GET_CMD)
|
|
{
|
|
std::swap(src, dst);
|
|
}
|
|
|
|
llvm::Value* barrier = m_ir->CreateLoad(pb);
|
|
|
|
if (cmd & (MFC_BARRIER_MASK | MFC_FENCE_MASK))
|
|
{
|
|
barrier = m_ir->CreateOr(barrier, m_ir->CreateLoad(pf));
|
|
}
|
|
|
|
const auto cond = m_ir->CreateIsNull(m_ir->CreateAnd(mask, barrier));
|
|
m_ir->CreateCondBr(cond, exec, fail, m_md_likely);
|
|
m_ir->SetInsertPoint(exec);
|
|
|
|
const auto mmio = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto copy = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(m_ir->CreateICmpUGE(eal.value, m_ir->getInt32(0xe0000000)), mmio, copy, m_md_unlikely);
|
|
m_ir->SetInsertPoint(mmio);
|
|
m_ir->CreateStore(ci, spu_ptr<u8>(&spu_thread::ch_mfc_cmd, &spu_mfc_cmd::cmd));
|
|
call("spu_exec_mfc_cmd", &exec_mfc_cmd, m_thread);
|
|
m_ir->CreateBr(next);
|
|
m_ir->SetInsertPoint(copy);
|
|
|
|
llvm::Type* vtype = get_type<u8(*)[16]>();
|
|
|
|
switch (csize)
|
|
{
|
|
case 0:
|
|
case UINT64_MAX:
|
|
{
|
|
break;
|
|
}
|
|
case 1:
|
|
{
|
|
vtype = get_type<u8*>();
|
|
break;
|
|
}
|
|
case 2:
|
|
{
|
|
vtype = get_type<u16*>();
|
|
break;
|
|
}
|
|
case 4:
|
|
{
|
|
vtype = get_type<u32*>();
|
|
break;
|
|
}
|
|
case 8:
|
|
{
|
|
vtype = get_type<u64*>();
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
if (csize % 16 || csize > 0x4000)
|
|
{
|
|
LOG_ERROR(SPU, "[0x%x] MFC_Cmd: invalid size %u", m_pos, csize);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (csize > 0 && csize <= 16)
|
|
{
|
|
// Generate single copy operation
|
|
m_ir->CreateStore(m_ir->CreateLoad(m_ir->CreateBitCast(src, vtype), true), m_ir->CreateBitCast(dst, vtype), true);
|
|
}
|
|
else if (csize <= 256)
|
|
{
|
|
// Generate fixed sequence of copy operations
|
|
for (u32 i = 0; i < csize; i += 16)
|
|
{
|
|
const auto _src = m_ir->CreateGEP(src, m_ir->getInt32(i));
|
|
const auto _dst = m_ir->CreateGEP(dst, m_ir->getInt32(i));
|
|
m_ir->CreateStore(m_ir->CreateLoad(m_ir->CreateBitCast(_src, vtype), true), m_ir->CreateBitCast(_dst, vtype), true);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// TODO
|
|
m_ir->CreateCall(get_intrinsic<u8*, u8*, u32>(llvm::Intrinsic::memcpy), {dst, src, zext<u32>(size).eval(m_ir), m_ir->getTrue()});
|
|
}
|
|
|
|
m_ir->CreateBr(next);
|
|
break;
|
|
}
|
|
case MFC_BARRIER_CMD:
|
|
case MFC_EIEIO_CMD:
|
|
case MFC_SYNC_CMD:
|
|
{
|
|
const auto cond = m_ir->CreateIsNull(m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::mfc_size)));
|
|
m_ir->CreateCondBr(cond, exec, fail, m_md_likely);
|
|
m_ir->SetInsertPoint(exec);
|
|
m_ir->CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
|
|
m_ir->CreateBr(next);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
// TODO
|
|
LOG_ERROR(SPU, "[0x%x] MFC_Cmd: unknown command (0x%x)", m_pos, cmd);
|
|
m_ir->CreateBr(next);
|
|
m_ir->SetInsertPoint(exec);
|
|
m_ir->CreateUnreachable();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Fallback: enqueue the command
|
|
m_ir->SetInsertPoint(fail);
|
|
|
|
// Get MFC slot, redirect to invalid memory address
|
|
const auto slot = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::mfc_size));
|
|
const auto off0 = m_ir->CreateAdd(m_ir->CreateMul(slot, m_ir->getInt32(sizeof(spu_mfc_cmd))), m_ir->getInt32(::offset32(&spu_thread::mfc_queue)));
|
|
const auto ptr0 = m_ir->CreateGEP(m_thread, m_ir->CreateZExt(off0, get_type<u64>()));
|
|
const auto ptr1 = m_ir->CreateGEP(m_memptr, m_ir->getInt64(0xffdeadf0));
|
|
const auto pmfc = m_ir->CreateSelect(m_ir->CreateICmpULT(slot, m_ir->getInt32(16)), ptr0, ptr1);
|
|
m_ir->CreateStore(ci, _ptr<u8>(pmfc, ::offset32(&spu_mfc_cmd::cmd)));
|
|
|
|
switch (u64 cmd = ci->getZExtValue())
|
|
{
|
|
case MFC_GETLLAR_CMD:
|
|
case MFC_PUTLLC_CMD:
|
|
case MFC_PUTLLUC_CMD:
|
|
case MFC_PUTQLLUC_CMD:
|
|
{
|
|
break;
|
|
}
|
|
case MFC_PUTL_CMD:
|
|
case MFC_PUTLB_CMD:
|
|
case MFC_PUTLF_CMD:
|
|
case MFC_PUTRL_CMD:
|
|
case MFC_PUTRLB_CMD:
|
|
case MFC_PUTRLF_CMD:
|
|
case MFC_GETL_CMD:
|
|
case MFC_GETLB_CMD:
|
|
case MFC_GETLF_CMD:
|
|
{
|
|
break;
|
|
}
|
|
case MFC_SNDSIG_CMD:
|
|
case MFC_SNDSIGB_CMD:
|
|
case MFC_SNDSIGF_CMD:
|
|
case MFC_PUT_CMD:
|
|
case MFC_PUTB_CMD:
|
|
case MFC_PUTF_CMD:
|
|
case MFC_PUTR_CMD:
|
|
case MFC_PUTRB_CMD:
|
|
case MFC_PUTRF_CMD:
|
|
case MFC_GET_CMD:
|
|
case MFC_GETB_CMD:
|
|
case MFC_GETF_CMD:
|
|
{
|
|
m_ir->CreateStore(tag.value, _ptr<u8>(pmfc, ::offset32(&spu_mfc_cmd::tag)));
|
|
m_ir->CreateStore(size.value, _ptr<u16>(pmfc, ::offset32(&spu_mfc_cmd::size)));
|
|
m_ir->CreateStore(lsa.value, _ptr<u32>(pmfc, ::offset32(&spu_mfc_cmd::lsa)));
|
|
m_ir->CreateStore(eal.value, _ptr<u32>(pmfc, ::offset32(&spu_mfc_cmd::eal)));
|
|
m_ir->CreateStore(m_ir->CreateOr(m_ir->CreateLoad(pb), mask), pb);
|
|
if (cmd & MFC_FENCE_MASK)
|
|
m_ir->CreateStore(m_ir->CreateOr(m_ir->CreateLoad(pf), mask), pf);
|
|
break;
|
|
}
|
|
case MFC_BARRIER_CMD:
|
|
case MFC_EIEIO_CMD:
|
|
case MFC_SYNC_CMD:
|
|
{
|
|
m_ir->CreateStore(m_ir->getInt32(-1), pb);
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
m_ir->CreateUnreachable();
|
|
break;
|
|
}
|
|
}
|
|
|
|
m_ir->CreateStore(m_ir->CreateAdd(slot, m_ir->getInt32(1)), spu_ptr<u32>(&spu_thread::mfc_size));
|
|
m_ir->CreateBr(next);
|
|
m_ir->SetInsertPoint(next);
|
|
return;
|
|
}
|
|
|
|
// Fallback to unoptimized WRCH implementation (TODO)
|
|
LOG_WARNING(SPU, "[0x%x] MFC_Cmd: $%u is not a constant", m_pos, +op.rt);
|
|
break;
|
|
}
|
|
case MFC_WrListStallAck:
|
|
{
|
|
const auto mask = eval(splat<u32>(1) << (val & 0x1f));
|
|
const auto _ptr = spu_ptr<u32>(&spu_thread::ch_stall_mask);
|
|
const auto _old = m_ir->CreateLoad(_ptr);
|
|
const auto _new = m_ir->CreateAnd(_old, m_ir->CreateNot(mask.value));
|
|
m_ir->CreateStore(_new, _ptr);
|
|
const auto next = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto _mfc = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(m_ir->CreateICmpNE(_old, _new), _mfc, next);
|
|
m_ir->SetInsertPoint(_mfc);
|
|
call("spu_list_unstall", &exec_list_unstall, m_thread, eval(val & 0x1f).value);
|
|
m_ir->CreateBr(next);
|
|
m_ir->SetInsertPoint(next);
|
|
return;
|
|
}
|
|
case SPU_WrDec:
|
|
{
|
|
m_ir->CreateStore(call("get_timebased_time", &get_timebased_time), spu_ptr<u64>(&spu_thread::ch_dec_start_timestamp));
|
|
m_ir->CreateStore(val.value, spu_ptr<u32>(&spu_thread::ch_dec_value));
|
|
return;
|
|
}
|
|
case SPU_WrEventMask:
|
|
{
|
|
m_ir->CreateStore(val.value, spu_ptr<u32>(&spu_thread::ch_event_mask))->setVolatile(true);
|
|
return;
|
|
}
|
|
case SPU_WrEventAck:
|
|
{
|
|
m_ir->CreateAtomicRMW(llvm::AtomicRMWInst::And, spu_ptr<u32>(&spu_thread::ch_event_stat), eval(~val).value, llvm::AtomicOrdering::Release);
|
|
return;
|
|
}
|
|
case 69:
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
update_pc();
|
|
const auto succ = call("spu_write_channel", &exec_wrch, m_thread, m_ir->getInt32(op.ra), val.value);
|
|
const auto next = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto stop = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(succ, next, stop);
|
|
m_ir->SetInsertPoint(stop);
|
|
m_ir->CreateStore(m_ir->getFalse(), m_fake_global1, true);
|
|
m_ir->CreateBr(next);
|
|
m_ir->SetInsertPoint(next);
|
|
}
|
|
|
|
void LNOP(spu_opcode_t op) //
|
|
{
|
|
}
|
|
|
|
void NOP(spu_opcode_t op) //
|
|
{
|
|
}
|
|
|
|
void SYNC(spu_opcode_t op) //
|
|
{
|
|
// This instruction must be used following a store instruction that modifies the instruction stream.
|
|
m_ir->CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
|
|
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::safe && !m_interp_magn)
|
|
{
|
|
m_block->block_end = m_ir->GetInsertBlock();
|
|
update_pc(m_pos + 4);
|
|
m_ir->CreateRetVoid();
|
|
}
|
|
}
|
|
|
|
void DSYNC(spu_opcode_t op) //
|
|
{
|
|
// This instruction forces all earlier load, store, and channel instructions to complete before proceeding.
|
|
SYNC(op);
|
|
}
|
|
|
|
void MFSPR(spu_opcode_t op) //
|
|
{
|
|
// Check SPUInterpreter for notes.
|
|
set_vr(op.rt, splat<u32[4]>(0));
|
|
}
|
|
|
|
void MTSPR(spu_opcode_t op) //
|
|
{
|
|
// Check SPUInterpreter for notes.
|
|
}
|
|
|
|
void SF(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr(op.rb) - get_vr(op.ra));
|
|
}
|
|
|
|
void OR(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr(op.ra) | get_vr(op.rb));
|
|
}
|
|
|
|
void BG(spu_opcode_t op)
|
|
{
|
|
const auto [a, b] = get_vrs<u32[4]>(op.ra, op.rb);
|
|
set_vr(op.rt, zext<u32[4]>(a <= b));
|
|
}
|
|
|
|
void SFH(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<u16[8]>(op.rb) - get_vr<u16[8]>(op.ra));
|
|
}
|
|
|
|
void NOR(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, ~(get_vr(op.ra) | get_vr(op.rb)));
|
|
}
|
|
|
|
void ABSDB(spu_opcode_t op)
|
|
{
|
|
const auto [a, b] = get_vrs<u8[16]>(op.ra, op.rb);
|
|
set_vr(op.rt, max(a, b) - min(a, b));
|
|
}
|
|
|
|
template <typename T>
|
|
void make_spu_rol(spu_opcode_t op, value_t<T> by)
|
|
{
|
|
set_vr(op.rt, rol(get_vr<T>(op.ra), by));
|
|
}
|
|
|
|
template <typename R, typename T>
|
|
void make_spu_rotate_mask(spu_opcode_t op, value_t<T> by)
|
|
{
|
|
value_t<R> sh;
|
|
static_assert(sh.esize == by.esize);
|
|
sh.value = m_ir->CreateAnd(m_ir->CreateNeg(by.value), by.esize * 2 - 1);
|
|
if constexpr (!by.is_vector)
|
|
sh.value = m_ir->CreateVectorSplat(sh.is_vector, sh.value);
|
|
|
|
set_vr(op.rt, select(sh < by.esize, get_vr<R>(op.ra) >> sh, splat<R>(0)));
|
|
}
|
|
|
|
template <typename R, typename T>
|
|
void make_spu_rotate_sext(spu_opcode_t op, value_t<T> by)
|
|
{
|
|
value_t<R> sh;
|
|
static_assert(sh.esize == by.esize);
|
|
sh.value = m_ir->CreateAnd(m_ir->CreateNeg(by.value), by.esize * 2 - 1);
|
|
if constexpr (!by.is_vector)
|
|
sh.value = m_ir->CreateVectorSplat(sh.is_vector, sh.value);
|
|
|
|
value_t<R> max_sh = eval(splat<R>(by.esize - 1));
|
|
sh.value = m_ir->CreateSelect(m_ir->CreateICmpUGT(max_sh.value, sh.value), sh.value, max_sh.value);
|
|
set_vr(op.rt, get_vr<R>(op.ra) >> sh);
|
|
}
|
|
|
|
template <typename R, typename T>
|
|
void make_spu_shift_left(spu_opcode_t op, value_t<T> by)
|
|
{
|
|
value_t<R> sh;
|
|
static_assert(sh.esize == by.esize);
|
|
sh.value = m_ir->CreateAnd(by.value, by.esize * 2 - 1);
|
|
if constexpr (!by.is_vector)
|
|
sh.value = m_ir->CreateVectorSplat(sh.is_vector, sh.value);
|
|
|
|
set_vr(op.rt, select(sh < by.esize, get_vr<R>(op.ra) << sh, splat<R>(0)));
|
|
}
|
|
|
|
void ROT(spu_opcode_t op)
|
|
{
|
|
make_spu_rol(op, get_vr<u32[4]>(op.rb));
|
|
}
|
|
|
|
void ROTM(spu_opcode_t op)
|
|
{
|
|
make_spu_rotate_mask<u32[4]>(op, get_vr(op.rb));
|
|
}
|
|
|
|
void ROTMA(spu_opcode_t op)
|
|
{
|
|
make_spu_rotate_sext<s32[4]>(op, get_vr(op.rb));
|
|
}
|
|
|
|
void SHL(spu_opcode_t op)
|
|
{
|
|
make_spu_shift_left<u32[4]>(op, get_vr(op.rb));
|
|
}
|
|
|
|
void ROTH(spu_opcode_t op)
|
|
{
|
|
make_spu_rol(op, get_vr<u16[8]>(op.rb));
|
|
}
|
|
|
|
void ROTHM(spu_opcode_t op)
|
|
{
|
|
make_spu_rotate_mask<u16[8]>(op, get_vr<u16[8]>(op.rb));
|
|
}
|
|
|
|
void ROTMAH(spu_opcode_t op)
|
|
{
|
|
make_spu_rotate_sext<s16[8]>(op, get_vr<s16[8]>(op.rb));
|
|
}
|
|
|
|
void SHLH(spu_opcode_t op)
|
|
{
|
|
make_spu_shift_left<u16[8]>(op, get_vr<u16[8]>(op.rb));
|
|
}
|
|
|
|
void ROTI(spu_opcode_t op)
|
|
{
|
|
make_spu_rol(op, get_imm<u32[4]>(op.i7, false));
|
|
}
|
|
|
|
void ROTMI(spu_opcode_t op)
|
|
{
|
|
make_spu_rotate_mask<u32[4]>(op, get_imm<u32>(op.i7, false));
|
|
}
|
|
|
|
void ROTMAI(spu_opcode_t op)
|
|
{
|
|
make_spu_rotate_sext<s32[4]>(op, get_imm<u32>(op.i7, false));
|
|
}
|
|
|
|
void SHLI(spu_opcode_t op)
|
|
{
|
|
make_spu_shift_left<u32[4]>(op, get_imm<u32>(op.i7, false));
|
|
}
|
|
|
|
void ROTHI(spu_opcode_t op)
|
|
{
|
|
make_spu_rol(op, get_imm<u16[8]>(op.i7, false));
|
|
}
|
|
|
|
void ROTHMI(spu_opcode_t op)
|
|
{
|
|
make_spu_rotate_mask<u16[8]>(op, get_imm<u16>(op.i7, false));
|
|
}
|
|
|
|
void ROTMAHI(spu_opcode_t op)
|
|
{
|
|
make_spu_rotate_sext<s16[8]>(op, get_imm<u16>(op.i7, false));
|
|
}
|
|
|
|
void SHLHI(spu_opcode_t op)
|
|
{
|
|
make_spu_shift_left<u16[8]>(op, get_imm<u16>(op.i7, false));
|
|
}
|
|
|
|
void A(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr(op.ra) + get_vr(op.rb));
|
|
}
|
|
|
|
void AND(spu_opcode_t op)
|
|
{
|
|
if (match_vr<u8[16], u16[8], u64[2]>(op.ra, [&](auto a, auto MP1)
|
|
{
|
|
if (auto b = match_vr_as(a, op.rb))
|
|
{
|
|
set_vr(op.rt, a & b);
|
|
return true;
|
|
}
|
|
|
|
return match_vr<u8[16], u16[8], u64[2]>(op.rb, [&](auto b, auto MP2)
|
|
{
|
|
set_vr(op.rt, a & get_vr_as(a, op.rb));
|
|
return true;
|
|
});
|
|
}))
|
|
{
|
|
return;
|
|
}
|
|
|
|
set_vr(op.rt, get_vr(op.ra) & get_vr(op.rb));
|
|
}
|
|
|
|
void CG(spu_opcode_t op)
|
|
{
|
|
const auto [a, b] = get_vrs<u32[4]>(op.ra, op.rb);
|
|
set_vr(op.rt, zext<u32[4]>(a + b < a));
|
|
}
|
|
|
|
void AH(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<u16[8]>(op.ra) + get_vr<u16[8]>(op.rb));
|
|
}
|
|
|
|
void NAND(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, ~(get_vr(op.ra) & get_vr(op.rb)));
|
|
}
|
|
|
|
void AVGB(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, avg(get_vr<u8[16]>(op.ra), get_vr<u8[16]>(op.rb)));
|
|
}
|
|
|
|
void GB(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr<s32[4]>(op.ra);
|
|
const auto m = zext<u32>(bitcast<i4>(trunc<bool[4]>(a)));
|
|
set_vr(op.rt, insert(splat<u32[4]>(0), 3, eval(m)));
|
|
}
|
|
|
|
void GBH(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr<s16[8]>(op.ra);
|
|
const auto m = zext<u32>(bitcast<u8>(trunc<bool[8]>(a)));
|
|
set_vr(op.rt, insert(splat<u32[4]>(0), 3, eval(m)));
|
|
}
|
|
|
|
void GBB(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr<s8[16]>(op.ra);
|
|
const auto m = zext<u32>(bitcast<u16>(trunc<bool[16]>(a)));
|
|
set_vr(op.rt, insert(splat<u32[4]>(0), 3, eval(m)));
|
|
}
|
|
|
|
void FSM(spu_opcode_t op)
|
|
{
|
|
const auto v = extract(get_vr(op.ra), 3);
|
|
const auto m = bitcast<bool[4]>(trunc<i4>(v));
|
|
set_vr(op.rt, sext<s32[4]>(m));
|
|
}
|
|
|
|
void FSMH(spu_opcode_t op)
|
|
{
|
|
const auto v = extract(get_vr(op.ra), 3);
|
|
const auto m = bitcast<bool[8]>(trunc<u8>(v));
|
|
set_vr(op.rt, sext<s16[8]>(m));
|
|
}
|
|
|
|
void FSMB(spu_opcode_t op)
|
|
{
|
|
const auto v = extract(get_vr(op.ra), 3);
|
|
const auto m = bitcast<bool[16]>(trunc<u16>(v));
|
|
set_vr(op.rt, sext<s8[16]>(m));
|
|
}
|
|
|
|
void ROTQBYBI(spu_opcode_t op)
|
|
{
|
|
const auto sc = build<u8[16]>(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
|
|
const auto sh = (sc - (zshuffle(get_vr<u8[16]>(op.rb), 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12) >> 3)) & 0xf;
|
|
set_vr(op.rt, pshufb(get_vr<u8[16]>(op.ra), sh));
|
|
}
|
|
|
|
void ROTQMBYBI(spu_opcode_t op)
|
|
{
|
|
const auto sc = build<u8[16]>(112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127);
|
|
const auto sh = sc + (-(zshuffle(get_vr<u8[16]>(op.rb), 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12) >> 3) & 0x1f);
|
|
set_vr(op.rt, pshufb(get_vr<u8[16]>(op.ra), sh));
|
|
}
|
|
|
|
void SHLQBYBI(spu_opcode_t op)
|
|
{
|
|
const auto sc = build<u8[16]>(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
|
|
const auto sh = sc - (zshuffle(get_vr<u8[16]>(op.rb), 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12) >> 3);
|
|
set_vr(op.rt, pshufb(get_vr<u8[16]>(op.ra), sh));
|
|
}
|
|
|
|
template <typename RT, typename T>
|
|
auto spu_get_insertion_shuffle_mask(T&& index)
|
|
{
|
|
const auto c = bitcast<RT>(build<u8[16]>(0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10));
|
|
using e_type = std::remove_extent_t<RT>;
|
|
const auto v = splat<e_type>(static_cast<e_type>(sizeof(e_type) == 8 ? 0x01020304050607ull : 0x010203ull));
|
|
return insert(c, std::forward<T>(index), v);
|
|
}
|
|
|
|
void CBX(spu_opcode_t op)
|
|
{
|
|
if (m_finfo && m_finfo->fn && op.ra == s_reg_sp)
|
|
{
|
|
// Optimization with aligned stack assumption. Strange because SPU code could use CBD instead, but encountered in wild.
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u8[16]>(~get_scalar(get_vr(op.rb)) & 0xf));
|
|
return;
|
|
}
|
|
|
|
const auto s = get_scalar(get_vr(op.ra)) + get_scalar(get_vr(op.rb));
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u8[16]>(~s & 0xf));
|
|
}
|
|
|
|
void CHX(spu_opcode_t op)
|
|
{
|
|
if (m_finfo && m_finfo->fn && op.ra == s_reg_sp)
|
|
{
|
|
// See CBX.
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u16[8]>(~get_scalar(get_vr(op.rb)) >> 1 & 0x7));
|
|
return;
|
|
}
|
|
|
|
const auto s = get_scalar(get_vr(op.ra)) + get_scalar(get_vr(op.rb));
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u16[8]>(~s >> 1 & 0x7));
|
|
}
|
|
|
|
void CWX(spu_opcode_t op)
|
|
{
|
|
if (m_finfo && m_finfo->fn && op.ra == s_reg_sp)
|
|
{
|
|
// See CBX.
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u32[4]>(~get_scalar(get_vr(op.rb)) >> 2 & 0x3));
|
|
return;
|
|
}
|
|
|
|
const auto s = get_scalar(get_vr(op.ra)) + get_scalar(get_vr(op.rb));
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u32[4]>(~s >> 2 & 0x3));
|
|
}
|
|
|
|
void CDX(spu_opcode_t op)
|
|
{
|
|
if (m_finfo && m_finfo->fn && op.ra == s_reg_sp)
|
|
{
|
|
// See CBX.
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u64[2]>(~get_scalar(get_vr(op.rb)) >> 3 & 0x1));
|
|
return;
|
|
}
|
|
|
|
const auto s = get_scalar(get_vr(op.ra)) + get_scalar(get_vr(op.rb));
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u64[2]>(~s >> 3 & 0x1));
|
|
}
|
|
|
|
void ROTQBI(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr(op.ra);
|
|
const auto b = zshuffle(get_vr(op.rb) & 0x7, 3, 3, 3, 3);
|
|
set_vr(op.rt, fshl(a, zshuffle(a, 3, 0, 1, 2), b));
|
|
}
|
|
|
|
void ROTQMBI(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr(op.ra);
|
|
const auto b = zshuffle(-get_vr(op.rb) & 0x7, 3, 3, 3, 3);
|
|
set_vr(op.rt, fshr(zshuffle(a, 1, 2, 3, 4), a, b));
|
|
}
|
|
|
|
void SHLQBI(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr(op.ra);
|
|
const auto b = zshuffle(get_vr(op.rb) & 0x7, 3, 3, 3, 3);
|
|
set_vr(op.rt, fshl(a, zshuffle(a, 4, 0, 1, 2), b));
|
|
}
|
|
|
|
void ROTQBY(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr<u8[16]>(op.ra);
|
|
const auto b = get_vr<u8[16]>(op.rb);
|
|
const auto sc = build<u8[16]>(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
|
|
const auto sh = eval((sc - zshuffle(b, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12)) & 0xf);
|
|
set_vr(op.rt, pshufb(a, sh));
|
|
}
|
|
|
|
void ROTQMBY(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr<u8[16]>(op.ra);
|
|
const auto b = get_vr<u8[16]>(op.rb);
|
|
const auto sc = build<u8[16]>(112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127);
|
|
const auto sh = sc + (-zshuffle(b, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12) & 0x1f);
|
|
set_vr(op.rt, pshufb(a, sh));
|
|
}
|
|
|
|
void SHLQBY(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr<u8[16]>(op.ra);
|
|
const auto b = get_vr<u8[16]>(op.rb);
|
|
const auto sc = build<u8[16]>(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
|
|
const auto sh = sc - (zshuffle(b, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12) & 0x1f);
|
|
set_vr(op.rt, pshufb(a, sh));
|
|
}
|
|
|
|
void ORX(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr(op.ra);
|
|
const auto x = zshuffle(a, 2, 3, 0, 1) | a;
|
|
const auto y = zshuffle(x, 1, 0, 3, 2) | x;
|
|
set_vr(op.rt, zshuffle(y, 4, 4, 4, 3));
|
|
}
|
|
|
|
void CBD(spu_opcode_t op)
|
|
{
|
|
if (m_finfo && m_finfo->fn && op.ra == s_reg_sp)
|
|
{
|
|
// Known constant with aligned stack assumption (optimization).
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u8[16]>(~get_imm<u32>(op.i7) & 0xf));
|
|
return;
|
|
}
|
|
|
|
const auto a = get_scalar(get_vr(op.ra)) + get_imm<u32>(op.i7);
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u8[16]>(~a & 0xf));
|
|
}
|
|
|
|
void CHD(spu_opcode_t op)
|
|
{
|
|
if (m_finfo && m_finfo->fn && op.ra == s_reg_sp)
|
|
{
|
|
// See CBD.
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u16[8]>(~get_imm<u32>(op.i7) >> 1 & 0x7));
|
|
return;
|
|
}
|
|
|
|
const auto a = get_scalar(get_vr(op.ra)) + get_imm<u32>(op.i7);
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u16[8]>(~a >> 1 & 0x7));
|
|
}
|
|
|
|
void CWD(spu_opcode_t op)
|
|
{
|
|
if (m_finfo && m_finfo->fn && op.ra == s_reg_sp)
|
|
{
|
|
// See CBD.
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u32[4]>(~get_imm<u32>(op.i7) >> 2 & 0x3));
|
|
return;
|
|
}
|
|
|
|
const auto a = get_scalar(get_vr(op.ra)) + get_imm<u32>(op.i7);
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u32[4]>(~a >> 2 & 0x3));
|
|
}
|
|
|
|
void CDD(spu_opcode_t op)
|
|
{
|
|
if (m_finfo && m_finfo->fn && op.ra == s_reg_sp)
|
|
{
|
|
// See CBD.
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u64[2]>(~get_imm<u32>(op.i7) >> 3 & 0x1));
|
|
return;
|
|
}
|
|
|
|
const auto a = get_scalar(get_vr(op.ra)) + get_imm<u32>(op.i7);
|
|
set_vr(op.rt, spu_get_insertion_shuffle_mask<u64[2]>(~a >> 3 & 0x1));
|
|
}
|
|
|
|
void ROTQBII(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr(op.ra);
|
|
const auto b = eval(get_imm(op.i7, false) & 0x7);
|
|
set_vr(op.rt, fshl(a, zshuffle(a, 3, 0, 1, 2), b));
|
|
}
|
|
|
|
void ROTQMBII(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr(op.ra);
|
|
const auto b = eval(-get_imm(op.i7, false) & 0x7);
|
|
set_vr(op.rt, fshr(zshuffle(a, 1, 2, 3, 4), a, b));
|
|
}
|
|
|
|
void SHLQBII(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr(op.ra);
|
|
const auto b = eval(get_imm(op.i7, false) & 0x7);
|
|
set_vr(op.rt, fshl(a, zshuffle(a, 4, 0, 1, 2), b));
|
|
}
|
|
|
|
void ROTQBYI(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr<u8[16]>(op.ra);
|
|
const auto sc = build<u8[16]>(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
|
|
const auto sh = (sc - get_imm<u8[16]>(op.i7, false)) & 0xf;
|
|
set_vr(op.rt, pshufb(a, sh));
|
|
}
|
|
|
|
void ROTQMBYI(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr<u8[16]>(op.ra);
|
|
const auto sc = build<u8[16]>(112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127);
|
|
const auto sh = sc + (-get_imm<u8[16]>(op.i7, false) & 0x1f);
|
|
set_vr(op.rt, pshufb(a, sh));
|
|
}
|
|
|
|
void SHLQBYI(spu_opcode_t op)
|
|
{
|
|
const auto a = get_vr<u8[16]>(op.ra);
|
|
const auto sc = build<u8[16]>(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
|
|
const auto sh = sc - (get_imm<u8[16]>(op.i7, false) & 0x1f);
|
|
set_vr(op.rt, pshufb(a, sh));
|
|
}
|
|
|
|
void CGT(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s32[4]>(get_vr<s32[4]>(op.ra) > get_vr<s32[4]>(op.rb)));
|
|
}
|
|
|
|
void XOR(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr(op.ra) ^ get_vr(op.rb));
|
|
}
|
|
|
|
void CGTH(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s16[8]>(get_vr<s16[8]>(op.ra) > get_vr<s16[8]>(op.rb)));
|
|
}
|
|
|
|
void EQV(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, ~(get_vr(op.ra) ^ get_vr(op.rb)));
|
|
}
|
|
|
|
void CGTB(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s8[16]>(get_vr<s8[16]>(op.ra) > get_vr<s8[16]>(op.rb)));
|
|
}
|
|
|
|
void SUMB(spu_opcode_t op)
|
|
{
|
|
const auto [a, b] = get_vrs<u16[8]>(op.ra, op.rb);
|
|
const auto ahs = eval((a >> 8) + (a & 0xff));
|
|
const auto bhs = eval((b >> 8) + (b & 0xff));
|
|
const auto lsh = shuffle2(ahs, bhs, 0, 9, 2, 11, 4, 13, 6, 15);
|
|
const auto hsh = shuffle2(ahs, bhs, 1, 8, 3, 10, 5, 12, 7, 14);
|
|
set_vr(op.rt, lsh + hsh);
|
|
}
|
|
|
|
void CLZ(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, ctlz(get_vr(op.ra)));
|
|
}
|
|
|
|
void XSWD(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s64[2]>(op.ra) << 32 >> 32);
|
|
}
|
|
|
|
void XSHW(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s32[4]>(op.ra) << 16 >> 16);
|
|
}
|
|
|
|
void CNTB(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, ctpop(get_vr<u8[16]>(op.ra)));
|
|
}
|
|
|
|
void XSBH(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s16[8]>(op.ra) << 8 >> 8);
|
|
}
|
|
|
|
void CLGT(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s32[4]>(get_vr(op.ra) > get_vr(op.rb)));
|
|
}
|
|
|
|
void ANDC(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr(op.ra) & ~get_vr(op.rb));
|
|
}
|
|
|
|
void CLGTH(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s16[8]>(get_vr<u16[8]>(op.ra) > get_vr<u16[8]>(op.rb)));
|
|
}
|
|
|
|
void ORC(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr(op.ra) | ~get_vr(op.rb));
|
|
}
|
|
|
|
void CLGTB(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s8[16]>(get_vr<u8[16]>(op.ra) > get_vr<u8[16]>(op.rb)));
|
|
}
|
|
|
|
void CEQ(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s32[4]>(get_vr(op.ra) == get_vr(op.rb)));
|
|
}
|
|
|
|
void MPYHHU(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, (get_vr(op.ra) >> 16) * (get_vr(op.rb) >> 16));
|
|
}
|
|
|
|
void ADDX(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, llvm_sum{get_vr(op.ra), get_vr(op.rb), get_vr(op.rt) & 1});
|
|
}
|
|
|
|
void SFX(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr(op.rb) - get_vr(op.ra) - (~get_vr(op.rt) & 1));
|
|
}
|
|
|
|
void CGX(spu_opcode_t op)
|
|
{
|
|
const auto [a, b] = get_vrs<u32[4]>(op.ra, op.rb);
|
|
const auto x = ~get_vr(op.rt) & 1;
|
|
const auto s = eval(a + b);
|
|
set_vr(op.rt, zext<u32[4]>((noncast<u32[4]>(sext<s32[4]>(s < a)) | (s & ~x)) == -1));
|
|
}
|
|
|
|
void BGX(spu_opcode_t op)
|
|
{
|
|
const auto [a, b] = get_vrs<u32[4]>(op.ra, op.rb);
|
|
const auto c = get_vr<s32[4]>(op.rt) << 31;
|
|
set_vr(op.rt, zext<u32[4]>((a <= b) & ~((a == b) & (c >= 0))));
|
|
}
|
|
|
|
void MPYHHA(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, (get_vr<s32[4]>(op.ra) >> 16) * (get_vr<s32[4]>(op.rb) >> 16) + get_vr<s32[4]>(op.rt));
|
|
}
|
|
|
|
void MPYHHAU(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, (get_vr(op.ra) >> 16) * (get_vr(op.rb) >> 16) + get_vr(op.rt));
|
|
}
|
|
|
|
void MPY(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, (get_vr<s32[4]>(op.ra) << 16 >> 16) * (get_vr<s32[4]>(op.rb) << 16 >> 16));
|
|
}
|
|
|
|
void MPYH(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, (get_vr(op.ra) >> 16) * (get_vr(op.rb) << 16));
|
|
}
|
|
|
|
void MPYHH(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, (get_vr<s32[4]>(op.ra) >> 16) * (get_vr<s32[4]>(op.rb) >> 16));
|
|
}
|
|
|
|
void MPYS(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, (get_vr<s32[4]>(op.ra) << 16 >> 16) * (get_vr<s32[4]>(op.rb) << 16 >> 16) >> 16);
|
|
}
|
|
|
|
void CEQH(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s16[8]>(get_vr<u16[8]>(op.ra) == get_vr<u16[8]>(op.rb)));
|
|
}
|
|
|
|
void MPYU(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, (get_vr(op.ra) << 16 >> 16) * (get_vr(op.rb) << 16 >> 16));
|
|
}
|
|
|
|
void CEQB(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s8[16]>(get_vr<u8[16]>(op.ra) == get_vr<u8[16]>(op.rb)));
|
|
}
|
|
|
|
void FSMBI(spu_opcode_t op)
|
|
{
|
|
const auto m = bitcast<bool[16]>(get_imm<u16>(op.i16));
|
|
set_vr(op.rt, sext<s8[16]>(m));
|
|
}
|
|
|
|
void IL(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_imm<s32[4]>(op.si16));
|
|
}
|
|
|
|
void ILHU(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_imm<u32[4]>(op.i16) << 16);
|
|
}
|
|
|
|
void ILH(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_imm<u16[8]>(op.i16));
|
|
}
|
|
|
|
void IOHL(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr(op.rt) | get_imm(op.i16));
|
|
}
|
|
|
|
void ORI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s32[4]>(op.ra) | get_imm<s32[4]>(op.si10));
|
|
}
|
|
|
|
void ORHI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s16[8]>(op.ra) | get_imm<s16[8]>(op.si10));
|
|
}
|
|
|
|
void ORBI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s8[16]>(op.ra) | get_imm<s8[16]>(op.si10));
|
|
}
|
|
|
|
void SFI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_imm<s32[4]>(op.si10) - get_vr<s32[4]>(op.ra));
|
|
}
|
|
|
|
void SFHI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_imm<s16[8]>(op.si10) - get_vr<s16[8]>(op.ra));
|
|
}
|
|
|
|
void ANDI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s32[4]>(op.ra) & get_imm<s32[4]>(op.si10));
|
|
}
|
|
|
|
void ANDHI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s16[8]>(op.ra) & get_imm<s16[8]>(op.si10));
|
|
}
|
|
|
|
void ANDBI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s8[16]>(op.ra) & get_imm<s8[16]>(op.si10));
|
|
}
|
|
|
|
void AI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s32[4]>(op.ra) + get_imm<s32[4]>(op.si10));
|
|
}
|
|
|
|
void AHI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s16[8]>(op.ra) + get_imm<s16[8]>(op.si10));
|
|
}
|
|
|
|
void XORI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s32[4]>(op.ra) ^ get_imm<s32[4]>(op.si10));
|
|
}
|
|
|
|
void XORHI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s16[8]>(op.ra) ^ get_imm<s16[8]>(op.si10));
|
|
}
|
|
|
|
void XORBI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<s8[16]>(op.ra) ^ get_imm<s8[16]>(op.si10));
|
|
}
|
|
|
|
void CGTI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s32[4]>(get_vr<s32[4]>(op.ra) > get_imm<s32[4]>(op.si10)));
|
|
}
|
|
|
|
void CGTHI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s16[8]>(get_vr<s16[8]>(op.ra) > get_imm<s16[8]>(op.si10)));
|
|
}
|
|
|
|
void CGTBI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s8[16]>(get_vr<s8[16]>(op.ra) > get_imm<s8[16]>(op.si10)));
|
|
}
|
|
|
|
void CLGTI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s32[4]>(get_vr(op.ra) > get_imm(op.si10)));
|
|
}
|
|
|
|
void CLGTHI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s16[8]>(get_vr<u16[8]>(op.ra) > get_imm<u16[8]>(op.si10)));
|
|
}
|
|
|
|
void CLGTBI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s8[16]>(get_vr<u8[16]>(op.ra) > get_imm<u8[16]>(op.si10)));
|
|
}
|
|
|
|
void MPYI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, (get_vr<s32[4]>(op.ra) << 16 >> 16) * get_imm<s32[4]>(op.si10));
|
|
}
|
|
|
|
void MPYUI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, (get_vr(op.ra) << 16 >> 16) * (get_imm(op.si10) & 0xffff));
|
|
}
|
|
|
|
void CEQI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s32[4]>(get_vr(op.ra) == get_imm(op.si10)));
|
|
}
|
|
|
|
void CEQHI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s16[8]>(get_vr<u16[8]>(op.ra) == get_imm<u16[8]>(op.si10)));
|
|
}
|
|
|
|
void CEQBI(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, sext<s8[16]>(get_vr<u8[16]>(op.ra) == get_imm<u8[16]>(op.si10)));
|
|
}
|
|
|
|
void ILA(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_imm(op.i18));
|
|
}
|
|
|
|
void SELB(spu_opcode_t op)
|
|
{
|
|
if (match_vr<s8[16], s16[8], s32[4], s64[2]>(op.rc, [&](auto c, auto MP)
|
|
{
|
|
using VT = typename decltype(MP)::type;
|
|
|
|
// If the control mask comes from a comparison instruction, replace SELB with select
|
|
if (auto [ok, x] = match_expr(c, sext<VT>(match<bool[std::extent_v<VT>]>())); ok)
|
|
{
|
|
if constexpr (std::extent_v<VT> == 2) // u64[2]
|
|
{
|
|
// Try to select floats as floats if a OR b is typed as f64[2]
|
|
if (auto [a, b] = match_vrs<f64[2]>(op.ra, op.rb); a || b)
|
|
{
|
|
set_vr(op.rt4, select(x, get_vr<f64[2]>(op.rb), get_vr<f64[2]>(op.ra)));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if constexpr (std::extent_v<VT> == 4) // u32[4]
|
|
{
|
|
if (auto [a, b] = match_vrs<f64[4]>(op.ra, op.rb); a || b)
|
|
{
|
|
set_vr(op.rt4, select(x, get_vr<f64[4]>(op.rb), get_vr<f64[4]>(op.ra)));
|
|
return true;
|
|
}
|
|
|
|
if (auto [a, b] = match_vrs<f32[4]>(op.ra, op.rb); a || b)
|
|
{
|
|
set_vr(op.rt4, select(x, get_vr<f32[4]>(op.rb), get_vr<f32[4]>(op.ra)));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
set_vr(op.rt4, select(x, get_vr<VT>(op.rb), get_vr<VT>(op.ra)));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}))
|
|
{
|
|
return;
|
|
}
|
|
|
|
const auto op1 = get_reg_raw(op.rb);
|
|
const auto op2 = get_reg_raw(op.ra);
|
|
|
|
if ((op1 && op1->getType() == get_type<f64[4]>()) || (op2 && op2->getType() == get_type<f64[4]>()))
|
|
{
|
|
// Optimization: keep xfloat values in doubles even if the mask is unpredictable (hard way)
|
|
const auto c = get_vr<u32[4]>(op.rc);
|
|
const auto b = get_vr<f64[4]>(op.rb);
|
|
const auto a = get_vr<f64[4]>(op.ra);
|
|
const auto m = conv_xfloat_mask(c.value);
|
|
const auto x = m_ir->CreateAnd(double_as_uint64(b.value), m);
|
|
const auto y = m_ir->CreateAnd(double_as_uint64(a.value), m_ir->CreateNot(m));
|
|
set_reg_fixed(op.rt4, uint64_as_double(m_ir->CreateOr(x, y)));
|
|
return;
|
|
}
|
|
|
|
const auto c = get_vr(op.rc);
|
|
set_vr(op.rt4, (get_vr(op.rb) & c) | (get_vr(op.ra) & ~c));
|
|
}
|
|
|
|
void SHUFB(spu_opcode_t op) //
|
|
{
|
|
if (match_vr<u8[16], u16[8], u32[4], u64[2]>(op.rc, [&](auto c, auto MP)
|
|
{
|
|
using VT = typename decltype(MP)::type;
|
|
|
|
// If the mask comes from a constant generation instruction, replace SHUFB with insert
|
|
if (auto [ok, i] = match_expr(c, spu_get_insertion_shuffle_mask<VT>(match<u32>())); ok)
|
|
{
|
|
set_vr(op.rt4, insert(get_vr<VT>(op.rb), i, get_scalar(get_vr<VT>(op.ra))));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}))
|
|
{
|
|
return;
|
|
}
|
|
|
|
const auto c = get_vr<u8[16]>(op.rc);
|
|
|
|
if (auto ci = llvm::dyn_cast<llvm::Constant>(c.value))
|
|
{
|
|
// Optimization: SHUFB with constant mask
|
|
v128 mask = get_const_vector(ci, m_pos, 57216);
|
|
|
|
if (((mask._u64[0] | mask._u64[1]) & 0xe0e0e0e0e0e0e0e0) == 0)
|
|
{
|
|
// Trivial insert or constant shuffle (TODO)
|
|
static constexpr struct mask_info
|
|
{
|
|
u64 i1;
|
|
u64 i0;
|
|
decltype(&cpu_translator::get_type<void>) type;
|
|
u64 extract_from;
|
|
u64 insert_to;
|
|
} s_masks[30]
|
|
{
|
|
{ 0x0311121314151617, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u8[16]>, 12, 15 },
|
|
{ 0x1003121314151617, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u8[16]>, 12, 14 },
|
|
{ 0x1011031314151617, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u8[16]>, 12, 13 },
|
|
{ 0x1011120314151617, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u8[16]>, 12, 12 },
|
|
{ 0x1011121303151617, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u8[16]>, 12, 11 },
|
|
{ 0x1011121314031617, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u8[16]>, 12, 10 },
|
|
{ 0x1011121314150317, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u8[16]>, 12, 9 },
|
|
{ 0x1011121314151603, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u8[16]>, 12, 8 },
|
|
{ 0x1011121314151617, 0x03191a1b1c1d1e1f, &cpu_translator::get_type<u8[16]>, 12, 7 },
|
|
{ 0x1011121314151617, 0x18031a1b1c1d1e1f, &cpu_translator::get_type<u8[16]>, 12, 6 },
|
|
{ 0x1011121314151617, 0x1819031b1c1d1e1f, &cpu_translator::get_type<u8[16]>, 12, 5 },
|
|
{ 0x1011121314151617, 0x18191a031c1d1e1f, &cpu_translator::get_type<u8[16]>, 12, 4 },
|
|
{ 0x1011121314151617, 0x18191a1b031d1e1f, &cpu_translator::get_type<u8[16]>, 12, 3 },
|
|
{ 0x1011121314151617, 0x18191a1b1c031e1f, &cpu_translator::get_type<u8[16]>, 12, 2 },
|
|
{ 0x1011121314151617, 0x18191a1b1c1d031f, &cpu_translator::get_type<u8[16]>, 12, 1 },
|
|
{ 0x1011121314151617, 0x18191a1b1c1d1e03, &cpu_translator::get_type<u8[16]>, 12, 0 },
|
|
{ 0x0203121314151617, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u16[8]>, 6, 7 },
|
|
{ 0x1011020314151617, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u16[8]>, 6, 6 },
|
|
{ 0x1011121302031617, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u16[8]>, 6, 5 },
|
|
{ 0x1011121314150203, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u16[8]>, 6, 4 },
|
|
{ 0x1011121314151617, 0x02031a1b1c1d1e1f, &cpu_translator::get_type<u16[8]>, 6, 3 },
|
|
{ 0x1011121314151617, 0x181902031c1d1e1f, &cpu_translator::get_type<u16[8]>, 6, 2 },
|
|
{ 0x1011121314151617, 0x18191a1b02031e1f, &cpu_translator::get_type<u16[8]>, 6, 1 },
|
|
{ 0x1011121314151617, 0x18191a1b1c1d0203, &cpu_translator::get_type<u16[8]>, 6, 0 },
|
|
{ 0x0001020314151617, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u32[4]>, 3, 3 },
|
|
{ 0x1011121300010203, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u32[4]>, 3, 2 },
|
|
{ 0x1011121314151617, 0x000102031c1d1e1f, &cpu_translator::get_type<u32[4]>, 3, 1 },
|
|
{ 0x1011121314151617, 0x18191a1b00010203, &cpu_translator::get_type<u32[4]>, 3, 0 },
|
|
{ 0x0001020304050607, 0x18191a1b1c1d1e1f, &cpu_translator::get_type<u64[2]>, 1, 1 },
|
|
{ 0x1011121303151617, 0x0001020304050607, &cpu_translator::get_type<u64[2]>, 1, 0 },
|
|
};
|
|
|
|
// Check important constants from CWD-like constant generation instructions
|
|
for (const auto& cm : s_masks)
|
|
{
|
|
if (mask._u64[0] == cm.i0 && mask._u64[1] == cm.i1)
|
|
{
|
|
const auto t = (this->*cm.type)();
|
|
const auto a = get_reg_fixed(op.ra, t);
|
|
const auto b = get_reg_fixed(op.rb, t);
|
|
const auto e = m_ir->CreateExtractElement(a, cm.extract_from);
|
|
set_reg_fixed(op.rt4, m_ir->CreateInsertElement(b, e, cm.insert_to));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Generic constant shuffle without constant-generation bits
|
|
mask = mask ^ v128::from8p(0x1f);
|
|
|
|
if (op.ra == op.rb)
|
|
{
|
|
mask = mask & v128::from8p(0xf);
|
|
}
|
|
|
|
const auto a = get_vr<u8[16]>(op.ra);
|
|
const auto b = get_vr<u8[16]>(op.rb);
|
|
const auto c = make_const_vector(mask, get_type<u8[16]>());
|
|
set_reg_fixed(op.rt4, m_ir->CreateShuffleVector(b.value, op.ra == op.rb ? b.value : a.value, m_ir->CreateZExt(c, get_type<u32[16]>())));
|
|
return;
|
|
}
|
|
|
|
LOG_TODO(SPU, "[0x%x] Const SHUFB mask: %s", m_pos, mask);
|
|
}
|
|
|
|
const auto x = avg(noncast<u8[16]>(sext<s8[16]>((c & 0xc0) == 0xc0)), noncast<u8[16]>(sext<s8[16]>((c & 0xe0) == 0xc0)));
|
|
const auto cr = eval(c ^ 0xf);
|
|
const auto a = pshufb(get_vr<u8[16]>(op.ra), cr);
|
|
const auto b = pshufb(get_vr<u8[16]>(op.rb), cr);
|
|
set_vr(op.rt4, select(noncast<s8[16]>(cr << 3) >= 0, a, b) | x);
|
|
}
|
|
|
|
void MPYA(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt4, (get_vr<s32[4]>(op.ra) << 16 >> 16) * (get_vr<s32[4]>(op.rb) << 16 >> 16) + get_vr<s32[4]>(op.rc));
|
|
}
|
|
|
|
void FSCRRD(spu_opcode_t op) //
|
|
{
|
|
// Hack
|
|
set_vr(op.rt, splat<u32[4]>(0));
|
|
}
|
|
|
|
void FSCRWR(spu_opcode_t op) //
|
|
{
|
|
// Hack
|
|
}
|
|
|
|
void DFCGT(spu_opcode_t op) //
|
|
{
|
|
return UNK(op);
|
|
}
|
|
|
|
void DFCEQ(spu_opcode_t op) //
|
|
{
|
|
return UNK(op);
|
|
}
|
|
|
|
void DFCMGT(spu_opcode_t op) //
|
|
{
|
|
return UNK(op);
|
|
}
|
|
|
|
void DFCMEQ(spu_opcode_t op) //
|
|
{
|
|
return UNK(op);
|
|
}
|
|
|
|
void DFTSV(spu_opcode_t op) //
|
|
{
|
|
return UNK(op);
|
|
}
|
|
|
|
void DFA(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<f64[2]>(op.ra) + get_vr<f64[2]>(op.rb));
|
|
}
|
|
|
|
void DFS(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<f64[2]>(op.ra) - get_vr<f64[2]>(op.rb));
|
|
}
|
|
|
|
void DFM(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<f64[2]>(op.ra) * get_vr<f64[2]>(op.rb));
|
|
}
|
|
|
|
void DFMA(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<f64[2]>(op.ra) * get_vr<f64[2]>(op.rb) + get_vr<f64[2]>(op.rt));
|
|
}
|
|
|
|
void DFMS(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<f64[2]>(op.ra) * get_vr<f64[2]>(op.rb) - get_vr<f64[2]>(op.rt));
|
|
}
|
|
|
|
void DFNMS(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, get_vr<f64[2]>(op.rt) - get_vr<f64[2]>(op.ra) * get_vr<f64[2]>(op.rb));
|
|
}
|
|
|
|
void DFNMA(spu_opcode_t op)
|
|
{
|
|
set_vr(op.rt, -(get_vr<f64[2]>(op.ra) * get_vr<f64[2]>(op.rb) + get_vr<f64[2]>(op.rt)));
|
|
}
|
|
|
|
void FREST(spu_opcode_t op)
|
|
{
|
|
// TODO
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
set_vr(op.rt, fsplat<f64[4]>(1.0) / get_vr<f64[4]>(op.ra));
|
|
else
|
|
set_vr(op.rt, fsplat<f32[4]>(1.0) / get_vr<f32[4]>(op.ra));
|
|
}
|
|
|
|
void FRSQEST(spu_opcode_t op)
|
|
{
|
|
// TODO
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
set_vr(op.rt, fsplat<f64[4]>(1.0) / sqrt(fabs(get_vr<f64[4]>(op.ra))));
|
|
else
|
|
set_vr(op.rt, fsplat<f32[4]>(1.0) / sqrt(fabs(get_vr<f32[4]>(op.ra))));
|
|
}
|
|
|
|
void FCGT(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
{
|
|
set_vr(op.rt, sext<s32[4]>(fcmp_ord(get_vr<f64[4]>(op.ra) > get_vr<f64[4]>(op.rb))));
|
|
return;
|
|
}
|
|
|
|
const auto a = get_vr<f32[4]>(op.ra);
|
|
const auto b = get_vr<f32[4]>(op.rb);
|
|
|
|
// See FCMGT.
|
|
if (g_cfg.core.spu_approx_xfloat)
|
|
{
|
|
const auto ia = bitcast<s32[4]>(fabs(a));
|
|
const auto ib = bitcast<s32[4]>(fabs(b));
|
|
const auto nz = eval((ia > 0x7fffff) | (ib > 0x7fffff));
|
|
|
|
// Use sign bits to invert abs values before comparison.
|
|
const auto ca = eval(ia ^ (bitcast<s32[4]>(a) >> 31));
|
|
const auto cb = eval(ib ^ (bitcast<s32[4]>(b) >> 31));
|
|
set_vr(op.rt, sext<s32[4]>((ca > cb) & nz));
|
|
}
|
|
else
|
|
{
|
|
set_vr(op.rt, sext<s32[4]>(fcmp_ord(a > b)));
|
|
}
|
|
}
|
|
|
|
void FCMGT(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
{
|
|
set_vr(op.rt, sext<s32[4]>(fcmp_ord(fabs(get_vr<f64[4]>(op.ra)) > fabs(get_vr<f64[4]>(op.rb)))));
|
|
return;
|
|
}
|
|
|
|
const auto a = get_vr<f32[4]>(op.ra);
|
|
const auto b = get_vr<f32[4]>(op.rb);
|
|
const auto abs_a = fabs(a);
|
|
const auto abs_b = fabs(b);
|
|
|
|
// Actually, it's accurate and can be used as an alternative path for accurate xfloat.
|
|
if (g_cfg.core.spu_approx_xfloat)
|
|
{
|
|
// Compare abs values as integers, but return false if both are denormals or zeros.
|
|
const auto ia = bitcast<s32[4]>(abs_a);
|
|
const auto ib = bitcast<s32[4]>(abs_b);
|
|
const auto nz = eval((ia > 0x7fffff) | (ib > 0x7fffff));
|
|
set_vr(op.rt, sext<s32[4]>((ia > ib) & nz));
|
|
}
|
|
else
|
|
{
|
|
set_vr(op.rt, sext<s32[4]>(fcmp_ord(abs_a > abs_b)));
|
|
}
|
|
}
|
|
|
|
void FA(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
set_vr(op.rt, get_vr<f64[4]>(op.ra) + get_vr<f64[4]>(op.rb));
|
|
else
|
|
set_vr(op.rt, get_vr<f32[4]>(op.ra) + get_vr<f32[4]>(op.rb));
|
|
}
|
|
|
|
void FS(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
set_vr(op.rt, get_vr<f64[4]>(op.ra) - get_vr<f64[4]>(op.rb));
|
|
else
|
|
set_vr(op.rt, get_vr<f32[4]>(op.ra) - get_vr<f32[4]>(op.rb));
|
|
}
|
|
|
|
void FM(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
set_vr(op.rt, get_vr<f64[4]>(op.ra) * get_vr<f64[4]>(op.rb));
|
|
else if (g_cfg.core.spu_approx_xfloat)
|
|
{
|
|
const auto a = get_vr<f32[4]>(op.ra);
|
|
const auto b = get_vr<f32[4]>(op.rb);
|
|
const auto m = eval(a * b);
|
|
const auto abs_a = bitcast<s32[4]>(fabs(a));
|
|
const auto abs_b = bitcast<s32[4]>(fabs(b));
|
|
const auto abs_m = bitcast<s32[4]>(fabs(m));
|
|
const auto sign_a = eval(bitcast<s32[4]>(a) & 0x80000000);
|
|
const auto sign_b = eval(bitcast<s32[4]>(b) & 0x80000000);
|
|
const auto smod_m = eval(bitcast<s32[4]>(m) & 0x7fffffff);
|
|
const auto fmax_m = eval((sign_a ^ sign_b) | 0x7fffffff);
|
|
const auto nzero = eval((abs_a > 0x7fffff) & (abs_b > 0x7fffff) & (abs_m > 0x7fffff));
|
|
|
|
// If m produces Inf or NaN, flush it to max xfloat with appropriate sign
|
|
const auto clamp = select(smod_m > 0x7f7fffff, bitcast<f32[4]>(fmax_m), m);
|
|
|
|
// If a, b, or a * b is a denorm or zero, return zero
|
|
set_vr(op.rt, select(nzero, clamp, fsplat<f32[4]>(0.)));
|
|
}
|
|
else
|
|
set_vr(op.rt, get_vr<f32[4]>(op.ra) * get_vr<f32[4]>(op.rb));
|
|
}
|
|
|
|
void FESD(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
{
|
|
const auto r = shuffle2(get_vr<f64[4]>(op.ra), fsplat<f64[4]>(0.), 1, 3);
|
|
const auto d = bitcast<s64[2]>(r);
|
|
const auto a = eval(d & 0x7fffffffffffffff);
|
|
const auto s = eval(d & 0x8000000000000000);
|
|
const auto i = select(a == 0x47f0000000000000, eval(s | 0x7ff0000000000000), d);
|
|
const auto n = select(a > 0x47f0000000000000, splat<s64[2]>(0x7ff8000000000000), i);
|
|
set_vr(op.rt, bitcast<f64[2]>(n));
|
|
}
|
|
else
|
|
{
|
|
value_t<f64[2]> r;
|
|
r.value = m_ir->CreateFPExt(shuffle2(get_vr<f32[4]>(op.ra), fsplat<f32[4]>(0.), 1, 3).eval(m_ir), get_type<f64[2]>());
|
|
set_vr(op.rt, r);
|
|
}
|
|
}
|
|
|
|
void FRDS(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
{
|
|
const auto r = get_vr<f64[2]>(op.ra);
|
|
const auto d = bitcast<s64[2]>(r);
|
|
const auto a = eval(d & 0x7fffffffffffffff);
|
|
const auto s = eval(d & 0x8000000000000000);
|
|
const auto i = select(a > 0x47f0000000000000, eval(s | 0x47f0000000000000), d);
|
|
const auto n = select(a > 0x7ff0000000000000, splat<s64[2]>(0x47f8000000000000), i);
|
|
const auto z = select(a < 0x3810000000000000, s, n);
|
|
set_vr(op.rt, shuffle2(bitcast<f64[2]>(z), fsplat<f64[2]>(0.), 2, 0, 3, 1), false);
|
|
}
|
|
else
|
|
{
|
|
value_t<f32[2]> r;
|
|
r.value = m_ir->CreateFPTrunc(get_vr<f64[2]>(op.ra).value, get_type<f32[2]>());
|
|
set_vr(op.rt, shuffle2(r, fsplat<f32[2]>(0.), 2, 0, 3, 1));
|
|
}
|
|
}
|
|
|
|
void FCEQ(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
set_vr(op.rt, sext<s32[4]>(fcmp_ord(get_vr<f64[4]>(op.ra) == get_vr<f64[4]>(op.rb))));
|
|
else
|
|
set_vr(op.rt, sext<s32[4]>(fcmp_ord(get_vr<f32[4]>(op.ra) == get_vr<f32[4]>(op.rb))));
|
|
}
|
|
|
|
void FCMEQ(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
set_vr(op.rt, sext<s32[4]>(fcmp_ord(fabs(get_vr<f64[4]>(op.ra)) == fabs(get_vr<f64[4]>(op.rb)))));
|
|
else
|
|
set_vr(op.rt, sext<s32[4]>(fcmp_ord(fabs(get_vr<f32[4]>(op.ra)) == fabs(get_vr<f32[4]>(op.rb)))));
|
|
}
|
|
|
|
// Multiply and return zero if any of the arguments is in the xfloat range.
|
|
value_t<f32[4]> mzero_if_xtended(value_t<f32[4]> a, value_t<f32[4]> b)
|
|
{
|
|
// Compare absolute values with max positive float in normal range.
|
|
const auto aa = bitcast<s32[4]>(fabs(a));
|
|
const auto ab = bitcast<s32[4]>(fabs(b));
|
|
return eval(select(max(aa, ab) > 0x7f7fffff, fsplat<f32[4]>(0.), a * b));
|
|
}
|
|
|
|
void FNMS(spu_opcode_t op)
|
|
{
|
|
// See FMA.
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
set_vr(op.rt4, -fmuladd(get_vr<f64[4]>(op.ra), get_vr<f64[4]>(op.rb), eval(-get_vr<f64[4]>(op.rc))));
|
|
else if (g_cfg.core.spu_approx_xfloat)
|
|
set_vr(op.rt4, get_vr<f32[4]>(op.rc) - mzero_if_xtended(get_vr<f32[4]>(op.ra), get_vr<f32[4]>(op.rb)));
|
|
else
|
|
set_vr(op.rt4, get_vr<f32[4]>(op.rc) - get_vr<f32[4]>(op.ra) * get_vr<f32[4]>(op.rb));
|
|
}
|
|
|
|
void FMA(spu_opcode_t op)
|
|
{
|
|
// Hardware FMA produces the same result as multiple + add on the limited double range (xfloat).
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
set_vr(op.rt4, fmuladd(get_vr<f64[4]>(op.ra), get_vr<f64[4]>(op.rb), get_vr<f64[4]>(op.rc)));
|
|
else if (g_cfg.core.spu_approx_xfloat)
|
|
set_vr(op.rt4, mzero_if_xtended(get_vr<f32[4]>(op.ra), get_vr<f32[4]>(op.rb)) + get_vr<f32[4]>(op.rc));
|
|
else
|
|
set_vr(op.rt4, get_vr<f32[4]>(op.ra) * get_vr<f32[4]>(op.rb) + get_vr<f32[4]>(op.rc));
|
|
}
|
|
|
|
void FMS(spu_opcode_t op)
|
|
{
|
|
// See FMA.
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
set_vr(op.rt4, fmuladd(get_vr<f64[4]>(op.ra), get_vr<f64[4]>(op.rb), eval(-get_vr<f64[4]>(op.rc))));
|
|
else if (g_cfg.core.spu_approx_xfloat)
|
|
set_vr(op.rt4, mzero_if_xtended(get_vr<f32[4]>(op.ra), get_vr<f32[4]>(op.rb)) - get_vr<f32[4]>(op.rc));
|
|
else
|
|
set_vr(op.rt4, get_vr<f32[4]>(op.ra) * get_vr<f32[4]>(op.rb) - get_vr<f32[4]>(op.rc));
|
|
}
|
|
|
|
void FI(spu_opcode_t op)
|
|
{
|
|
// TODO
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
set_vr(op.rt, get_vr<f64[4]>(op.rb));
|
|
else
|
|
set_vr(op.rt, get_vr<f32[4]>(op.rb));
|
|
}
|
|
|
|
void CFLTS(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
{
|
|
value_t<f64[4]> a = get_vr<f64[4]>(op.ra);
|
|
value_t<f64[4]> s;
|
|
if (m_interp_magn)
|
|
s = eval(vsplat<f64[4]>(bitcast<f64>(((1023 + 173) - get_imm<u64>(op.i8)) << 52)));
|
|
else
|
|
s = eval(fsplat<f64[4]>(std::exp2(static_cast<int>(173 - op.i8))));
|
|
if (op.i8 != 173 || m_interp_magn)
|
|
a = eval(a * s);
|
|
|
|
value_t<s32[4]> r;
|
|
|
|
if (auto ca = llvm::dyn_cast<llvm::ConstantDataVector>(a.value))
|
|
{
|
|
const f64 data[4]
|
|
{
|
|
ca->getElementAsDouble(0),
|
|
ca->getElementAsDouble(1),
|
|
ca->getElementAsDouble(2),
|
|
ca->getElementAsDouble(3)
|
|
};
|
|
|
|
v128 result;
|
|
|
|
for (u32 i = 0; i < 4; i++)
|
|
{
|
|
if (data[i] >= std::exp2(31.f))
|
|
{
|
|
result._s32[i] = INT32_MAX;
|
|
}
|
|
else if (data[i] < std::exp2(-31.f))
|
|
{
|
|
result._s32[i] = INT32_MIN;
|
|
}
|
|
else
|
|
{
|
|
result._s32[i] = static_cast<s32>(data[i]);
|
|
}
|
|
}
|
|
|
|
r.value = make_const_vector(result, get_type<s32[4]>());
|
|
set_vr(op.rt, r);
|
|
return;
|
|
}
|
|
|
|
if (llvm::isa<llvm::ConstantAggregateZero>(a.value))
|
|
{
|
|
set_vr(op.rt, splat<u32[4]>(0));
|
|
return;
|
|
}
|
|
|
|
r.value = m_ir->CreateFPToSI(a.value, get_type<s32[4]>());
|
|
set_vr(op.rt, r ^ sext<s32[4]>(fcmp_ord(a >= fsplat<f64[4]>(std::exp2(31.f)))));
|
|
}
|
|
else
|
|
{
|
|
value_t<f32[4]> a = get_vr<f32[4]>(op.ra);
|
|
value_t<f32[4]> s;
|
|
if (m_interp_magn)
|
|
s = eval(vsplat<f32[4]>(load_const<f32>(m_scale_float_to, get_imm<u8>(op.i8))));
|
|
else
|
|
s = eval(fsplat<f32[4]>(std::exp2(static_cast<float>(static_cast<s16>(173 - op.i8)))));
|
|
if (op.i8 != 173 || m_interp_magn)
|
|
a = eval(a * s);
|
|
|
|
value_t<s32[4]> r;
|
|
r.value = m_ir->CreateFPToSI(a.value, get_type<s32[4]>());
|
|
set_vr(op.rt, r ^ sext<s32[4]>(fcmp_ord(a >= fsplat<f32[4]>(std::exp2(31.f)))));
|
|
}
|
|
}
|
|
|
|
void CFLTU(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
{
|
|
value_t<f64[4]> a = get_vr<f64[4]>(op.ra);
|
|
value_t<f64[4]> s;
|
|
if (m_interp_magn)
|
|
s = eval(vsplat<f64[4]>(bitcast<f64>(((1023 + 173) - get_imm<u64>(op.i8)) << 52)));
|
|
else
|
|
s = eval(fsplat<f64[4]>(std::exp2(static_cast<int>(173 - op.i8))));
|
|
if (op.i8 != 173 || m_interp_magn)
|
|
a = eval(a * s);
|
|
|
|
value_t<s32[4]> r;
|
|
|
|
if (auto ca = llvm::dyn_cast<llvm::ConstantDataVector>(a.value))
|
|
{
|
|
const f64 data[4]
|
|
{
|
|
ca->getElementAsDouble(0),
|
|
ca->getElementAsDouble(1),
|
|
ca->getElementAsDouble(2),
|
|
ca->getElementAsDouble(3)
|
|
};
|
|
|
|
v128 result;
|
|
|
|
for (u32 i = 0; i < 4; i++)
|
|
{
|
|
if (data[i] >= std::exp2(32.f))
|
|
{
|
|
result._u32[i] = UINT32_MAX;
|
|
}
|
|
else if (data[i] < 0.)
|
|
{
|
|
result._u32[i] = 0;
|
|
}
|
|
else
|
|
{
|
|
result._u32[i] = static_cast<u32>(data[i]);
|
|
}
|
|
}
|
|
|
|
r.value = make_const_vector(result, get_type<s32[4]>());
|
|
set_vr(op.rt, r);
|
|
return;
|
|
}
|
|
|
|
if (llvm::isa<llvm::ConstantAggregateZero>(a.value))
|
|
{
|
|
set_vr(op.rt, splat<u32[4]>(0));
|
|
return;
|
|
}
|
|
|
|
r.value = m_ir->CreateFPToUI(a.value, get_type<s32[4]>());
|
|
set_vr(op.rt, select(fcmp_uno(a >= fsplat<f64[4]>(std::exp2(32.f))), splat<s32[4]>(-1), r & sext<s32[4]>(fcmp_ord(a >= fsplat<f64[4]>(0.)))));
|
|
}
|
|
else
|
|
{
|
|
value_t<f32[4]> a = get_vr<f32[4]>(op.ra);
|
|
value_t<f32[4]> s;
|
|
if (m_interp_magn)
|
|
s = eval(vsplat<f32[4]>(load_const<f32>(m_scale_float_to, get_imm<u8>(op.i8))));
|
|
else
|
|
s = eval(fsplat<f32[4]>(std::exp2(static_cast<float>(static_cast<s16>(173 - op.i8)))));
|
|
if (op.i8 != 173 || m_interp_magn)
|
|
a = eval(a * s);
|
|
|
|
value_t<s32[4]> r;
|
|
r.value = m_ir->CreateFPToUI(a.value, get_type<s32[4]>());
|
|
set_vr(op.rt, select(fcmp_uno(a >= fsplat<f32[4]>(std::exp2(32.f))), splat<s32[4]>(-1), r & ~(bitcast<s32[4]>(a) >> 31)));
|
|
}
|
|
}
|
|
|
|
void CSFLT(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
{
|
|
value_t<s32[4]> a = get_vr<s32[4]>(op.ra);
|
|
value_t<f64[4]> r;
|
|
|
|
if (auto ca = llvm::dyn_cast<llvm::Constant>(a.value))
|
|
{
|
|
v128 data = get_const_vector(ca, m_pos, 25971);
|
|
r.value = build<f64[4]>(data._s32[0], data._s32[1], data._s32[2], data._s32[3]).eval(m_ir);
|
|
}
|
|
else
|
|
{
|
|
r.value = m_ir->CreateSIToFP(a.value, get_type<f64[4]>());
|
|
}
|
|
|
|
value_t<f64[4]> s;
|
|
if (m_interp_magn)
|
|
s = eval(vsplat<f64[4]>(bitcast<f64>((get_imm<u64>(op.i8) + (1023 - 155)) << 52)));
|
|
else
|
|
s = eval(fsplat<f64[4]>(std::exp2(static_cast<int>(op.i8 - 155))));
|
|
if (op.i8 != 155 || m_interp_magn)
|
|
r = eval(r * s);
|
|
set_vr(op.rt, r);
|
|
}
|
|
else
|
|
{
|
|
value_t<f32[4]> r;
|
|
r.value = m_ir->CreateSIToFP(get_vr<s32[4]>(op.ra).value, get_type<f32[4]>());
|
|
value_t<f32[4]> s;
|
|
if (m_interp_magn)
|
|
s = eval(vsplat<f32[4]>(load_const<f32>(m_scale_to_float, get_imm<u8>(op.i8))));
|
|
else
|
|
s = eval(fsplat<f32[4]>(std::exp2(static_cast<float>(static_cast<s16>(op.i8 - 155)))));
|
|
if (op.i8 != 155 || m_interp_magn)
|
|
r = eval(r * s);
|
|
set_vr(op.rt, r);
|
|
}
|
|
}
|
|
|
|
void CUFLT(spu_opcode_t op)
|
|
{
|
|
if (g_cfg.core.spu_accurate_xfloat)
|
|
{
|
|
value_t<s32[4]> a = get_vr<s32[4]>(op.ra);
|
|
value_t<f64[4]> r;
|
|
|
|
if (auto ca = llvm::dyn_cast<llvm::Constant>(a.value))
|
|
{
|
|
v128 data = get_const_vector(ca, m_pos, 20971);
|
|
r.value = build<f64[4]>(data._u32[0], data._u32[1], data._u32[2], data._u32[3]).eval(m_ir);
|
|
}
|
|
else
|
|
{
|
|
r.value = m_ir->CreateUIToFP(a.value, get_type<f64[4]>());
|
|
}
|
|
|
|
value_t<f64[4]> s;
|
|
if (m_interp_magn)
|
|
s = eval(vsplat<f64[4]>(bitcast<f64>((get_imm<u64>(op.i8) + (1023 - 155)) << 52)));
|
|
else
|
|
s = eval(fsplat<f64[4]>(std::exp2(static_cast<int>(op.i8 - 155))));
|
|
if (op.i8 != 155 || m_interp_magn)
|
|
r = eval(r * s);
|
|
set_vr(op.rt, r);
|
|
}
|
|
else
|
|
{
|
|
value_t<f32[4]> r;
|
|
r.value = m_ir->CreateUIToFP(get_vr<s32[4]>(op.ra).value, get_type<f32[4]>());
|
|
value_t<f32[4]> s;
|
|
if (m_interp_magn)
|
|
s = eval(vsplat<f32[4]>(load_const<f32>(m_scale_to_float, get_imm<u8>(op.i8))));
|
|
else
|
|
s = eval(fsplat<f32[4]>(std::exp2(static_cast<float>(static_cast<s16>(op.i8 - 155)))));
|
|
if (op.i8 != 155 || m_interp_magn)
|
|
r = eval(r * s);
|
|
set_vr(op.rt, r);
|
|
}
|
|
}
|
|
|
|
void make_store_ls(value_t<u64> addr, value_t<u8[16]> data)
|
|
{
|
|
const auto bswapped = zshuffle(data, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
|
|
m_ir->CreateStore(bswapped.eval(m_ir), m_ir->CreateBitCast(m_ir->CreateGEP(m_lsptr, addr.value), get_type<u8(*)[16]>()));
|
|
}
|
|
|
|
auto make_load_ls(value_t<u64> addr)
|
|
{
|
|
value_t<u8[16]> data;
|
|
data.value = m_ir->CreateLoad(m_ir->CreateBitCast(m_ir->CreateGEP(m_lsptr, addr.value), get_type<u8(*)[16]>()));
|
|
return zshuffle(data, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
|
|
}
|
|
|
|
void STQX(spu_opcode_t op)
|
|
{
|
|
value_t<u64> addr = eval(zext<u64>((extract(get_vr(op.ra), 3) + extract(get_vr(op.rb), 3)) & 0x3fff0));
|
|
make_store_ls(addr, get_vr<u8[16]>(op.rt));
|
|
}
|
|
|
|
void LQX(spu_opcode_t op)
|
|
{
|
|
value_t<u64> addr = eval(zext<u64>((extract(get_vr(op.ra), 3) + extract(get_vr(op.rb), 3)) & 0x3fff0));
|
|
set_vr(op.rt, make_load_ls(addr));
|
|
}
|
|
|
|
void STQA(spu_opcode_t op)
|
|
{
|
|
value_t<u64> addr = eval((get_imm<u64>(op.i16, false) << 2) & 0x3fff0);
|
|
make_store_ls(addr, get_vr<u8[16]>(op.rt));
|
|
}
|
|
|
|
void LQA(spu_opcode_t op)
|
|
{
|
|
value_t<u64> addr = eval((get_imm<u64>(op.i16, false) << 2) & 0x3fff0);
|
|
set_vr(op.rt, make_load_ls(addr));
|
|
}
|
|
|
|
void STQR(spu_opcode_t op) //
|
|
{
|
|
value_t<u64> addr;
|
|
addr.value = m_ir->CreateZExt(m_interp_magn ? m_interp_pc : get_pc(m_pos), get_type<u64>());
|
|
addr = eval(((get_imm<u64>(op.i16, false) << 2) + addr) & 0x3fff0);
|
|
make_store_ls(addr, get_vr<u8[16]>(op.rt));
|
|
}
|
|
|
|
void LQR(spu_opcode_t op) //
|
|
{
|
|
value_t<u64> addr;
|
|
addr.value = m_ir->CreateZExt(m_interp_magn ? m_interp_pc : get_pc(m_pos), get_type<u64>());
|
|
addr = eval(((get_imm<u64>(op.i16, false) << 2) + addr) & 0x3fff0);
|
|
set_vr(op.rt, make_load_ls(addr));
|
|
}
|
|
|
|
void STQD(spu_opcode_t op)
|
|
{
|
|
if (m_finfo && m_finfo->fn)
|
|
{
|
|
if (op.rt == s_reg_lr || (op.rt >= s_reg_80 && op.rt <= s_reg_127))
|
|
{
|
|
if (m_block->bb->reg_save_dom[op.rt] && get_reg_raw(op.rt) == m_finfo->load[op.rt])
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
value_t<u64> addr = eval(zext<u64>((extract(get_vr(op.ra), 3) + (get_imm<u32>(op.si10) << 4)) & 0x3fff0));
|
|
make_store_ls(addr, get_vr<u8[16]>(op.rt));
|
|
}
|
|
|
|
void LQD(spu_opcode_t op)
|
|
{
|
|
value_t<u64> addr = eval(zext<u64>((extract(get_vr(op.ra), 3) + (get_imm<u32>(op.si10) << 4)) & 0x3fff0));
|
|
set_vr(op.rt, make_load_ls(addr));
|
|
}
|
|
|
|
void make_halt(value_t<bool> cond)
|
|
{
|
|
const auto next = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto halt = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(cond.value, halt, next, m_md_unlikely);
|
|
m_ir->SetInsertPoint(halt);
|
|
if (m_interp_magn)
|
|
m_ir->CreateStore(&*(m_function->arg_begin() + 2), spu_ptr<u32>(&spu_thread::pc))->setVolatile(true);
|
|
const auto pstatus = spu_ptr<u32>(&spu_thread::status);
|
|
const auto chalt = m_ir->getInt32(SPU_STATUS_STOPPED_BY_HALT);
|
|
m_ir->CreateAtomicRMW(llvm::AtomicRMWInst::Or, pstatus, chalt, llvm::AtomicOrdering::Release)->setVolatile(true);
|
|
const auto ptr = _ptr<u32>(m_memptr, 0xffdead00);
|
|
m_ir->CreateStore(m_ir->getInt32("HALT"_u32), ptr)->setVolatile(true);
|
|
m_ir->CreateBr(next);
|
|
m_ir->SetInsertPoint(next);
|
|
}
|
|
|
|
void HGT(spu_opcode_t op)
|
|
{
|
|
const auto cond = eval(extract(get_vr<s32[4]>(op.ra), 3) > extract(get_vr<s32[4]>(op.rb), 3));
|
|
make_halt(cond);
|
|
}
|
|
|
|
void HEQ(spu_opcode_t op)
|
|
{
|
|
const auto cond = eval(extract(get_vr(op.ra), 3) == extract(get_vr(op.rb), 3));
|
|
make_halt(cond);
|
|
}
|
|
|
|
void HLGT(spu_opcode_t op)
|
|
{
|
|
const auto cond = eval(extract(get_vr(op.ra), 3) > extract(get_vr(op.rb), 3));
|
|
make_halt(cond);
|
|
}
|
|
|
|
void HGTI(spu_opcode_t op)
|
|
{
|
|
const auto cond = eval(extract(get_vr<s32[4]>(op.ra), 3) > get_imm<s32>(op.si10));
|
|
make_halt(cond);
|
|
}
|
|
|
|
void HEQI(spu_opcode_t op)
|
|
{
|
|
const auto cond = eval(extract(get_vr(op.ra), 3) == get_imm<u32>(op.si10));
|
|
make_halt(cond);
|
|
}
|
|
|
|
void HLGTI(spu_opcode_t op)
|
|
{
|
|
const auto cond = eval(extract(get_vr(op.ra), 3) > get_imm<u32>(op.si10));
|
|
make_halt(cond);
|
|
}
|
|
|
|
void HBR(spu_opcode_t op) //
|
|
{
|
|
// TODO: use the hint.
|
|
}
|
|
|
|
void HBRA(spu_opcode_t op) //
|
|
{
|
|
// TODO: use the hint.
|
|
}
|
|
|
|
void HBRR(spu_opcode_t op) //
|
|
{
|
|
// TODO: use the hint.
|
|
}
|
|
|
|
// TODO
|
|
static u32 exec_check_interrupts(spu_thread* _spu, u32 addr)
|
|
{
|
|
_spu->set_interrupt_status(true);
|
|
|
|
if ((_spu->ch_event_mask & _spu->ch_event_stat & SPU_EVENT_INTR_IMPLEMENTED) > 0)
|
|
{
|
|
_spu->interrupts_enabled = false;
|
|
_spu->srr0 = addr;
|
|
|
|
// Test for BR/BRA instructions (they are equivalent at zero pc)
|
|
const u32 br = _spu->_ref<const u32>(0);
|
|
|
|
if ((br & 0xfd80007f) == 0x30000000)
|
|
{
|
|
return (br >> 5) & 0x3fffc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
llvm::BasicBlock* add_block_indirect(spu_opcode_t op, value_t<u32> addr, bool ret = true)
|
|
{
|
|
if (m_interp_magn)
|
|
{
|
|
m_interp_bblock = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
|
|
const auto cblock = m_ir->GetInsertBlock();
|
|
const auto result = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto e_exec = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto d_test = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto d_exec = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto d_done = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->SetInsertPoint(result);
|
|
m_ir->CreateCondBr(get_imm<bool>(op.e).value, e_exec, d_test, m_md_unlikely);
|
|
m_ir->SetInsertPoint(e_exec);
|
|
const auto e_addr = call("spu_check_interrupts", &exec_check_interrupts, m_thread, addr.value);
|
|
m_ir->CreateBr(d_test);
|
|
m_ir->SetInsertPoint(d_test);
|
|
const auto target = m_ir->CreatePHI(get_type<u32>(), 2);
|
|
target->addIncoming(addr.value, result);
|
|
target->addIncoming(e_addr, e_exec);
|
|
m_ir->CreateCondBr(get_imm<bool>(op.d).value, d_exec, d_done, m_md_unlikely);
|
|
m_ir->SetInsertPoint(d_exec);
|
|
m_ir->CreateStore(m_ir->getFalse(), spu_ptr<bool>(&spu_thread::interrupts_enabled))->setVolatile(true);
|
|
m_ir->CreateBr(d_done);
|
|
m_ir->SetInsertPoint(d_done);
|
|
m_ir->CreateBr(m_interp_bblock);
|
|
m_ir->SetInsertPoint(cblock);
|
|
m_interp_pc = target;
|
|
return result;
|
|
}
|
|
|
|
// Convert an indirect branch into a static one if possible
|
|
if (const auto _int = llvm::dyn_cast<llvm::ConstantInt>(addr.value); _int && op.opcode)
|
|
{
|
|
const u32 target = ::narrow<u32>(_int->getZExtValue(), HERE);
|
|
|
|
LOG_WARNING(SPU, "[0x%x] Fixed branch to 0x%x", m_pos, target);
|
|
|
|
if (!op.e && !op.d)
|
|
{
|
|
return add_block(target);
|
|
}
|
|
|
|
if (!m_entry_info[target / 4])
|
|
{
|
|
LOG_ERROR(SPU, "[0x%x] Fixed branch to 0x%x", m_pos, target);
|
|
}
|
|
else
|
|
{
|
|
add_function(target);
|
|
}
|
|
|
|
// Fixed branch excludes the possibility it's a function return (TODO)
|
|
ret = false;
|
|
}
|
|
else if (llvm::isa<llvm::Constant>(addr.value) && op.opcode)
|
|
{
|
|
LOG_ERROR(SPU, "[0x%x] Unexpected constant (add_block_indirect)", m_pos);
|
|
}
|
|
|
|
if (m_finfo && m_finfo->fn && op.opcode)
|
|
{
|
|
const auto cblock = m_ir->GetInsertBlock();
|
|
const auto result = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->SetInsertPoint(result);
|
|
ret_function();
|
|
m_ir->SetInsertPoint(cblock);
|
|
return result;
|
|
}
|
|
|
|
// Load stack addr if necessary
|
|
value_t<u32> sp;
|
|
|
|
if (ret && g_cfg.core.spu_block_size != spu_block_size_type::safe)
|
|
{
|
|
if (op.opcode)
|
|
{
|
|
sp = eval(extract(get_reg_fixed(1), 3) & 0x3fff0);
|
|
}
|
|
else
|
|
{
|
|
sp.value = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::gpr, 1, &v128::_u32, 3));
|
|
}
|
|
}
|
|
|
|
const auto cblock = m_ir->GetInsertBlock();
|
|
const auto result = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->SetInsertPoint(result);
|
|
|
|
if (op.e)
|
|
{
|
|
addr.value = call("spu_check_interrupts", &exec_check_interrupts, m_thread, addr.value);
|
|
}
|
|
|
|
if (op.d)
|
|
{
|
|
m_ir->CreateStore(m_ir->getFalse(), spu_ptr<bool>(&spu_thread::interrupts_enabled))->setVolatile(true);
|
|
}
|
|
|
|
m_ir->CreateStore(addr.value, spu_ptr<u32>(&spu_thread::pc));
|
|
const auto type = m_finfo->chunk->getFunctionType()->getPointerTo()->getPointerTo();
|
|
|
|
if (ret && g_cfg.core.spu_block_size != spu_block_size_type::safe)
|
|
{
|
|
// Compare address stored in stack mirror with addr
|
|
const auto stack0 = eval(zext<u64>(sp) + ::offset32(&spu_thread::stack_mirror));
|
|
const auto stack1 = eval(stack0 + 8);
|
|
const auto _ret = m_ir->CreateLoad(m_ir->CreateBitCast(m_ir->CreateGEP(m_thread, stack0.value), type));
|
|
const auto link = m_ir->CreateLoad(m_ir->CreateBitCast(m_ir->CreateGEP(m_thread, stack1.value), get_type<u64*>()));
|
|
const auto fail = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto done = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(m_ir->CreateICmpEQ(addr.value, m_ir->CreateTrunc(link, get_type<u32>())), done, fail, m_md_likely);
|
|
m_ir->SetInsertPoint(done);
|
|
|
|
// Clear stack mirror and return by tail call to the provided return address
|
|
m_ir->CreateStore(splat<u64[2]>(-1).eval(m_ir), m_ir->CreateBitCast(m_ir->CreateGEP(m_thread, stack0.value), get_type<u64(*)[2]>()));
|
|
tail_chunk(_ret, m_ir->CreateTrunc(m_ir->CreateLShr(link, 32), get_type<u32>()));
|
|
m_ir->SetInsertPoint(fail);
|
|
}
|
|
|
|
if (g_cfg.core.spu_block_size == spu_block_size_type::giga)
|
|
{
|
|
// Try to load chunk address from the function table
|
|
const auto fail = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
const auto done = llvm::BasicBlock::Create(m_context, "", m_function);
|
|
m_ir->CreateCondBr(m_ir->CreateICmpULT(addr.value, m_ir->getInt32(m_size)), done, fail, m_md_likely);
|
|
m_ir->SetInsertPoint(done);
|
|
|
|
const auto ad64 = m_ir->CreateZExt(addr.value, get_type<u64>());
|
|
const auto pptr = m_ir->CreateGEP(m_function_table, {m_ir->getInt64(0), m_ir->CreateLShr(ad64, 2, "", true)});
|
|
tail_chunk(m_ir->CreateLoad(pptr));
|
|
m_ir->SetInsertPoint(fail);
|
|
}
|
|
|
|
m_ir->CreateRetVoid();
|
|
m_ir->SetInsertPoint(cblock);
|
|
return result;
|
|
}
|
|
|
|
llvm::BasicBlock* add_block_next()
|
|
{
|
|
if (m_interp_magn)
|
|
{
|
|
const auto cblock = m_ir->GetInsertBlock();
|
|
m_ir->SetInsertPoint(m_interp_bblock);
|
|
const auto target = m_ir->CreatePHI(get_type<u32>(), 2);
|
|
target->addIncoming(m_interp_pc_next, cblock);
|
|
target->addIncoming(m_interp_pc, m_interp_bblock->getSinglePredecessor());
|
|
m_ir->SetInsertPoint(cblock);
|
|
m_interp_pc = target;
|
|
return m_interp_bblock;
|
|
}
|
|
|
|
return add_block(m_pos + 4);
|
|
}
|
|
|
|
void BIZ(spu_opcode_t op) //
|
|
{
|
|
if (m_block) m_block->block_end = m_ir->GetInsertBlock();
|
|
const auto cond = eval(extract(get_vr(op.rt), 3) == 0);
|
|
const auto addr = eval(extract(get_vr(op.ra), 3) & 0x3fffc);
|
|
const auto target = add_block_indirect(op, addr);
|
|
m_ir->CreateCondBr(cond.value, target, add_block_next());
|
|
}
|
|
|
|
void BINZ(spu_opcode_t op) //
|
|
{
|
|
if (m_block) m_block->block_end = m_ir->GetInsertBlock();
|
|
const auto cond = eval(extract(get_vr(op.rt), 3) != 0);
|
|
const auto addr = eval(extract(get_vr(op.ra), 3) & 0x3fffc);
|
|
const auto target = add_block_indirect(op, addr);
|
|
m_ir->CreateCondBr(cond.value, target, add_block_next());
|
|
}
|
|
|
|
void BIHZ(spu_opcode_t op) //
|
|
{
|
|
if (m_block) m_block->block_end = m_ir->GetInsertBlock();
|
|
const auto cond = eval(extract(get_vr<u16[8]>(op.rt), 6) == 0);
|
|
const auto addr = eval(extract(get_vr(op.ra), 3) & 0x3fffc);
|
|
const auto target = add_block_indirect(op, addr);
|
|
m_ir->CreateCondBr(cond.value, target, add_block_next());
|
|
}
|
|
|
|
void BIHNZ(spu_opcode_t op) //
|
|
{
|
|
if (m_block) m_block->block_end = m_ir->GetInsertBlock();
|
|
const auto cond = eval(extract(get_vr<u16[8]>(op.rt), 6) != 0);
|
|
const auto addr = eval(extract(get_vr(op.ra), 3) & 0x3fffc);
|
|
const auto target = add_block_indirect(op, addr);
|
|
m_ir->CreateCondBr(cond.value, target, add_block_next());
|
|
}
|
|
|
|
void BI(spu_opcode_t op) //
|
|
{
|
|
if (m_block) m_block->block_end = m_ir->GetInsertBlock();
|
|
const auto addr = eval(extract(get_vr(op.ra), 3) & 0x3fffc);
|
|
|
|
if (m_interp_magn)
|
|
{
|
|
m_ir->CreateBr(add_block_indirect(op, addr));
|
|
return;
|
|
}
|
|
|
|
// Create jump table if necessary (TODO)
|
|
const auto tfound = m_targets.find(m_pos);
|
|
|
|
if (!op.d && !op.e && tfound != m_targets.end() && tfound->second.size() > 1)
|
|
{
|
|
// Shift aligned address for switch
|
|
const auto addrfx = m_ir->CreateAdd(m_ir->CreateSub(addr.value, m_base_pc), m_ir->getInt32(m_base));
|
|
const auto sw_arg = m_ir->CreateLShr(addrfx, 2, "", true);
|
|
|
|
// Initialize jump table targets
|
|
std::map<u32, llvm::BasicBlock*> targets;
|
|
|
|
for (u32 target : tfound->second)
|
|
{
|
|
if (m_block_info[target / 4])
|
|
{
|
|
targets.emplace(target, nullptr);
|
|
}
|
|
}
|
|
|
|
// Initialize target basic blocks
|
|
for (auto& pair : targets)
|
|
{
|
|
pair.second = add_block(pair.first);
|
|
}
|
|
|
|
if (targets.empty())
|
|
{
|
|
// Emergency exit
|
|
LOG_ERROR(SPU, "[0x%05x] No jump table targets at 0x%05x (%u)", m_entry, m_pos, tfound->second.size());
|
|
m_ir->CreateBr(add_block_indirect(op, addr));
|
|
return;
|
|
}
|
|
|
|
// Get jump table bounds (optimization)
|
|
const u32 start = targets.begin()->first;
|
|
const u32 end = targets.rbegin()->first + 4;
|
|
|
|
// Emit switch instruction aiming for a jumptable in the end (indirectbr could guarantee it)
|
|
const auto sw = m_ir->CreateSwitch(sw_arg, llvm::BasicBlock::Create(m_context, "", m_function), (end - start) / 4);
|
|
|
|
for (u32 pos = start; pos < end; pos += 4)
|
|
{
|
|
if (m_block_info[pos / 4] && targets.count(pos))
|
|
{
|
|
const auto found = targets.find(pos);
|
|
|
|
if (found != targets.end())
|
|
{
|
|
sw->addCase(m_ir->getInt32(pos / 4), found->second);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
sw->addCase(m_ir->getInt32(pos / 4), sw->getDefaultDest());
|
|
}
|
|
|
|
// Exit function on unexpected target
|
|
m_ir->SetInsertPoint(sw->getDefaultDest());
|
|
m_ir->CreateStore(addr.value, spu_ptr<u32>(&spu_thread::pc), true);
|
|
|
|
if (m_finfo && m_finfo->fn)
|
|
{
|
|
// Can't afford external tail call in true functions
|
|
m_ir->CreateStore(m_ir->getInt32("BIJT"_u32), _ptr<u32>(m_memptr, 0xffdead20))->setVolatile(true);
|
|
m_ir->CreateStore(m_ir->getFalse(), m_fake_global1, true);
|
|
m_ir->CreateBr(sw->getDefaultDest());
|
|
}
|
|
else
|
|
{
|
|
m_ir->CreateRetVoid();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Simple indirect branch
|
|
m_ir->CreateBr(add_block_indirect(op, addr));
|
|
}
|
|
}
|
|
|
|
void BISL(spu_opcode_t op) //
|
|
{
|
|
if (m_block) m_block->block_end = m_ir->GetInsertBlock();
|
|
const auto addr = eval(extract(get_vr(op.ra), 3) & 0x3fffc);
|
|
set_link(op);
|
|
m_ir->CreateBr(add_block_indirect(op, addr, false));
|
|
}
|
|
|
|
void IRET(spu_opcode_t op) //
|
|
{
|
|
if (m_block) m_block->block_end = m_ir->GetInsertBlock();
|
|
value_t<u32> srr0;
|
|
srr0.value = m_ir->CreateLoad(spu_ptr<u32>(&spu_thread::srr0));
|
|
m_ir->CreateBr(add_block_indirect(op, srr0));
|
|
}
|
|
|
|
void BISLED(spu_opcode_t op) //
|
|
{
|
|
if (m_block) m_block->block_end = m_ir->GetInsertBlock();
|
|
const auto addr = eval(extract(get_vr(op.ra), 3) & 0x3fffc);
|
|
set_link(op);
|
|
const auto res = call("spu_get_events", &exec_get_events, m_thread);
|
|
const auto target = add_block_indirect(op, addr);
|
|
m_ir->CreateCondBr(m_ir->CreateICmpNE(res, m_ir->getInt32(0)), target, add_block_next());
|
|
}
|
|
|
|
void BRZ(spu_opcode_t op) //
|
|
{
|
|
if (m_interp_magn)
|
|
{
|
|
value_t<u32> target;
|
|
target.value = m_interp_pc;
|
|
target = eval((target + (get_imm<u32>(op.i16, false) << 2)) & 0x3fffc);
|
|
m_interp_pc = m_ir->CreateSelect(eval(extract(get_vr(op.rt), 3) == 0).value, target.value, m_interp_pc_next);
|
|
return;
|
|
}
|
|
|
|
const u32 target = spu_branch_target(m_pos, op.i16);
|
|
|
|
if (target != m_pos + 4)
|
|
{
|
|
m_block->block_end = m_ir->GetInsertBlock();
|
|
const auto cond = eval(extract(get_vr(op.rt), 3) == 0);
|
|
m_ir->CreateCondBr(cond.value, add_block(target), add_block(m_pos + 4));
|
|
}
|
|
}
|
|
|
|
void BRNZ(spu_opcode_t op) //
|
|
{
|
|
if (m_interp_magn)
|
|
{
|
|
value_t<u32> target;
|
|
target.value = m_interp_pc;
|
|
target = eval((target + (get_imm<u32>(op.i16, false) << 2)) & 0x3fffc);
|
|
m_interp_pc = m_ir->CreateSelect(eval(extract(get_vr(op.rt), 3) != 0).value, target.value, m_interp_pc_next);
|
|
return;
|
|
}
|
|
|
|
const u32 target = spu_branch_target(m_pos, op.i16);
|
|
|
|
if (target != m_pos + 4)
|
|
{
|
|
m_block->block_end = m_ir->GetInsertBlock();
|
|
const auto cond = eval(extract(get_vr(op.rt), 3) != 0);
|
|
m_ir->CreateCondBr(cond.value, add_block(target), add_block(m_pos + 4));
|
|
}
|
|
}
|
|
|
|
void BRHZ(spu_opcode_t op) //
|
|
{
|
|
if (m_interp_magn)
|
|
{
|
|
value_t<u32> target;
|
|
target.value = m_interp_pc;
|
|
target = eval((target + (get_imm<u32>(op.i16, false) << 2)) & 0x3fffc);
|
|
m_interp_pc = m_ir->CreateSelect(eval(extract(get_vr<u16[8]>(op.rt), 6) == 0).value, target.value, m_interp_pc_next);
|
|
return;
|
|
}
|
|
|
|
const u32 target = spu_branch_target(m_pos, op.i16);
|
|
|
|
if (target != m_pos + 4)
|
|
{
|
|
m_block->block_end = m_ir->GetInsertBlock();
|
|
const auto cond = eval(extract(get_vr<u16[8]>(op.rt), 6) == 0);
|
|
m_ir->CreateCondBr(cond.value, add_block(target), add_block(m_pos + 4));
|
|
}
|
|
}
|
|
|
|
void BRHNZ(spu_opcode_t op) //
|
|
{
|
|
if (m_interp_magn)
|
|
{
|
|
value_t<u32> target;
|
|
target.value = m_interp_pc;
|
|
target = eval((target + (get_imm<u32>(op.i16, false) << 2)) & 0x3fffc);
|
|
m_interp_pc = m_ir->CreateSelect(eval(extract(get_vr<u16[8]>(op.rt), 6) != 0).value, target.value, m_interp_pc_next);
|
|
return;
|
|
}
|
|
|
|
const u32 target = spu_branch_target(m_pos, op.i16);
|
|
|
|
if (target != m_pos + 4)
|
|
{
|
|
m_block->block_end = m_ir->GetInsertBlock();
|
|
const auto cond = eval(extract(get_vr<u16[8]>(op.rt), 6) != 0);
|
|
m_ir->CreateCondBr(cond.value, add_block(target), add_block(m_pos + 4));
|
|
}
|
|
}
|
|
|
|
void BRA(spu_opcode_t op) //
|
|
{
|
|
if (m_interp_magn)
|
|
{
|
|
m_interp_pc = eval((get_imm<u32>(op.i16, false) << 2) & 0x3fffc).value;
|
|
return;
|
|
}
|
|
|
|
const u32 target = spu_branch_target(0, op.i16);
|
|
|
|
if (target != m_pos + 4)
|
|
{
|
|
m_block->block_end = m_ir->GetInsertBlock();
|
|
m_ir->CreateBr(add_block(target));
|
|
}
|
|
}
|
|
|
|
void BRASL(spu_opcode_t op) //
|
|
{
|
|
set_link(op);
|
|
|
|
const u32 target = spu_branch_target(0, op.i16);
|
|
|
|
if (m_finfo && m_finfo->fn && target != m_pos + 4)
|
|
{
|
|
if (auto fn = add_function(target)->fn)
|
|
{
|
|
call_function(fn);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
LOG_FATAL(SPU, "[0x%x] Can't add function 0x%x", m_pos, target);
|
|
return;
|
|
}
|
|
}
|
|
|
|
BRA(op);
|
|
}
|
|
|
|
void BR(spu_opcode_t op) //
|
|
{
|
|
if (m_interp_magn)
|
|
{
|
|
value_t<u32> target;
|
|
target.value = m_interp_pc;
|
|
target = eval((target + (get_imm<u32>(op.i16, false) << 2)) & 0x3fffc);
|
|
m_interp_pc = target.value;
|
|
return;
|
|
}
|
|
|
|
const u32 target = spu_branch_target(m_pos, op.i16);
|
|
|
|
if (target != m_pos + 4)
|
|
{
|
|
m_block->block_end = m_ir->GetInsertBlock();
|
|
m_ir->CreateBr(add_block(target));
|
|
}
|
|
}
|
|
|
|
void BRSL(spu_opcode_t op) //
|
|
{
|
|
set_link(op);
|
|
|
|
const u32 target = spu_branch_target(m_pos, op.i16);
|
|
|
|
if (m_finfo && m_finfo->fn && target != m_pos + 4)
|
|
{
|
|
if (auto fn = add_function(target)->fn)
|
|
{
|
|
call_function(fn);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
LOG_FATAL(SPU, "[0x%x] Can't add function 0x%x", m_pos, target);
|
|
return;
|
|
}
|
|
}
|
|
|
|
BR(op);
|
|
}
|
|
|
|
void set_link(spu_opcode_t op)
|
|
{
|
|
if (m_interp_magn)
|
|
{
|
|
value_t<u32> next;
|
|
next.value = m_interp_pc_next;
|
|
set_vr(op.rt, insert(splat<u32[4]>(0), 3, next));
|
|
return;
|
|
}
|
|
|
|
set_vr(op.rt, insert(splat<u32[4]>(0), 3, value<u32>(get_pc(m_pos + 4))));
|
|
|
|
if (m_finfo && m_finfo->fn)
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (g_cfg.core.spu_block_size != spu_block_size_type::safe && m_block_info[m_pos / 4 + 1] && m_entry_info[m_pos / 4 + 1])
|
|
{
|
|
// Store the return function chunk address at the stack mirror
|
|
const auto pfunc = add_function(m_pos + 4);
|
|
const auto stack0 = eval(zext<u64>(extract(get_reg_fixed(1), 3) & 0x3fff0) + ::offset32(&spu_thread::stack_mirror));
|
|
const auto stack1 = eval(stack0 + 8);
|
|
const auto base_plus_pc = m_ir->CreateOr(m_ir->CreateShl(m_ir->CreateZExt(m_base_pc, get_type<u64>()), 32), m_ir->getInt64(m_pos + 4));
|
|
m_ir->CreateStore(pfunc->chunk, m_ir->CreateBitCast(m_ir->CreateGEP(m_thread, stack0.value), pfunc->chunk->getType()->getPointerTo()));
|
|
m_ir->CreateStore(base_plus_pc, m_ir->CreateBitCast(m_ir->CreateGEP(m_thread, stack1.value), get_type<u64*>()));
|
|
}
|
|
}
|
|
|
|
static const spu_decoder<spu_llvm_recompiler> g_decoder;
|
|
};
|
|
|
|
std::unique_ptr<spu_recompiler_base> spu_recompiler_base::make_llvm_recompiler(u8 magn)
|
|
{
|
|
return std::make_unique<spu_llvm_recompiler>(magn);
|
|
}
|
|
|
|
DECLARE(spu_llvm_recompiler::g_decoder);
|
|
|
|
#else
|
|
|
|
std::unique_ptr<spu_recompiler_base> spu_recompiler_base::make_llvm_recompiler(u8 magn)
|
|
{
|
|
if (magn)
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
fmt::throw_exception("LLVM is not available in this build.");
|
|
}
|
|
|
|
#endif
|