rpcs3/rpcs3/Emu/Cell/lv2/sys_rwlock.cpp
Eladash 73aaff1b29 LV2: allocation-free synchronization syscalls
* Show waiters' ID in kernel explorer.
* Remove deque dependency from sys_sync.h
2022-08-07 20:23:54 +03:00

584 lines
9.8 KiB
C++

#include "stdafx.h"
#include "sys_rwlock.h"
#include "Emu/IdManager.h"
#include "Emu/IPC.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
#include "util/asm.hpp"
LOG_CHANNEL(sys_rwlock);
lv2_rwlock::lv2_rwlock(utils::serial& ar)
: protocol(ar)
, key(ar)
, name(ar)
{
ar(owner);
}
std::shared_ptr<void> lv2_rwlock::load(utils::serial& ar)
{
auto rwlock = std::make_shared<lv2_rwlock>(ar);
return lv2_obj::load(rwlock->key, rwlock);
}
void lv2_rwlock::save(utils::serial& ar)
{
USING_SERIALIZATION_VERSION(lv2_sync);
ar(protocol, key, name, owner);
}
error_code sys_rwlock_create(ppu_thread& ppu, vm::ptr<u32> rw_lock_id, vm::ptr<sys_rwlock_attribute_t> attr)
{
ppu.state += cpu_flag::wait;
sys_rwlock.warning("sys_rwlock_create(rw_lock_id=*0x%x, attr=*0x%x)", rw_lock_id, attr);
if (!rw_lock_id || !attr)
{
return CELL_EFAULT;
}
const auto _attr = *attr;
const u32 protocol = _attr.protocol;
if (protocol != SYS_SYNC_FIFO && protocol != SYS_SYNC_PRIORITY)
{
sys_rwlock.error("sys_rwlock_create(): unknown protocol (0x%x)", protocol);
return CELL_EINVAL;
}
const u64 ipc_key = lv2_obj::get_key(_attr);
if (auto error = lv2_obj::create<lv2_rwlock>(_attr.pshared, ipc_key, _attr.flags, [&]
{
return std::make_shared<lv2_rwlock>(protocol, ipc_key, _attr.name_u64);
}))
{
return error;
}
*rw_lock_id = idm::last_id();
return CELL_OK;
}
error_code sys_rwlock_destroy(ppu_thread& ppu, u32 rw_lock_id)
{
ppu.state += cpu_flag::wait;
sys_rwlock.warning("sys_rwlock_destroy(rw_lock_id=0x%x)", rw_lock_id);
const auto rwlock = idm::withdraw<lv2_obj, lv2_rwlock>(rw_lock_id, [](lv2_rwlock& rw) -> CellError
{
if (rw.owner)
{
return CELL_EBUSY;
}
lv2_obj::on_id_destroy(rw, rw.key);
return {};
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (rwlock.ret)
{
return rwlock.ret;
}
return CELL_OK;
}
error_code sys_rwlock_rlock(ppu_thread& ppu, u32 rw_lock_id, u64 timeout)
{
ppu.state += cpu_flag::wait;
sys_rwlock.trace("sys_rwlock_rlock(rw_lock_id=0x%x, timeout=0x%llx)", rw_lock_id, timeout);
const auto rwlock = idm::get<lv2_obj, lv2_rwlock>(rw_lock_id, [&](lv2_rwlock& rwlock)
{
const s64 val = rwlock.owner;
if (val <= 0 && !(val & 1))
{
if (rwlock.owner.compare_and_swap_test(val, val - 2))
{
return true;
}
}
lv2_obj::notify_all_t notify;
std::lock_guard lock(rwlock.mutex);
const s64 _old = rwlock.owner.fetch_op([&](s64& val)
{
if (val <= 0 && !(val & 1))
{
val -= 2;
}
else
{
val |= 1;
}
});
if (_old > 0 || _old & 1)
{
rwlock.sleep(ppu, timeout, true);
lv2_obj::emplace(rwlock.rq, &ppu);
return false;
}
return true;
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (rwlock.ret)
{
return CELL_OK;
}
ppu.gpr[3] = CELL_OK;
while (auto state = +ppu.state)
{
if (state & cpu_flag::signal && ppu.state.test_and_reset(cpu_flag::signal))
{
break;
}
if (is_stopped(state))
{
std::lock_guard lock(rwlock->mutex);
for (auto cpu = +rwlock->rq; cpu; cpu = cpu->next_cpu)
{
if (cpu == &ppu)
{
ppu.state += cpu_flag::again;
return {};
}
}
break;
}
for (usz i = 0; cpu_flag::signal - ppu.state && i < 50; i++)
{
busy_wait(500);
}
if (ppu.state & cpu_flag::signal)
{
continue;
}
if (timeout)
{
if (lv2_obj::wait_timeout(timeout, &ppu))
{
// Wait for rescheduling
if (ppu.check_state())
{
continue;
}
std::lock_guard lock(rwlock->mutex);
if (!rwlock->unqueue(rwlock->rq, &ppu))
{
break;
}
ppu.gpr[3] = CELL_ETIMEDOUT;
break;
}
}
else
{
thread_ctrl::wait_on(ppu.state, state);
}
}
return not_an_error(ppu.gpr[3]);
}
error_code sys_rwlock_tryrlock(ppu_thread& ppu, u32 rw_lock_id)
{
ppu.state += cpu_flag::wait;
sys_rwlock.trace("sys_rwlock_tryrlock(rw_lock_id=0x%x)", rw_lock_id);
const auto rwlock = idm::check<lv2_obj, lv2_rwlock>(rw_lock_id, [](lv2_rwlock& rwlock)
{
auto [_, ok] = rwlock.owner.fetch_op([](s64& val)
{
if (val <= 0 && !(val & 1))
{
val -= 2;
return true;
}
return false;
});
return ok;
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (!rwlock.ret)
{
return not_an_error(CELL_EBUSY);
}
return CELL_OK;
}
error_code sys_rwlock_runlock(ppu_thread& ppu, u32 rw_lock_id)
{
ppu.state += cpu_flag::wait;
sys_rwlock.trace("sys_rwlock_runlock(rw_lock_id=0x%x)", rw_lock_id);
const auto rwlock = idm::get<lv2_obj, lv2_rwlock>(rw_lock_id, [](lv2_rwlock& rwlock)
{
const s64 val = rwlock.owner;
if (val < 0 && !(val & 1))
{
if (rwlock.owner.compare_and_swap_test(val, val + 2))
{
return true;
}
}
return false;
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (rwlock.ret)
{
return CELL_OK;
}
else
{
std::lock_guard lock(rwlock->mutex);
// Remove one reader
const s64 _old = rwlock->owner.fetch_op([](s64& val)
{
if (val < -1)
{
val += 2;
}
});
if (_old >= 0)
{
return CELL_EPERM;
}
if (_old == -1)
{
if (const auto cpu = rwlock->schedule<ppu_thread>(rwlock->wq, rwlock->protocol))
{
if (static_cast<ppu_thread*>(cpu)->state & cpu_flag::again)
{
ppu.state += cpu_flag::again;
return {};
}
rwlock->owner = cpu->id << 1 | !!rwlock->wq | !!rwlock->rq;
rwlock->awake(cpu);
}
else
{
rwlock->owner = 0;
ensure(!rwlock->rq);
}
}
}
return CELL_OK;
}
error_code sys_rwlock_wlock(ppu_thread& ppu, u32 rw_lock_id, u64 timeout)
{
ppu.state += cpu_flag::wait;
sys_rwlock.trace("sys_rwlock_wlock(rw_lock_id=0x%x, timeout=0x%llx)", rw_lock_id, timeout);
const auto rwlock = idm::get<lv2_obj, lv2_rwlock>(rw_lock_id, [&](lv2_rwlock& rwlock) -> s64
{
const s64 val = rwlock.owner;
if (val == 0)
{
if (rwlock.owner.compare_and_swap_test(0, ppu.id << 1))
{
return 0;
}
}
else if (val >> 1 == ppu.id)
{
return val;
}
lv2_obj::notify_all_t notify;
std::lock_guard lock(rwlock.mutex);
const s64 _old = rwlock.owner.fetch_op([&](s64& val)
{
if (val == 0)
{
val = ppu.id << 1;
}
else
{
val |= 1;
}
});
if (_old != 0)
{
rwlock.sleep(ppu, timeout, true);
lv2_obj::emplace(rwlock.wq, &ppu);
}
return _old;
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (rwlock.ret == 0)
{
return CELL_OK;
}
if (rwlock.ret >> 1 == ppu.id)
{
return CELL_EDEADLK;
}
ppu.gpr[3] = CELL_OK;
while (auto state = +ppu.state)
{
if (state & cpu_flag::signal && ppu.state.test_and_reset(cpu_flag::signal))
{
break;
}
if (is_stopped(state))
{
std::lock_guard lock(rwlock->mutex);
for (auto cpu = +rwlock->wq; cpu; cpu = cpu->next_cpu)
{
if (cpu == &ppu)
{
ppu.state += cpu_flag::again;
return {};
}
}
break;
}
for (usz i = 0; cpu_flag::signal - ppu.state && i < 50; i++)
{
busy_wait(500);
}
if (ppu.state & cpu_flag::signal)
{
continue;
}
if (timeout)
{
if (lv2_obj::wait_timeout(timeout, &ppu))
{
// Wait for rescheduling
if (ppu.check_state())
{
continue;
}
std::lock_guard lock(rwlock->mutex);
if (!rwlock->unqueue(rwlock->wq, &ppu))
{
break;
}
// If the last waiter quit the writer sleep queue, wake blocked readers
if (rwlock->rq && !rwlock->wq && rwlock->owner < 0)
{
s64 size = 0;
// Protocol doesn't matter here since they are all enqueued anyways
for (auto cpu = +rwlock->rq; cpu; cpu = cpu->next_cpu)
{
size++;
rwlock->append(cpu);
}
rwlock->rq.release(nullptr);
rwlock->owner.atomic_op([&](s64& owner)
{
owner -= 2 * size; // Add readers to value
owner &= -2; // Clear wait bit
});
lv2_obj::awake_all();
}
else if (!rwlock->rq && !rwlock->wq)
{
rwlock->owner &= -2;
}
ppu.gpr[3] = CELL_ETIMEDOUT;
break;
}
}
else
{
thread_ctrl::wait_on(ppu.state, state);
}
}
return not_an_error(ppu.gpr[3]);
}
error_code sys_rwlock_trywlock(ppu_thread& ppu, u32 rw_lock_id)
{
ppu.state += cpu_flag::wait;
sys_rwlock.trace("sys_rwlock_trywlock(rw_lock_id=0x%x)", rw_lock_id);
const auto rwlock = idm::check<lv2_obj, lv2_rwlock>(rw_lock_id, [&](lv2_rwlock& rwlock)
{
const s64 val = rwlock.owner;
// Return previous value
return val ? val : rwlock.owner.compare_and_swap(0, ppu.id << 1);
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (rwlock.ret != 0)
{
if (rwlock.ret >> 1 == ppu.id)
{
return CELL_EDEADLK;
}
return not_an_error(CELL_EBUSY);
}
return CELL_OK;
}
error_code sys_rwlock_wunlock(ppu_thread& ppu, u32 rw_lock_id)
{
ppu.state += cpu_flag::wait;
sys_rwlock.trace("sys_rwlock_wunlock(rw_lock_id=0x%x)", rw_lock_id);
const auto rwlock = idm::get<lv2_obj, lv2_rwlock>(rw_lock_id, [&](lv2_rwlock& rwlock)
{
const s64 val = rwlock.owner;
// Return previous value
return val != ppu.id << 1 ? val : rwlock.owner.compare_and_swap(val, 0);
});
if (!rwlock)
{
return CELL_ESRCH;
}
if (rwlock.ret >> 1 != ppu.id)
{
return CELL_EPERM;
}
if (rwlock.ret & 1)
{
std::lock_guard lock(rwlock->mutex);
if (auto cpu = rwlock->schedule<ppu_thread>(rwlock->wq, rwlock->protocol))
{
if (static_cast<ppu_thread*>(cpu)->state & cpu_flag::again)
{
ppu.state += cpu_flag::again;
return {};
}
rwlock->owner = cpu->id << 1 | !!rwlock->wq | !!rwlock->rq;
rwlock->awake(cpu);
}
else if (rwlock->rq)
{
for (auto cpu = +rwlock->rq; cpu; cpu = cpu->next_cpu)
{
if (cpu->state & cpu_flag::again)
{
ppu.state += cpu_flag::again;
return {};
}
}
s64 size = 0;
// Protocol doesn't matter here since they are all enqueued anyways
for (auto cpu = +rwlock->rq; cpu; cpu = cpu->next_cpu)
{
size++;
rwlock->append(cpu);
}
rwlock->rq.release(nullptr);
rwlock->owner.release(-2 * static_cast<s64>(size));
lv2_obj::awake_all();
}
else
{
rwlock->owner = 0;
}
}
return CELL_OK;
}