rpcs3/rpcs3/Emu/RSX/VK/VKHelpers.h
scribam 6c5ea068c9 Remove redundant semicolons
Fix "-Wextra-semi" warnings
2019-05-12 18:32:11 +03:00

3205 lines
85 KiB
C++

#pragma once
#include "stdafx.h"
#include <exception>
#include <string>
#include <cstring>
#include <functional>
#include <vector>
#include <memory>
#include <unordered_map>
#include <variant>
#if !defined(_WIN32) && !defined(__APPLE__)
#include <X11/Xutil.h>
#endif
#include "Emu/RSX/GSRender.h"
#include "Emu/System.h"
#include "VulkanAPI.h"
#include "VKCommonDecompiler.h"
#include "../GCM.h"
#include "../Common/TextureUtils.h"
#include "../Common/ring_buffer_helper.h"
#include "../rsx_cache.h"
#include "3rdparty/GPUOpen/include/vk_mem_alloc.h"
#ifdef __APPLE__
#define VK_DISABLE_COMPONENT_SWIZZLE 1
#else
#define VK_DISABLE_COMPONENT_SWIZZLE 0
#endif
#define DESCRIPTOR_MAX_DRAW_CALLS 4096
#define OCCLUSION_MAX_POOL_SIZE 8192
#define VERTEX_PARAMS_BIND_SLOT 0
#define VERTEX_LAYOUT_BIND_SLOT 1
#define VERTEX_CONSTANT_BUFFERS_BIND_SLOT 2
#define FRAGMENT_CONSTANT_BUFFERS_BIND_SLOT 3
#define FRAGMENT_STATE_BIND_SLOT 4
#define FRAGMENT_TEXTURE_PARAMS_BIND_SLOT 5
#define VERTEX_BUFFERS_FIRST_BIND_SLOT 6
#define TEXTURES_FIRST_BIND_SLOT 8
#define VERTEX_TEXTURES_FIRST_BIND_SLOT 24 //8+16
#define VK_NUM_DESCRIPTOR_BINDINGS (VERTEX_TEXTURES_FIRST_BIND_SLOT + 4)
#define FRAME_PRESENT_TIMEOUT 1000000ull // 1 second
#define GENERAL_WAIT_TIMEOUT 100000ull // 100ms
namespace rsx
{
class fragment_texture;
}
namespace vk
{
#define CHECK_RESULT(expr) { VkResult _res = (expr); if (_res != VK_SUCCESS) vk::die_with_error(HERE, _res); }
VKAPI_ATTR void *VKAPI_CALL mem_realloc(void *pUserData, void *pOriginal, size_t size, size_t alignment, VkSystemAllocationScope allocationScope);
VKAPI_ATTR void *VKAPI_CALL mem_alloc(void *pUserData, size_t size, size_t alignment, VkSystemAllocationScope allocationScope);
VKAPI_ATTR void VKAPI_CALL mem_free(void *pUserData, void *pMemory);
VKAPI_ATTR VkBool32 VKAPI_CALL dbgFunc(VkFlags msgFlags, VkDebugReportObjectTypeEXT objType,
uint64_t srcObject, size_t location, int32_t msgCode,
const char *pLayerPrefix, const char *pMsg, void *pUserData);
VkBool32 BreakCallback(VkFlags msgFlags, VkDebugReportObjectTypeEXT objType,
uint64_t srcObject, size_t location, int32_t msgCode,
const char *pLayerPrefix, const char *pMsg,
void *pUserData);
//VkAllocationCallbacks default_callbacks();
enum driver_vendor
{
unknown,
AMD,
NVIDIA,
RADV,
INTEL
};
class context;
class render_device;
class swap_chain_image;
class physical_device;
class command_buffer;
class image;
struct buffer;
struct data_heap;
class mem_allocator_base;
struct memory_type_mapping;
struct gpu_formats_support;
const vk::context *get_current_thread_ctx();
void set_current_thread_ctx(const vk::context &ctx);
const vk::render_device *get_current_renderer();
void set_current_renderer(const vk::render_device &device);
mem_allocator_base *get_current_mem_allocator();
//Compatibility workarounds
bool emulate_primitive_restart(rsx::primitive_type type);
bool sanitize_fp_values();
bool fence_reset_disabled();
VkFlags get_heap_compatible_buffer_types();
driver_vendor get_driver_vendor();
VkComponentMapping default_component_map();
VkComponentMapping apply_swizzle_remap(const std::array<VkComponentSwizzle, 4>& base_remap, const std::pair<std::array<u8, 4>, std::array<u8, 4>>& remap_vector);
VkImageSubresource default_image_subresource();
VkImageSubresourceRange get_image_subresource_range(uint32_t base_layer, uint32_t base_mip, uint32_t layer_count, uint32_t level_count, VkImageAspectFlags aspect);
VkImageAspectFlags get_aspect_flags(VkFormat format);
VkSampler null_sampler();
VkImageView null_image_view(vk::command_buffer&);
image* get_typeless_helper(VkFormat format, u32 requested_width, u32 requested_height);
buffer* get_scratch_buffer();
memory_type_mapping get_memory_mapping(const physical_device& dev);
gpu_formats_support get_optimal_tiling_supported_formats(const physical_device& dev);
//Sync helpers around vkQueueSubmit
void acquire_global_submit_lock();
void release_global_submit_lock();
template<class T>
T* get_compute_task();
void reset_compute_tasks();
void destroy_global_resources();
/**
* Allocate enough space in upload_buffer and write all mipmap/layer data into the subbuffer.
* Then copy all layers into dst_image.
* dst_image must be in TRANSFER_DST_OPTIMAL layout and upload_buffer have TRANSFER_SRC_BIT usage flag.
*/
void copy_mipmaped_image_using_buffer(VkCommandBuffer cmd, vk::image* dst_image,
const std::vector<rsx_subresource_layout>& subresource_layout, int format, bool is_swizzled, u16 mipmap_count,
VkImageAspectFlags flags, vk::data_heap &upload_heap);
//Other texture management helpers
void change_image_layout(VkCommandBuffer cmd, VkImage image, VkImageLayout current_layout, VkImageLayout new_layout, const VkImageSubresourceRange& range);
void change_image_layout(VkCommandBuffer cmd, vk::image *image, VkImageLayout new_layout, const VkImageSubresourceRange& range);
void change_image_layout(VkCommandBuffer cmd, vk::image *image, VkImageLayout new_layout);
void copy_image_to_buffer(VkCommandBuffer cmd, const vk::image* src, const vk::buffer* dst, const VkBufferImageCopy& region);
void copy_buffer_to_image(VkCommandBuffer cmd, const vk::buffer* src, const vk::image* dst, const VkBufferImageCopy& region);
void copy_image_typeless(const command_buffer &cmd, const image *src, const image *dst, const areai& src_rect, const areai& dst_rect,
u32 mipmaps, VkImageAspectFlags src_aspect, VkImageAspectFlags dst_aspect,
VkImageAspectFlags src_transfer_mask = 0xFF, VkImageAspectFlags dst_transfer_mask = 0xFF);
void copy_image(VkCommandBuffer cmd, VkImage src, VkImage dst, VkImageLayout srcLayout, VkImageLayout dstLayout,
const areai& src_rect, const areai& dst_rect, u32 mipmaps, VkImageAspectFlags src_aspect, VkImageAspectFlags dst_aspect,
VkImageAspectFlags src_transfer_mask = 0xFF, VkImageAspectFlags dst_transfer_mask = 0xFF);
void copy_scaled_image(VkCommandBuffer cmd, VkImage src, VkImage dst, VkImageLayout srcLayout, VkImageLayout dstLayout,
const areai& src_rect, const areai& dst_rect, u32 mipmaps, VkImageAspectFlags aspect, bool compatible_formats,
VkFilter filter = VK_FILTER_LINEAR, VkFormat src_format = VK_FORMAT_UNDEFINED, VkFormat dst_format = VK_FORMAT_UNDEFINED);
std::pair<VkFormat, VkComponentMapping> get_compatible_surface_format(rsx::surface_color_format color_format);
size_t get_render_pass_location(VkFormat color_surface_format, VkFormat depth_stencil_format, u8 color_surface_count);
//Texture barrier applies to a texture to ensure writes to it are finished before any reads are attempted to avoid RAW hazards
void insert_texture_barrier(VkCommandBuffer cmd, VkImage image, VkImageLayout layout, VkImageSubresourceRange range);
void insert_texture_barrier(VkCommandBuffer cmd, vk::image *image);
void insert_buffer_memory_barrier(VkCommandBuffer cmd, VkBuffer buffer, VkDeviceSize offset, VkDeviceSize length,
VkPipelineStageFlags src_stage, VkPipelineStageFlags dst_stage, VkAccessFlags src_mask, VkAccessFlags dst_mask);
//Manage 'uininterruptible' state where secondary operations (e.g violation handlers) will have to wait
void enter_uninterruptible();
void leave_uninterruptible();
bool is_uninterruptible();
void advance_completed_frame_counter();
void advance_frame_counter();
const u64 get_current_frame_id();
const u64 get_last_completed_frame_id();
// Fence reset with driver workarounds in place
void reset_fence(VkFence *pFence);
VkResult wait_for_fence(VkFence pFence, u64 timeout = 0ull);
VkResult wait_for_event(VkEvent pEvent, u64 timeout = 0ull);
void die_with_error(const char* faulting_addr, VkResult error_code);
struct memory_type_mapping
{
uint32_t host_visible_coherent;
uint32_t device_local;
};
struct gpu_formats_support
{
bool d24_unorm_s8;
bool d32_sfloat_s8;
bool bgra8_linear;
};
struct gpu_shader_types_support
{
bool allow_float16;
bool allow_int8;
};
// Memory Allocator - base class
class mem_allocator_base
{
public:
using mem_handle_t = void *;
mem_allocator_base(VkDevice dev, VkPhysicalDevice /*pdev*/) : m_device(dev) {}
virtual ~mem_allocator_base() {}
virtual void destroy() = 0;
virtual mem_handle_t alloc(u64 block_sz, u64 alignment, uint32_t memory_type_index) = 0;
virtual void free(mem_handle_t mem_handle) = 0;
virtual void *map(mem_handle_t mem_handle, u64 offset, u64 size) = 0;
virtual void unmap(mem_handle_t mem_handle) = 0;
virtual VkDeviceMemory get_vk_device_memory(mem_handle_t mem_handle) = 0;
virtual u64 get_vk_device_memory_offset(mem_handle_t mem_handle) = 0;
protected:
VkDevice m_device;
private:
};
// Memory Allocator - Vulkan Memory Allocator
// https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
class mem_allocator_vma : public mem_allocator_base
{
public:
mem_allocator_vma(VkDevice dev, VkPhysicalDevice pdev) : mem_allocator_base(dev, pdev)
{
VmaAllocatorCreateInfo allocatorInfo = {};
allocatorInfo.physicalDevice = pdev;
allocatorInfo.device = dev;
vmaCreateAllocator(&allocatorInfo, &m_allocator);
}
~mem_allocator_vma() {}
void destroy() override
{
vmaDestroyAllocator(m_allocator);
}
mem_handle_t alloc(u64 block_sz, u64 alignment, uint32_t memory_type_index) override
{
VmaAllocation vma_alloc;
VkMemoryRequirements mem_req = {};
VmaAllocationCreateInfo create_info = {};
mem_req.memoryTypeBits = 1u << memory_type_index;
mem_req.size = block_sz;
mem_req.alignment = alignment;
create_info.memoryTypeBits = 1u << memory_type_index;
CHECK_RESULT(vmaAllocateMemory(m_allocator, &mem_req, &create_info, &vma_alloc, nullptr));
return vma_alloc;
}
void free(mem_handle_t mem_handle) override
{
vmaFreeMemory(m_allocator, static_cast<VmaAllocation>(mem_handle));
}
void *map(mem_handle_t mem_handle, u64 offset, u64 /*size*/) override
{
void *data = nullptr;
CHECK_RESULT(vmaMapMemory(m_allocator, static_cast<VmaAllocation>(mem_handle), &data));
// Add offset
data = static_cast<u8 *>(data) + offset;
return data;
}
void unmap(mem_handle_t mem_handle) override
{
vmaUnmapMemory(m_allocator, static_cast<VmaAllocation>(mem_handle));
}
VkDeviceMemory get_vk_device_memory(mem_handle_t mem_handle) override
{
VmaAllocationInfo alloc_info;
vmaGetAllocationInfo(m_allocator, static_cast<VmaAllocation>(mem_handle), &alloc_info);
return alloc_info.deviceMemory;
}
u64 get_vk_device_memory_offset(mem_handle_t mem_handle) override
{
VmaAllocationInfo alloc_info;
vmaGetAllocationInfo(m_allocator, static_cast<VmaAllocation>(mem_handle), &alloc_info);
return alloc_info.offset;
}
private:
VmaAllocator m_allocator;
};
// Memory Allocator - built-in Vulkan device memory allocate/free
class mem_allocator_vk : public mem_allocator_base
{
public:
mem_allocator_vk(VkDevice dev, VkPhysicalDevice pdev) : mem_allocator_base(dev, pdev) {}
~mem_allocator_vk() {}
void destroy() override {}
mem_handle_t alloc(u64 block_sz, u64 /*alignment*/, uint32_t memory_type_index) override
{
VkDeviceMemory memory;
VkMemoryAllocateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
info.allocationSize = block_sz;
info.memoryTypeIndex = memory_type_index;
CHECK_RESULT(vkAllocateMemory(m_device, &info, nullptr, &memory));
return memory;
}
void free(mem_handle_t mem_handle) override
{
vkFreeMemory(m_device, (VkDeviceMemory)mem_handle, nullptr);
}
void *map(mem_handle_t mem_handle, u64 offset, u64 size) override
{
void *data = nullptr;
CHECK_RESULT(vkMapMemory(m_device, (VkDeviceMemory)mem_handle, offset, std::max<u64>(size, 1u), 0, &data));
return data;
}
void unmap(mem_handle_t mem_handle) override
{
vkUnmapMemory(m_device, (VkDeviceMemory)mem_handle);
}
VkDeviceMemory get_vk_device_memory(mem_handle_t mem_handle) override
{
return (VkDeviceMemory)mem_handle;
}
u64 get_vk_device_memory_offset(mem_handle_t /*mem_handle*/) override
{
return 0;
}
private:
};
struct memory_block
{
memory_block(VkDevice dev, u64 block_sz, u64 alignment, uint32_t memory_type_index) : m_device(dev)
{
m_mem_allocator = get_current_mem_allocator();
m_mem_handle = m_mem_allocator->alloc(block_sz, alignment, memory_type_index);
}
~memory_block()
{
m_mem_allocator->free(m_mem_handle);
}
VkDeviceMemory get_vk_device_memory()
{
return m_mem_allocator->get_vk_device_memory(m_mem_handle);
}
u64 get_vk_device_memory_offset()
{
return m_mem_allocator->get_vk_device_memory_offset(m_mem_handle);
}
void *map(u64 offset, u64 size)
{
return m_mem_allocator->map(m_mem_handle, offset, size);
}
void unmap()
{
m_mem_allocator->unmap(m_mem_handle);
}
memory_block(const memory_block&) = delete;
memory_block(memory_block&&) = delete;
private:
VkDevice m_device;
vk::mem_allocator_base* m_mem_allocator;
mem_allocator_base::mem_handle_t m_mem_handle;
};
class physical_device
{
VkInstance parent = VK_NULL_HANDLE;
VkPhysicalDevice dev = VK_NULL_HANDLE;
VkPhysicalDeviceProperties props;
VkPhysicalDeviceMemoryProperties memory_properties;
std::vector<VkQueueFamilyProperties> queue_props;
public:
physical_device() {}
~physical_device() {}
void create(VkInstance context, VkPhysicalDevice pdev)
{
dev = pdev;
parent = context;
vkGetPhysicalDeviceProperties(pdev, &props);
vkGetPhysicalDeviceMemoryProperties(pdev, &memory_properties);
LOG_NOTICE(RSX, "Found vulkan-compatible GPU: '%s' running on driver %s", get_name(), get_driver_version());
}
std::string get_name() const
{
return props.deviceName;
}
driver_vendor get_driver_vendor() const
{
const auto gpu_name = get_name();
if (gpu_name.find("Radeon") != std::string::npos)
{
return driver_vendor::AMD;
}
if (gpu_name.find("NVIDIA") != std::string::npos || gpu_name.find("GeForce") != std::string::npos)
{
return driver_vendor::NVIDIA;
}
if (gpu_name.find("RADV") != std::string::npos)
{
return driver_vendor::RADV;
}
if (gpu_name.find("Intel") != std::string::npos)
{
return driver_vendor::INTEL;
}
return driver_vendor::unknown;
}
std::string get_driver_version() const
{
switch (get_driver_vendor())
{
case driver_vendor::NVIDIA:
{
// 10 + 8 + 8 + 6
const auto major_version = VK_VERSION_MAJOR(props.driverVersion);
const auto minor_version = (props.driverVersion >> 14) & 0xff;
const auto patch = (props.driverVersion >> 6) & 0xff;
const auto revision = (props.driverVersion & 0x3f);
return fmt::format("%u.%u.%u.%u", major_version, minor_version, patch, revision);
}
default:
{
// 10 + 10 + 12 (standard vulkan encoding created with VK_MAKE_VERSION)
return fmt::format("%u.%u.%u",
VK_VERSION_MAJOR(props.driverVersion),
VK_VERSION_MINOR(props.driverVersion),
VK_VERSION_PATCH(props.driverVersion));
}
}
}
uint32_t get_queue_count() const
{
if (queue_props.size())
return (u32)queue_props.size();
uint32_t count = 0;
vkGetPhysicalDeviceQueueFamilyProperties(dev, &count, nullptr);
return count;
}
VkQueueFamilyProperties get_queue_properties(uint32_t queue)
{
if (!queue_props.size())
{
uint32_t count = 0;
vkGetPhysicalDeviceQueueFamilyProperties(dev, &count, nullptr);
queue_props.resize(count);
vkGetPhysicalDeviceQueueFamilyProperties(dev, &count, queue_props.data());
}
if (queue >= queue_props.size()) fmt::throw_exception("Bad queue index passed to get_queue_properties (%u)" HERE, queue);
return queue_props[queue];
}
VkPhysicalDeviceMemoryProperties get_memory_properties() const
{
return memory_properties;
}
VkPhysicalDeviceLimits get_limits() const
{
return props.limits;
}
operator VkPhysicalDevice() const
{
return dev;
}
operator VkInstance() const
{
return parent;
}
};
class supported_extensions
{
private:
std::vector<VkExtensionProperties> m_vk_exts;
public:
enum enumeration_class
{
instance = 0,
device = 1
};
supported_extensions(enumeration_class _class, const char* layer_name = nullptr, physical_device* pgpu = nullptr)
{
uint32_t count;
if (_class == enumeration_class::instance)
{
if (vkEnumerateInstanceExtensionProperties(layer_name, &count, nullptr) != VK_SUCCESS)
return;
}
else
{
verify(HERE), pgpu;
if (vkEnumerateDeviceExtensionProperties(*pgpu, layer_name, &count, nullptr) != VK_SUCCESS)
return;
}
m_vk_exts.resize(count);
if (_class == enumeration_class::instance)
{
vkEnumerateInstanceExtensionProperties(layer_name, &count, m_vk_exts.data());
}
else
{
vkEnumerateDeviceExtensionProperties(*pgpu, layer_name, &count, m_vk_exts.data());
}
}
bool is_supported(const char *ext)
{
return std::any_of(m_vk_exts.cbegin(), m_vk_exts.cend(),
[&](const VkExtensionProperties& p) { return std::strcmp(p.extensionName, ext) == 0; });
}
};
class render_device
{
physical_device *pgpu = nullptr;
memory_type_mapping memory_map{};
std::unordered_map<VkFormat, VkFormatProperties> m_format_properties;
gpu_formats_support m_formats_support{};
gpu_shader_types_support m_shader_types_support{};
std::unique_ptr<mem_allocator_base> m_allocator;
VkDevice dev = VK_NULL_HANDLE;
void get_physical_device_features(VkPhysicalDeviceFeatures& features)
{
supported_extensions instance_extensions(supported_extensions::instance);
if (!instance_extensions.is_supported("VK_KHR_get_physical_device_properties2"))
{
vkGetPhysicalDeviceFeatures(*pgpu, &features);
}
else
{
supported_extensions device_extensions(supported_extensions::device, nullptr, pgpu);
VkPhysicalDeviceFeatures2KHR features2;
features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
features2.pNext = nullptr;
VkPhysicalDeviceFloat16Int8FeaturesKHR shader_support_info{};
if (device_extensions.is_supported("VK_KHR_shader_float16_int8"))
{
shader_support_info.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR;
features2.pNext = &shader_support_info;
}
auto getPhysicalDeviceFeatures2KHR = (PFN_vkGetPhysicalDeviceFeatures2KHR)vkGetInstanceProcAddr(*pgpu, "vkGetPhysicalDeviceFeatures2KHR");
verify("vkGetInstanceProcAddress failed to find entry point!" HERE), getPhysicalDeviceFeatures2KHR;
getPhysicalDeviceFeatures2KHR(*pgpu, &features2);
m_shader_types_support.allow_float16 = !!shader_support_info.shaderFloat16;
m_shader_types_support.allow_int8 = !!shader_support_info.shaderInt8;
features = features2.features;
}
}
public:
render_device()
{}
~render_device()
{}
void create(vk::physical_device &pdev, uint32_t graphics_queue_idx)
{
float queue_priorities[1] = { 0.f };
pgpu = &pdev;
VkDeviceQueueCreateInfo queue = {};
queue.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queue.pNext = NULL;
queue.queueFamilyIndex = graphics_queue_idx;
queue.queueCount = 1;
queue.pQueuePriorities = queue_priorities;
// Set up instance information
std::vector<const char *>requested_extensions =
{
VK_KHR_SWAPCHAIN_EXTENSION_NAME
};
// Enable hardware features manually
// Currently we require:
// 1. Anisotropic sampling
// 2. DXT support
// 3. Indexable storage buffers
VkPhysicalDeviceFeatures available_features;
get_physical_device_features(available_features);
if (m_shader_types_support.allow_float16)
{
requested_extensions.push_back("VK_KHR_shader_float16_int8");
}
available_features.samplerAnisotropy = VK_TRUE;
available_features.textureCompressionBC = VK_TRUE;
available_features.shaderStorageBufferArrayDynamicIndexing = VK_TRUE;
VkDeviceCreateInfo device = {};
device.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
device.pNext = nullptr;
device.queueCreateInfoCount = 1;
device.pQueueCreateInfos = &queue;
device.enabledLayerCount = 0;
device.ppEnabledLayerNames = nullptr; // Deprecated
device.enabledExtensionCount = (u32)requested_extensions.size();
device.ppEnabledExtensionNames = requested_extensions.data();
device.pEnabledFeatures = &available_features;
VkPhysicalDeviceFloat16Int8FeaturesKHR shader_support_info{};
if (m_shader_types_support.allow_float16)
{
// Allow use of f16 type in shaders if possible
shader_support_info.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FLOAT16_INT8_FEATURES_KHR;
shader_support_info.shaderFloat16 = VK_TRUE;
device.pNext = &shader_support_info;
LOG_NOTICE(RSX, "GPU/driver supports float16 data types natively. Using native float16_t variables if possible.");
}
else
{
LOG_NOTICE(RSX, "GPU/driver lacks support for float16 data types. All float16_t arithmetic will be emulated with float32_t.");
}
CHECK_RESULT(vkCreateDevice(*pgpu, &device, nullptr, &dev));
memory_map = vk::get_memory_mapping(pdev);
m_formats_support = vk::get_optimal_tiling_supported_formats(pdev);
if (g_cfg.video.disable_vulkan_mem_allocator)
m_allocator = std::make_unique<vk::mem_allocator_vk>(dev, pdev);
else
m_allocator = std::make_unique<vk::mem_allocator_vma>(dev, pdev);
}
void destroy()
{
if (dev && pgpu)
{
if (m_allocator)
{
m_allocator->destroy();
m_allocator.reset();
}
vkDestroyDevice(dev, nullptr);
dev = nullptr;
memory_map = {};
m_formats_support = {};
}
}
const VkFormatProperties get_format_properties(VkFormat format)
{
auto found = m_format_properties.find(format);
if (found != m_format_properties.end())
{
return found->second;
}
auto& props = m_format_properties[format];
vkGetPhysicalDeviceFormatProperties(*pgpu, format, &props);
return props;
}
bool get_compatible_memory_type(u32 typeBits, u32 desired_mask, u32 *type_index) const
{
VkPhysicalDeviceMemoryProperties mem_infos = pgpu->get_memory_properties();
for (uint32_t i = 0; i < 32; i++)
{
if ((typeBits & 1) == 1)
{
if ((mem_infos.memoryTypes[i].propertyFlags & desired_mask) == desired_mask)
{
if (type_index)
{
*type_index = i;
}
return true;
}
}
typeBits >>= 1;
}
return false;
}
const physical_device& gpu() const
{
return *pgpu;
}
const memory_type_mapping& get_memory_mapping() const
{
return memory_map;
}
const gpu_formats_support& get_formats_support() const
{
return m_formats_support;
}
const gpu_shader_types_support& get_shader_types_support() const
{
return m_shader_types_support;
}
mem_allocator_base* get_allocator() const
{
return m_allocator.get();
}
operator VkDevice() const
{
return dev;
}
};
class command_pool
{
vk::render_device *owner = nullptr;
VkCommandPool pool = nullptr;
public:
command_pool() {}
~command_pool() {}
void create(vk::render_device &dev)
{
owner = &dev;
VkCommandPoolCreateInfo infos = {};
infos.flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT | VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
infos.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
CHECK_RESULT(vkCreateCommandPool(dev, &infos, nullptr, &pool));
}
void destroy()
{
if (!pool)
return;
vkDestroyCommandPool((*owner), pool, nullptr);
pool = nullptr;
}
vk::render_device& get_owner()
{
return (*owner);
}
operator VkCommandPool()
{
return pool;
}
};
class command_buffer
{
private:
bool is_open = false;
bool is_pending = false;
VkFence m_submit_fence = VK_NULL_HANDLE;
protected:
vk::command_pool *pool = nullptr;
VkCommandBuffer commands = nullptr;
public:
enum access_type_hint
{
flush_only, //Only to be submitted/opened/closed via command flush
all //Auxiliary, can be submitted/opened/closed at any time
}
access_hint = flush_only;
enum command_buffer_data_flag : u32
{
cb_has_occlusion_task = 1,
cb_has_blit_transfer = 2,
cb_has_dma_transfer = 4
};
u32 flags = 0;
public:
command_buffer() {}
~command_buffer() {}
void create(vk::command_pool &cmd_pool, bool auto_reset = false)
{
VkCommandBufferAllocateInfo infos = {};
infos.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
infos.commandBufferCount = 1;
infos.commandPool = (VkCommandPool)cmd_pool;
infos.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
CHECK_RESULT(vkAllocateCommandBuffers(cmd_pool.get_owner(), &infos, &commands));
if (auto_reset)
{
VkFenceCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
CHECK_RESULT(vkCreateFence(cmd_pool.get_owner(), &info, nullptr, &m_submit_fence));
}
pool = &cmd_pool;
}
void destroy()
{
vkFreeCommandBuffers(pool->get_owner(), (*pool), 1, &commands);
if (m_submit_fence)
{
vkDestroyFence(pool->get_owner(), m_submit_fence, nullptr);
}
}
vk::command_pool& get_command_pool() const
{
return *pool;
}
void clear_flags()
{
flags = 0;
}
void set_flag(command_buffer_data_flag flag)
{
flags |= flag;
}
operator VkCommandBuffer() const
{
return commands;
}
bool is_recording() const
{
return is_open;
}
void begin()
{
if (m_submit_fence && is_pending)
{
wait_for_fence(m_submit_fence);
is_pending = false;
CHECK_RESULT(vkResetFences(pool->get_owner(), 1, &m_submit_fence));
CHECK_RESULT(vkResetCommandBuffer(commands, 0));
}
if (is_open)
return;
VkCommandBufferInheritanceInfo inheritance_info = {};
inheritance_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
VkCommandBufferBeginInfo begin_infos = {};
begin_infos.pInheritanceInfo = &inheritance_info;
begin_infos.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
begin_infos.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
CHECK_RESULT(vkBeginCommandBuffer(commands, &begin_infos));
is_open = true;
}
void end()
{
if (!is_open)
{
LOG_ERROR(RSX, "commandbuffer->end was called but commandbuffer is not in a recording state");
return;
}
CHECK_RESULT(vkEndCommandBuffer(commands));
is_open = false;
}
void submit(VkQueue queue, const std::vector<VkSemaphore> &semaphores, VkFence fence, VkPipelineStageFlags pipeline_stage_flags)
{
if (is_open)
{
LOG_ERROR(RSX, "commandbuffer->submit was called whilst the command buffer is in a recording state");
return;
}
if (fence == VK_NULL_HANDLE)
{
fence = m_submit_fence;
is_pending = (fence != VK_NULL_HANDLE);
}
VkSubmitInfo infos = {};
infos.commandBufferCount = 1;
infos.pCommandBuffers = &commands;
infos.pWaitDstStageMask = &pipeline_stage_flags;
infos.pWaitSemaphores = semaphores.data();
infos.waitSemaphoreCount = static_cast<uint32_t>(semaphores.size());
infos.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
acquire_global_submit_lock();
CHECK_RESULT(vkQueueSubmit(queue, 1, &infos, fence));
release_global_submit_lock();
clear_flags();
}
};
class image
{
std::stack<VkImageLayout> m_layout_stack;
VkImageAspectFlags m_storage_aspect = 0;
public:
VkImage value = VK_NULL_HANDLE;
VkComponentMapping native_component_map = {VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A};
VkImageLayout current_layout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageCreateInfo info = {};
std::shared_ptr<vk::memory_block> memory;
image(const vk::render_device &dev,
uint32_t memory_type_index,
uint32_t access_flags,
VkImageType image_type,
VkFormat format,
uint32_t width, uint32_t height, uint32_t depth,
uint32_t mipmaps, uint32_t layers,
VkSampleCountFlagBits samples,
VkImageLayout initial_layout,
VkImageTiling tiling,
VkImageUsageFlags usage,
VkImageCreateFlags image_flags)
: m_device(dev), current_layout(initial_layout)
{
info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
info.imageType = image_type;
info.format = format;
info.extent = { width, height, depth };
info.mipLevels = mipmaps;
info.arrayLayers = layers;
info.samples = samples;
info.tiling = tiling;
info.usage = usage;
info.flags = image_flags;
info.initialLayout = initial_layout;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
CHECK_RESULT(vkCreateImage(m_device, &info, nullptr, &value));
VkMemoryRequirements memory_req;
vkGetImageMemoryRequirements(m_device, value, &memory_req);
if (!(memory_req.memoryTypeBits & (1 << memory_type_index)))
{
//Suggested memory type is incompatible with this memory type.
//Go through the bitset and test for requested props.
if (!dev.get_compatible_memory_type(memory_req.memoryTypeBits, access_flags, &memory_type_index))
fmt::throw_exception("No compatible memory type was found!" HERE);
}
memory = std::make_shared<vk::memory_block>(m_device, memory_req.size, memory_req.alignment, memory_type_index);
CHECK_RESULT(vkBindImageMemory(m_device, value, memory->get_vk_device_memory(), memory->get_vk_device_memory_offset()));
m_storage_aspect = get_aspect_flags(format);
}
// TODO: Ctor that uses a provided memory heap
virtual ~image()
{
vkDestroyImage(m_device, value, nullptr);
}
image(const image&) = delete;
image(image&&) = delete;
u32 width() const
{
return info.extent.width;
}
u32 height() const
{
return info.extent.height;
}
u32 depth() const
{
return info.extent.depth;
}
VkFormat format() const
{
return info.format;
}
VkImageAspectFlags aspect() const
{
return m_storage_aspect;
}
void push_layout(command_buffer& cmd, VkImageLayout layout)
{
m_layout_stack.push(current_layout);
change_image_layout(cmd, this, layout);
}
void pop_layout(command_buffer& cmd)
{
verify(HERE), !m_layout_stack.empty();
auto layout = m_layout_stack.top();
m_layout_stack.pop();
change_image_layout(cmd, this, layout);
}
void change_layout(command_buffer& cmd, VkImageLayout new_layout)
{
if (current_layout == new_layout)
return;
verify(HERE), m_layout_stack.empty();
change_image_layout(cmd, this, new_layout);
}
private:
VkDevice m_device;
};
struct image_view
{
VkImageView value = VK_NULL_HANDLE;
VkImageViewCreateInfo info = {};
image_view(VkDevice dev, VkImage image, VkImageViewType view_type, VkFormat format, VkComponentMapping mapping, VkImageSubresourceRange range)
: m_device(dev)
{
info.format = format;
info.image = image;
info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
info.components = mapping;
info.viewType = view_type;
info.subresourceRange = range;
create_impl();
}
image_view(VkDevice dev, VkImageViewCreateInfo create_info)
: m_device(dev), info(create_info)
{
create_impl();
}
image_view(VkDevice dev, vk::image* resource,
const VkComponentMapping mapping = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A },
const VkImageSubresourceRange range = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1})
: m_device(dev), m_resource(resource)
{
info.format = resource->info.format;
info.image = resource->value;
info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
info.components = mapping;
info.subresourceRange = range;
switch (resource->info.imageType)
{
case VK_IMAGE_TYPE_1D:
info.viewType = VK_IMAGE_VIEW_TYPE_1D;
break;
case VK_IMAGE_TYPE_2D:
if (resource->info.flags == VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
info.viewType = VK_IMAGE_VIEW_TYPE_CUBE;
else
info.viewType = VK_IMAGE_VIEW_TYPE_2D;
break;
case VK_IMAGE_TYPE_3D:
info.viewType = VK_IMAGE_VIEW_TYPE_3D;
break;
}
create_impl();
}
~image_view()
{
vkDestroyImageView(m_device, value, nullptr);
}
u32 encoded_component_map() const
{
#if (VK_DISABLE_COMPONENT_SWIZZLE)
u32 result = (u32)info.components.a - 1;
result |= ((u32)info.components.r - 1) << 3;
result |= ((u32)info.components.g - 1) << 6;
result |= ((u32)info.components.b - 1) << 9;
return result;
#else
return 0;
#endif
}
vk::image* image() const
{
return m_resource;
}
image_view(const image_view&) = delete;
image_view(image_view&&) = delete;
private:
VkDevice m_device;
vk::image* m_resource = nullptr;
void create_impl()
{
#if (VK_DISABLE_COMPONENT_SWIZZLE)
// Force identity
const auto mapping = info.components;
info.components = { VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY };
#endif
CHECK_RESULT(vkCreateImageView(m_device, &info, nullptr, &value));
#if (VK_DISABLE_COMPONENT_SWIZZLE)
// Restore requested mapping
info.components = mapping;
#endif
}
};
class viewable_image : public image
{
private:
std::unordered_multimap<u32, std::unique_ptr<vk::image_view>> views;
public:
using image::image;
image_view* get_view(u32 remap_encoding, const std::pair<std::array<u8, 4>, std::array<u8, 4>>& remap,
VkImageAspectFlags mask = VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT)
{
auto found = views.equal_range(remap_encoding);
for (auto It = found.first; It != found.second; ++It)
{
if (It->second->info.subresourceRange.aspectMask & mask)
{
return It->second.get();
}
}
VkComponentMapping real_mapping = vk::apply_swizzle_remap
(
{native_component_map.a, native_component_map.r, native_component_map.g, native_component_map.b },
remap
);
const auto range = vk::get_image_subresource_range(0, 0, info.arrayLayers, info.mipLevels, aspect() & mask);
verify(HERE), range.aspectMask;
auto view = std::make_unique<vk::image_view>(*get_current_renderer(), this, real_mapping, range);
auto result = view.get();
views.emplace(remap_encoding, std::move(view));
return result;
}
void set_native_component_layout(VkComponentMapping new_layout)
{
if (new_layout.r != native_component_map.r ||
new_layout.g != native_component_map.g ||
new_layout.b != native_component_map.b ||
new_layout.a != native_component_map.a)
{
native_component_map = new_layout;
views.clear();
}
}
};
struct buffer
{
VkBuffer value;
VkBufferCreateInfo info = {};
std::unique_ptr<vk::memory_block> memory;
buffer(const vk::render_device& dev, u64 size, uint32_t memory_type_index, uint32_t access_flags, VkBufferUsageFlags usage, VkBufferCreateFlags flags)
: m_device(dev)
{
info.size = size;
info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
info.flags = flags;
info.usage = usage;
CHECK_RESULT(vkCreateBuffer(m_device, &info, nullptr, &value));
//Allocate vram for this buffer
VkMemoryRequirements memory_reqs;
vkGetBufferMemoryRequirements(m_device, value, &memory_reqs);
if (!(memory_reqs.memoryTypeBits & (1 << memory_type_index)))
{
//Suggested memory type is incompatible with this memory type.
//Go through the bitset and test for requested props.
if (!dev.get_compatible_memory_type(memory_reqs.memoryTypeBits, access_flags, &memory_type_index))
fmt::throw_exception("No compatible memory type was found!" HERE);
}
memory.reset(new memory_block(m_device, memory_reqs.size, memory_reqs.alignment, memory_type_index));
vkBindBufferMemory(dev, value, memory->get_vk_device_memory(), memory->get_vk_device_memory_offset());
}
~buffer()
{
vkDestroyBuffer(m_device, value, nullptr);
}
void *map(u64 offset, u64 size)
{
return memory->map(offset, size);
}
void unmap()
{
memory->unmap();
}
u32 size() const
{
return (u32)info.size;
}
buffer(const buffer&) = delete;
buffer(buffer&&) = delete;
private:
VkDevice m_device;
};
struct buffer_view
{
VkBufferView value;
VkBufferViewCreateInfo info = {};
buffer_view(VkDevice dev, VkBuffer buffer, VkFormat format, VkDeviceSize offset, VkDeviceSize size)
: m_device(dev)
{
info.buffer = buffer;
info.format = format;
info.offset = offset;
info.range = size;
info.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
CHECK_RESULT(vkCreateBufferView(m_device, &info, nullptr, &value));
}
~buffer_view()
{
vkDestroyBufferView(m_device, value, nullptr);
}
buffer_view(const buffer_view&) = delete;
buffer_view(buffer_view&&) = delete;
bool in_range(u32 address, u32 size, u32& offset) const
{
if (address < info.offset)
return false;
const u32 _offset = address - (u32)info.offset;
if (info.range < _offset)
return false;
const auto remaining = info.range - _offset;
if (size <= remaining)
{
offset = _offset;
return true;
}
return false;
}
private:
VkDevice m_device;
};
struct sampler
{
VkSampler value;
VkSamplerCreateInfo info = {};
sampler(VkDevice dev, VkSamplerAddressMode clamp_u, VkSamplerAddressMode clamp_v, VkSamplerAddressMode clamp_w,
VkBool32 unnormalized_coordinates, float mipLodBias, float max_anisotropy, float min_lod, float max_lod,
VkFilter min_filter, VkFilter mag_filter, VkSamplerMipmapMode mipmap_mode, VkBorderColor border_color,
VkBool32 depth_compare = false, VkCompareOp depth_compare_mode = VK_COMPARE_OP_NEVER)
: m_device(dev)
{
VkSamplerCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
info.addressModeU = clamp_u;
info.addressModeV = clamp_v;
info.addressModeW = clamp_w;
info.anisotropyEnable = VK_TRUE;
info.compareEnable = depth_compare;
info.unnormalizedCoordinates = unnormalized_coordinates;
info.mipLodBias = mipLodBias;
info.maxAnisotropy = max_anisotropy;
info.maxLod = max_lod;
info.minLod = min_lod;
info.magFilter = mag_filter;
info.minFilter = min_filter;
info.mipmapMode = mipmap_mode;
info.compareOp = depth_compare_mode;
info.borderColor = border_color;
CHECK_RESULT(vkCreateSampler(m_device, &info, nullptr, &value));
}
~sampler()
{
vkDestroySampler(m_device, value, nullptr);
}
bool matches(VkSamplerAddressMode clamp_u, VkSamplerAddressMode clamp_v, VkSamplerAddressMode clamp_w,
VkBool32 unnormalized_coordinates, float mipLodBias, float max_anisotropy, float min_lod, float max_lod,
VkFilter min_filter, VkFilter mag_filter, VkSamplerMipmapMode mipmap_mode, VkBorderColor border_color,
VkBool32 depth_compare = false, VkCompareOp depth_compare_mode = VK_COMPARE_OP_NEVER)
{
if (info.magFilter != mag_filter || info.minFilter != min_filter || info.mipmapMode != mipmap_mode ||
info.addressModeU != clamp_u || info.addressModeV != clamp_v || info.addressModeW != clamp_w ||
info.compareEnable != depth_compare || info.unnormalizedCoordinates != unnormalized_coordinates ||
info.mipLodBias != mipLodBias || info.maxAnisotropy != max_anisotropy || info.maxLod != max_lod ||
info.minLod != min_lod || info.compareOp != depth_compare_mode || info.borderColor != border_color)
return false;
return true;
}
sampler(const sampler&) = delete;
sampler(sampler&&) = delete;
private:
VkDevice m_device;
};
struct framebuffer
{
VkFramebuffer value;
VkFramebufferCreateInfo info = {};
std::vector<std::unique_ptr<vk::image_view>> attachments;
u32 m_width = 0;
u32 m_height = 0;
public:
framebuffer(VkDevice dev, VkRenderPass pass, u32 width, u32 height, std::vector<std::unique_ptr<vk::image_view>> &&atts)
: m_device(dev), attachments(std::move(atts))
{
std::vector<VkImageView> image_view_array(attachments.size());
size_t i = 0;
for (const auto &att : attachments)
{
image_view_array[i++] = att->value;
}
info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
info.width = width;
info.height = height;
info.attachmentCount = static_cast<uint32_t>(image_view_array.size());
info.pAttachments = image_view_array.data();
info.renderPass = pass;
info.layers = 1;
m_width = width;
m_height = height;
CHECK_RESULT(vkCreateFramebuffer(dev, &info, nullptr, &value));
}
~framebuffer()
{
vkDestroyFramebuffer(m_device, value, nullptr);
}
u32 width()
{
return m_width;
}
u32 height()
{
return m_height;
}
bool matches(std::vector<vk::image*> fbo_images, u32 width, u32 height)
{
if (m_width != width || m_height != height)
return false;
if (fbo_images.size() != attachments.size())
return false;
for (int n = 0; n < fbo_images.size(); ++n)
{
if (attachments[n]->info.image != fbo_images[n]->value ||
attachments[n]->info.format != fbo_images[n]->info.format)
return false;
}
return true;
}
framebuffer(const framebuffer&) = delete;
framebuffer(framebuffer&&) = delete;
private:
VkDevice m_device;
};
class swapchain_image_WSI
{
VkImageView view = nullptr;
VkImage image = nullptr;
VkFormat internal_format;
vk::render_device *owner = nullptr;
public:
swapchain_image_WSI() {}
void create(vk::render_device &dev, VkImage &swap_image, VkFormat format)
{
VkImageViewCreateInfo color_image_view = {};
color_image_view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
color_image_view.format = format;
color_image_view.components.r = VK_COMPONENT_SWIZZLE_R;
color_image_view.components.g = VK_COMPONENT_SWIZZLE_G;
color_image_view.components.b = VK_COMPONENT_SWIZZLE_B;
color_image_view.components.a = VK_COMPONENT_SWIZZLE_A;
color_image_view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
color_image_view.subresourceRange.baseMipLevel = 0;
color_image_view.subresourceRange.levelCount = 1;
color_image_view.subresourceRange.baseArrayLayer = 0;
color_image_view.subresourceRange.layerCount = 1;
color_image_view.viewType = VK_IMAGE_VIEW_TYPE_2D;
color_image_view.image = swap_image;
vkCreateImageView(dev, &color_image_view, nullptr, &view);
image = swap_image;
internal_format = format;
owner = &dev;
}
void discard(vk::render_device &dev)
{
vkDestroyImageView(dev, view, nullptr);
}
operator VkImage&()
{
return image;
}
operator VkImageView&()
{
return view;
}
};
class swapchain_image_RPCS3 : public image
{
std::unique_ptr<buffer> m_dma_buffer;
u32 m_width = 0;
u32 m_height = 0;
public:
swapchain_image_RPCS3(render_device &dev, const memory_type_mapping& memory_map, u32 width, u32 height)
:image(dev, memory_map.device_local, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, VK_IMAGE_TYPE_2D, VK_FORMAT_B8G8R8A8_UNORM, width, height, 1, 1, 1,
VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0)
{
m_width = width;
m_height = height;
current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
m_dma_buffer = std::make_unique<buffer>(dev, m_width * m_height * 4, memory_map.host_visible_coherent,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, VK_BUFFER_USAGE_TRANSFER_DST_BIT, 0);
}
void do_dma_transfer(command_buffer& cmd)
{
VkBufferImageCopy copyRegion = {};
copyRegion.bufferOffset = 0;
copyRegion.bufferRowLength = m_width;
copyRegion.bufferImageHeight = m_height;
copyRegion.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
copyRegion.imageOffset = {};
copyRegion.imageExtent = {m_width, m_height, 1};
VkImageSubresourceRange subresource_range = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
change_image_layout(cmd, this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, subresource_range);
vkCmdCopyImageToBuffer(cmd, value, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, m_dma_buffer->value, 1, &copyRegion);
change_image_layout(cmd, this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresource_range);
}
u32 get_required_memory_size() const
{
return m_width * m_height * 4;
}
void* get_pixels()
{
return m_dma_buffer->map(0, VK_WHOLE_SIZE);
}
void free_pixels()
{
m_dma_buffer->unmap();
}
};
class swapchain_base
{
protected:
render_device dev;
uint32_t m_present_queue = UINT32_MAX;
uint32_t m_graphics_queue = UINT32_MAX;
VkQueue vk_graphics_queue = VK_NULL_HANDLE;
VkQueue vk_present_queue = VK_NULL_HANDLE;
display_handle_t window_handle{};
u32 m_width = 0;
u32 m_height = 0;
VkFormat m_surface_format = VK_FORMAT_B8G8R8A8_UNORM;
virtual void init_swapchain_images(render_device& dev, u32 count) = 0;
public:
swapchain_base(physical_device &gpu, uint32_t _present_queue, uint32_t _graphics_queue, VkFormat format = VK_FORMAT_B8G8R8A8_UNORM)
{
dev.create(gpu, _graphics_queue);
if (_graphics_queue < UINT32_MAX) vkGetDeviceQueue(dev, _graphics_queue, 0, &vk_graphics_queue);
if (_present_queue < UINT32_MAX) vkGetDeviceQueue(dev, _present_queue, 0, &vk_present_queue);
m_present_queue = _present_queue;
m_graphics_queue = _graphics_queue;
m_surface_format = format;
}
virtual ~swapchain_base() {}
virtual void create(display_handle_t& handle) = 0;
virtual void destroy(bool full = true) = 0;
virtual bool init() = 0;
virtual u32 get_swap_image_count() const = 0;
virtual VkImage& get_image(u32 index) = 0;
virtual VkResult acquire_next_swapchain_image(VkSemaphore semaphore, u64 timeout, u32* result) = 0;
virtual void end_frame(command_buffer& cmd, u32 index) = 0;
virtual VkResult present(u32 index) = 0;
virtual VkImageLayout get_optimal_present_layout() = 0;
virtual bool supports_automatic_wm_reports() const
{
return false;
}
virtual bool init(u32 w, u32 h)
{
m_width = w;
m_height = h;
return init();
}
const vk::render_device& get_device()
{
return dev;
}
const VkQueue& get_present_queue()
{
return vk_present_queue;
}
const VkQueue& get_graphics_queue()
{
return vk_graphics_queue;
}
const VkFormat get_surface_format()
{
return m_surface_format;
}
const bool is_headless() const
{
return (vk_present_queue == VK_NULL_HANDLE);
}
};
template<typename T>
class abstract_swapchain_impl : public swapchain_base
{
protected:
std::vector<T> swapchain_images;
public:
abstract_swapchain_impl(physical_device &gpu, uint32_t _present_queue, uint32_t _graphics_queue, VkFormat format = VK_FORMAT_B8G8R8A8_UNORM)
: swapchain_base(gpu, _present_queue, _graphics_queue, format)
{}
~abstract_swapchain_impl()
{}
u32 get_swap_image_count() const override
{
return (u32)swapchain_images.size();
}
using swapchain_base::init;
};
using native_swapchain_base = abstract_swapchain_impl<std::pair<bool, std::unique_ptr<swapchain_image_RPCS3>>>;
using WSI_swapchain_base = abstract_swapchain_impl<swapchain_image_WSI>;
#ifdef _WIN32
class swapchain_WIN32 : public native_swapchain_base
{
HDC hDstDC = NULL;
HDC hSrcDC = NULL;
HBITMAP hDIB = NULL;
LPVOID hPtr = NULL;
public:
swapchain_WIN32(physical_device &gpu, uint32_t _present_queue, uint32_t _graphics_queue, VkFormat format = VK_FORMAT_B8G8R8A8_UNORM)
: native_swapchain_base(gpu, _present_queue, _graphics_queue, format)
{}
~swapchain_WIN32(){}
bool init() override
{
if (hDIB || hSrcDC)
destroy(false);
RECT rect;
GetClientRect(window_handle, &rect);
m_width = rect.right - rect.left;
m_height = rect.bottom - rect.top;
if (m_width == 0 || m_height == 0)
{
LOG_ERROR(RSX, "Invalid window dimensions %d x %d", m_width, m_height);
return false;
}
BITMAPINFO bitmap = {};
bitmap.bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
bitmap.bmiHeader.biWidth = m_width;
bitmap.bmiHeader.biHeight = m_height * -1;
bitmap.bmiHeader.biPlanes = 1;
bitmap.bmiHeader.biBitCount = 32;
bitmap.bmiHeader.biCompression = BI_RGB;
hSrcDC = CreateCompatibleDC(hDstDC);
hDIB = CreateDIBSection(hSrcDC, &bitmap, DIB_RGB_COLORS, &hPtr, NULL, 0);
SelectObject(hSrcDC, hDIB);
init_swapchain_images(dev, 3);
return true;
}
void create(display_handle_t& handle) override
{
window_handle = handle;
hDstDC = GetDC(handle);
}
void destroy(bool full=true) override
{
DeleteObject(hDIB);
DeleteDC(hSrcDC);
hDIB = NULL;
hSrcDC = NULL;
swapchain_images.clear();
if (full)
dev.destroy();
}
VkResult present(u32 image) override
{
auto& src = swapchain_images[image];
GdiFlush();
if (hSrcDC)
{
memcpy(hPtr, src.second->get_pixels(), src.second->get_required_memory_size());
BitBlt(hDstDC, 0, 0, m_width, m_height, hSrcDC, 0, 0, SRCCOPY);
src.second->free_pixels();
}
src.first = false;
return VK_SUCCESS;
}
#elif defined(__APPLE__)
class swapchain_MacOS : public native_swapchain_base
{
void* nsView = NULL;
public:
swapchain_MacOS(physical_device &gpu, uint32_t _present_queue, uint32_t _graphics_queue, VkFormat format = VK_FORMAT_B8G8R8A8_UNORM)
: native_swapchain_base(gpu, _present_queue, _graphics_queue, format)
{}
~swapchain_MacOS(){}
bool init() override
{
//TODO: get from `nsView`
m_width = 0;
m_height = 0;
if (m_width == 0 || m_height == 0)
{
LOG_ERROR(RSX, "Invalid window dimensions %d x %d", m_width, m_height);
return false;
}
init_swapchain_images(dev, 3);
return true;
}
void create(display_handle_t& window_handle) override
{
nsView = window_handle;
}
void destroy(bool full=true) override
{
swapchain_images.clear();
if (full)
dev.destroy();
}
VkResult present(u32 index) override
{
fmt::throw_exception("Native macOS swapchain is not implemented yet!");
}
#else
class swapchain_X11 : public native_swapchain_base
{
Display *display = NULL;
Window window = (Window)NULL;
XImage* pixmap = NULL;
GC gc = NULL;
int bit_depth = 24;
public:
swapchain_X11(physical_device &gpu, uint32_t _present_queue, uint32_t _graphics_queue, VkFormat format = VK_FORMAT_B8G8R8A8_UNORM)
: native_swapchain_base(gpu, _present_queue, _graphics_queue, format)
{}
~swapchain_X11(){}
bool init() override
{
if (pixmap)
destroy(false);
Window root;
int x, y;
u32 w = 0, h = 0, border, depth;
if (XGetGeometry(display, window, &root, &x, &y, &w, & h, &border, &depth))
{
m_width = w;
m_height = h;
bit_depth = depth;
}
if (m_width == 0 || m_height == 0)
{
LOG_ERROR(RSX, "Invalid window dimensions %d x %d", m_width, m_height);
return false;
}
XVisualInfo visual{};
if (!XMatchVisualInfo(display, DefaultScreen(display), bit_depth, TrueColor, &visual))
{
LOG_ERROR(RSX, "Could not find matching visual info!" HERE);
return false;
}
pixmap = XCreateImage(display, visual.visual, visual.depth, ZPixmap, 0, nullptr, m_width, m_height, 32, 0);
init_swapchain_images(dev, 3);
return true;
}
void create(display_handle_t& window_handle) override
{
std::visit([&](auto&& p)
{
using T = std::decay_t<decltype(p)>;
if constexpr (std::is_same_v<T, std::pair<Display*, Window>>)
{
display = p.first;
window = p.second;
}
}, window_handle);
if (display == NULL)
{
LOG_FATAL(RSX, "Could not create virtual display on this window protocol (Wayland?)");
return;
}
gc = DefaultGC(display, DefaultScreen(display));
}
void destroy(bool full=true) override
{
pixmap->data = nullptr;
XDestroyImage(pixmap);
pixmap = NULL;
swapchain_images.clear();
if (full)
dev.destroy();
}
VkResult present(u32 index) override
{
auto& src = swapchain_images[index];
if (pixmap)
{
pixmap->data = (char*)src.second->get_pixels();
XPutImage(display, window, gc, pixmap, 0, 0, 0, 0, m_width, m_height);
XFlush(display);
src.second->free_pixels();
}
//Release reference
src.first = false;
return VK_SUCCESS;
}
#endif
VkResult acquire_next_swapchain_image(VkSemaphore /*semaphore*/, u64 /*timeout*/, u32* result) override
{
u32 index = 0;
for (auto &p : swapchain_images)
{
if (!p.first)
{
p.first = true;
*result = index;
return VK_SUCCESS;
}
++index;
}
return VK_NOT_READY;
}
void end_frame(command_buffer& cmd, u32 index) override
{
swapchain_images[index].second->do_dma_transfer(cmd);
}
VkImage& get_image(u32 index) override
{
return (VkImage&)(*swapchain_images[index].second.get());
}
VkImageLayout get_optimal_present_layout() override
{
return VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
}
protected:
void init_swapchain_images(render_device& dev, u32 preferred_count) override
{
swapchain_images.resize(preferred_count);
for (auto &img : swapchain_images)
{
img.second = std::make_unique<swapchain_image_RPCS3>(dev, dev.get_memory_mapping(), m_width, m_height);
img.first = false;
}
}
};
class swapchain_WSI : public WSI_swapchain_base
{
VkSurfaceKHR m_surface = VK_NULL_HANDLE;
VkColorSpaceKHR m_color_space = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
VkSwapchainKHR m_vk_swapchain = nullptr;
PFN_vkCreateSwapchainKHR createSwapchainKHR = nullptr;
PFN_vkDestroySwapchainKHR destroySwapchainKHR = nullptr;
PFN_vkGetSwapchainImagesKHR getSwapchainImagesKHR = nullptr;
PFN_vkAcquireNextImageKHR acquireNextImageKHR = nullptr;
PFN_vkQueuePresentKHR queuePresentKHR = nullptr;
bool m_wm_reports_flag = false;
protected:
void init_swapchain_images(render_device& dev, u32 /*preferred_count*/ = 0) override
{
u32 nb_swap_images = 0;
getSwapchainImagesKHR(dev, m_vk_swapchain, &nb_swap_images, nullptr);
if (!nb_swap_images) fmt::throw_exception("Driver returned 0 images for swapchain" HERE);
std::vector<VkImage> vk_images;
vk_images.resize(nb_swap_images);
getSwapchainImagesKHR(dev, m_vk_swapchain, &nb_swap_images, vk_images.data());
swapchain_images.resize(nb_swap_images);
for (u32 i = 0; i < nb_swap_images; ++i)
{
swapchain_images[i].create(dev, vk_images[i], m_surface_format);
}
}
public:
swapchain_WSI(vk::physical_device &gpu, uint32_t _present_queue, uint32_t _graphics_queue, VkFormat format, VkSurfaceKHR surface, VkColorSpaceKHR color_space)
: WSI_swapchain_base(gpu, _present_queue, _graphics_queue, format)
{
createSwapchainKHR = (PFN_vkCreateSwapchainKHR)vkGetDeviceProcAddr(dev, "vkCreateSwapchainKHR");
destroySwapchainKHR = (PFN_vkDestroySwapchainKHR)vkGetDeviceProcAddr(dev, "vkDestroySwapchainKHR");
getSwapchainImagesKHR = (PFN_vkGetSwapchainImagesKHR)vkGetDeviceProcAddr(dev, "vkGetSwapchainImagesKHR");
acquireNextImageKHR = (PFN_vkAcquireNextImageKHR)vkGetDeviceProcAddr(dev, "vkAcquireNextImageKHR");
queuePresentKHR = (PFN_vkQueuePresentKHR)vkGetDeviceProcAddr(dev, "vkQueuePresentKHR");
m_surface = surface;
m_color_space = color_space;
switch (gpu.get_driver_vendor())
{
case driver_vendor::NVIDIA:
#ifndef _WIN32
m_wm_reports_flag = true;
#endif
break;
case driver_vendor::AMD:
#ifdef _WIN32
break;
#endif
case driver_vendor::INTEL:
// Untested
case driver_vendor::RADV:
m_wm_reports_flag = true;
break;
default:
break;
}
}
~swapchain_WSI()
{}
void create(display_handle_t&) override
{}
void destroy(bool=true) override
{
if (VkDevice pdev = (VkDevice)dev)
{
if (m_vk_swapchain)
{
for (auto &img : swapchain_images)
img.discard(dev);
destroySwapchainKHR(pdev, m_vk_swapchain, nullptr);
}
dev.destroy();
}
}
using WSI_swapchain_base::init;
bool init() override
{
if (vk_present_queue == VK_NULL_HANDLE)
{
LOG_ERROR(RSX, "Cannot create WSI swapchain without a present queue");
return false;
}
VkSwapchainKHR old_swapchain = m_vk_swapchain;
vk::physical_device& gpu = const_cast<vk::physical_device&>(dev.gpu());
VkSurfaceCapabilitiesKHR surface_descriptors = {};
CHECK_RESULT(vkGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, m_surface, &surface_descriptors));
if (surface_descriptors.maxImageExtent.width < m_width ||
surface_descriptors.maxImageExtent.height < m_height)
{
LOG_ERROR(RSX, "Swapchain: Swapchain creation failed because dimensions cannot fit. Max = %d, %d, Requested = %d, %d",
surface_descriptors.maxImageExtent.width, surface_descriptors.maxImageExtent.height, m_width, m_height);
return false;
}
VkExtent2D swapchainExtent;
if (surface_descriptors.currentExtent.width == (uint32_t)-1)
{
swapchainExtent.width = m_width;
swapchainExtent.height = m_height;
}
else
{
if (surface_descriptors.currentExtent.width == 0 || surface_descriptors.currentExtent.height == 0)
{
LOG_WARNING(RSX, "Swapchain: Current surface extent is a null region. Is the window minimized?");
return false;
}
swapchainExtent = surface_descriptors.currentExtent;
m_width = surface_descriptors.currentExtent.width;
m_height = surface_descriptors.currentExtent.height;
}
uint32_t nb_available_modes = 0;
CHECK_RESULT(vkGetPhysicalDeviceSurfacePresentModesKHR(gpu, m_surface, &nb_available_modes, nullptr));
std::vector<VkPresentModeKHR> present_modes(nb_available_modes);
CHECK_RESULT(vkGetPhysicalDeviceSurfacePresentModesKHR(gpu, m_surface, &nb_available_modes, present_modes.data()));
VkPresentModeKHR swapchain_present_mode = VK_PRESENT_MODE_FIFO_KHR;
std::vector<VkPresentModeKHR> preferred_modes;
if (!g_cfg.video.vk.force_fifo)
{
// List of preferred modes in decreasing desirability
// NOTE: Always picks "triple-buffered vsync" types if possible
if (!g_cfg.video.vsync)
{
preferred_modes = { VK_PRESENT_MODE_IMMEDIATE_KHR, VK_PRESENT_MODE_MAILBOX_KHR, VK_PRESENT_MODE_FIFO_RELAXED_KHR };
}
}
bool mode_found = false;
for (VkPresentModeKHR preferred_mode : preferred_modes)
{
//Search for this mode in supported modes
for (VkPresentModeKHR mode : present_modes)
{
if (mode == preferred_mode)
{
swapchain_present_mode = mode;
mode_found = true;
break;
}
}
if (mode_found)
break;
}
LOG_NOTICE(RSX, "Swapchain: present mode %d in use.", (s32&)swapchain_present_mode);
uint32_t nb_swap_images = surface_descriptors.minImageCount + 1;
if (surface_descriptors.maxImageCount > 0)
{
//Try to negotiate for a triple buffer setup
//In cases where the front-buffer isnt available for present, its better to have a spare surface
nb_swap_images = std::max(surface_descriptors.minImageCount + 2u, 3u);
if (nb_swap_images > surface_descriptors.maxImageCount)
{
// Application must settle for fewer images than desired:
nb_swap_images = surface_descriptors.maxImageCount;
}
}
VkSurfaceTransformFlagBitsKHR pre_transform = surface_descriptors.currentTransform;
if (surface_descriptors.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR)
pre_transform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
VkSwapchainCreateInfoKHR swap_info = {};
swap_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swap_info.surface = m_surface;
swap_info.minImageCount = nb_swap_images;
swap_info.imageFormat = m_surface_format;
swap_info.imageColorSpace = m_color_space;
swap_info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
swap_info.preTransform = pre_transform;
swap_info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
swap_info.imageArrayLayers = 1;
swap_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swap_info.presentMode = swapchain_present_mode;
swap_info.oldSwapchain = old_swapchain;
swap_info.clipped = true;
swap_info.imageExtent.width = std::max(m_width, surface_descriptors.minImageExtent.width);
swap_info.imageExtent.height = std::max(m_height, surface_descriptors.minImageExtent.height);
createSwapchainKHR(dev, &swap_info, nullptr, &m_vk_swapchain);
if (old_swapchain)
{
if (swapchain_images.size())
{
for (auto &img : swapchain_images)
img.discard(dev);
swapchain_images.resize(0);
}
destroySwapchainKHR(dev, old_swapchain, nullptr);
}
init_swapchain_images(dev);
return true;
}
bool supports_automatic_wm_reports() const override
{
return m_wm_reports_flag;
}
VkResult acquire_next_swapchain_image(VkSemaphore semaphore, u64 timeout, u32* result) override
{
return vkAcquireNextImageKHR(dev, m_vk_swapchain, timeout, semaphore, VK_NULL_HANDLE, result);
}
void end_frame(command_buffer& /*cmd*/, u32 /*index*/) override
{
}
VkResult present(u32 image) override
{
VkPresentInfoKHR present = {};
present.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
present.pNext = nullptr;
present.swapchainCount = 1;
present.pSwapchains = &m_vk_swapchain;
present.pImageIndices = &image;
return queuePresentKHR(vk_present_queue, &present);
}
VkImage& get_image(u32 index) override
{
return (VkImage&)swapchain_images[index];
}
VkImageLayout get_optimal_present_layout() override
{
return VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
}
};
class context
{
private:
std::vector<physical_device> gpus;
std::vector<VkInstance> m_vk_instances;
VkInstance m_instance;
PFN_vkDestroyDebugReportCallbackEXT destroyDebugReportCallback = nullptr;
PFN_vkCreateDebugReportCallbackEXT createDebugReportCallback = nullptr;
VkDebugReportCallbackEXT m_debugger = nullptr;
bool loader_exists = false;
public:
context()
{
m_instance = nullptr;
//Check that some critical entry-points have been loaded into memory indicating presence of a loader
loader_exists = (vkCreateInstance != nullptr);
}
~context()
{
if (m_instance || m_vk_instances.size())
close();
}
void close()
{
if (!m_vk_instances.size()) return;
if (m_debugger)
{
destroyDebugReportCallback(m_instance, m_debugger, nullptr);
m_debugger = nullptr;
}
for (VkInstance &inst : m_vk_instances)
{
vkDestroyInstance(inst, nullptr);
}
m_instance = nullptr;
m_vk_instances.resize(0);
}
void enable_debugging()
{
if (!g_cfg.video.debug_output) return;
PFN_vkDebugReportCallbackEXT callback = vk::dbgFunc;
createDebugReportCallback = (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr(m_instance, "vkCreateDebugReportCallbackEXT");
destroyDebugReportCallback = (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(m_instance, "vkDestroyDebugReportCallbackEXT");
VkDebugReportCallbackCreateInfoEXT dbgCreateInfo = {};
dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
dbgCreateInfo.pfnCallback = callback;
dbgCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
CHECK_RESULT(createDebugReportCallback(m_instance, &dbgCreateInfo, NULL, &m_debugger));
}
uint32_t createInstance(const char *app_name, bool fast = false)
{
if (!loader_exists) return 0;
//Initialize a vulkan instance
VkApplicationInfo app = {};
app.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
app.pApplicationName = app_name;
app.applicationVersion = 0;
app.pEngineName = app_name;
app.engineVersion = 0;
app.apiVersion = VK_MAKE_VERSION(1, 0, 0);
//Set up instance information
std::vector<const char *> extensions;
std::vector<const char *> layers;
if (!fast)
{
supported_extensions support(supported_extensions::instance);
extensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
if (support.is_supported(VK_EXT_DEBUG_REPORT_EXTENSION_NAME))
{
extensions.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
}
if (support.is_supported("VK_KHR_get_physical_device_properties2"))
{
extensions.push_back("VK_KHR_get_physical_device_properties2");
}
#ifdef _WIN32
extensions.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME);
#elif defined(__APPLE__)
extensions.push_back(VK_MVK_MACOS_SURFACE_EXTENSION_NAME);
#else
bool found_surface_ext = false;
if (support.is_supported(VK_KHR_XLIB_SURFACE_EXTENSION_NAME))
{
extensions.push_back(VK_KHR_XLIB_SURFACE_EXTENSION_NAME);
found_surface_ext = true;
}
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
if (support.is_supported(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME))
{
extensions.push_back(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME);
found_surface_ext = true;
}
#endif //(WAYLAND)
if (!found_surface_ext)
{
LOG_ERROR(RSX, "Could not find a supported Vulkan surface extension");
return 0;
}
#endif //(WIN32, __APPLE__)
if (g_cfg.video.debug_output)
layers.push_back("VK_LAYER_LUNARG_standard_validation");
}
VkInstanceCreateInfo instance_info = {};
instance_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instance_info.pApplicationInfo = &app;
instance_info.enabledLayerCount = static_cast<uint32_t>(layers.size());
instance_info.ppEnabledLayerNames = layers.data();
instance_info.enabledExtensionCount = fast ? 0 : static_cast<uint32_t>(extensions.size());
instance_info.ppEnabledExtensionNames = fast ? nullptr : extensions.data();
VkInstance instance;
if (vkCreateInstance(&instance_info, nullptr, &instance) != VK_SUCCESS)
return 0;
m_vk_instances.push_back(instance);
return (u32)m_vk_instances.size();
}
void makeCurrentInstance(uint32_t instance_id)
{
if (!instance_id || instance_id > m_vk_instances.size())
fmt::throw_exception("Invalid instance passed to makeCurrentInstance (%u)" HERE, instance_id);
if (m_debugger)
{
destroyDebugReportCallback(m_instance, m_debugger, nullptr);
m_debugger = nullptr;
}
instance_id--;
m_instance = m_vk_instances[instance_id];
}
VkInstance getCurrentInstance()
{
return m_instance;
}
VkInstance getInstanceById(uint32_t instance_id)
{
if (!instance_id || instance_id > m_vk_instances.size())
fmt::throw_exception("Invalid instance passed to getInstanceById (%u)" HERE, instance_id);
instance_id--;
return m_vk_instances[instance_id];
}
std::vector<physical_device>& enumerateDevices()
{
if (!loader_exists)
return gpus;
uint32_t num_gpus;
// This may fail on unsupported drivers, so just assume no devices
if (vkEnumeratePhysicalDevices(m_instance, &num_gpus, nullptr) != VK_SUCCESS)
return gpus;
if (gpus.size() != num_gpus)
{
std::vector<VkPhysicalDevice> pdevs(num_gpus);
gpus.resize(num_gpus);
CHECK_RESULT(vkEnumeratePhysicalDevices(m_instance, &num_gpus, pdevs.data()));
for (u32 i = 0; i < num_gpus; ++i)
gpus[i].create(m_instance, pdevs[i]);
}
return gpus;
}
swapchain_base* createSwapChain(display_handle_t window_handle, vk::physical_device &dev)
{
VkSurfaceKHR surface;
#ifdef _WIN32
using swapchain_NATIVE = swapchain_WIN32;
HINSTANCE hInstance = NULL;
VkWin32SurfaceCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
createInfo.hinstance = hInstance;
createInfo.hwnd = window_handle;
CHECK_RESULT(vkCreateWin32SurfaceKHR(m_instance, &createInfo, NULL, &surface));
#elif defined(__APPLE__)
using swapchain_NATIVE = swapchain_MacOS;
VkMacOSSurfaceCreateInfoMVK createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_MACOS_SURFACE_CREATE_INFO_MVK;
createInfo.pView = window_handle;
CHECK_RESULT(vkCreateMacOSSurfaceMVK(m_instance, &createInfo, NULL, &surface));
#else
using swapchain_NATIVE = swapchain_X11;
std::visit([&](auto&& p)
{
using T = std::decay_t<decltype(p)>;
if constexpr (std::is_same_v<T, std::pair<Display*, Window>>)
{
VkXlibSurfaceCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR;
createInfo.dpy = p.first;
createInfo.window = p.second;
CHECK_RESULT(vkCreateXlibSurfaceKHR(this->m_instance, &createInfo, nullptr, &surface));
}
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
else if constexpr (std::is_same_v<T, std::pair<wl_display*, wl_surface*>>)
{
VkWaylandSurfaceCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_WAYLAND_SURFACE_CREATE_INFO_KHR;
createInfo.display = p.first;
createInfo.surface = p.second;
CHECK_RESULT(vkCreateWaylandSurfaceKHR(this->m_instance, &createInfo, nullptr, &surface));
}
else
{
static_assert(std::conditional_t<true, std::false_type, T>::value, "Unhandled window_handle type in std::variant");
}
#endif
}, window_handle);
#endif
uint32_t device_queues = dev.get_queue_count();
std::vector<VkBool32> supportsPresent(device_queues, VK_FALSE);
bool present_possible = false;
for (u32 index = 0; index < device_queues; index++)
{
vkGetPhysicalDeviceSurfaceSupportKHR(dev, index, surface, &supportsPresent[index]);
}
for (const auto &value : supportsPresent)
{
if (value)
{
present_possible = true;
break;
}
}
if (!present_possible)
{
LOG_ERROR(RSX, "It is not possible for the currently selected GPU to present to the window (Likely caused by NVIDIA driver running the current display)");
}
// Search for a graphics and a present queue in the array of queue
// families, try to find one that supports both
uint32_t graphicsQueueNodeIndex = UINT32_MAX;
uint32_t presentQueueNodeIndex = UINT32_MAX;
for (u32 i = 0; i < device_queues; i++)
{
if ((dev.get_queue_properties(i).queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0)
{
if (graphicsQueueNodeIndex == UINT32_MAX)
graphicsQueueNodeIndex = i;
if (supportsPresent[i] == VK_TRUE)
{
graphicsQueueNodeIndex = i;
presentQueueNodeIndex = i;
break;
}
}
}
if (presentQueueNodeIndex == UINT32_MAX)
{
// If didn't find a queue that supports both graphics and present, then
// find a separate present queue.
for (uint32_t i = 0; i < device_queues; ++i)
{
if (supportsPresent[i] == VK_TRUE)
{
presentQueueNodeIndex = i;
break;
}
}
}
if (graphicsQueueNodeIndex == UINT32_MAX)
{
LOG_FATAL(RSX, "Failed to find a suitable graphics queue" HERE);
return nullptr;
}
if (graphicsQueueNodeIndex != presentQueueNodeIndex)
{
//Separate graphics and present, use headless fallback
present_possible = false;
}
if (!present_possible)
{
//Native(sw) swapchain
LOG_WARNING(RSX, "Falling back to software present support (native windowing API)");
auto swapchain = new swapchain_NATIVE(dev, UINT32_MAX, graphicsQueueNodeIndex);
swapchain->create(window_handle);
return swapchain;
}
// Get the list of VkFormat's that are supported:
uint32_t formatCount;
CHECK_RESULT(vkGetPhysicalDeviceSurfaceFormatsKHR(dev, surface, &formatCount, nullptr));
std::vector<VkSurfaceFormatKHR> surfFormats(formatCount);
CHECK_RESULT(vkGetPhysicalDeviceSurfaceFormatsKHR(dev, surface, &formatCount, surfFormats.data()));
VkFormat format;
VkColorSpaceKHR color_space;
if (formatCount == 1 && surfFormats[0].format == VK_FORMAT_UNDEFINED)
{
format = VK_FORMAT_B8G8R8A8_UNORM;
}
else
{
if (!formatCount) fmt::throw_exception("Format count is zero!" HERE);
format = surfFormats[0].format;
//Prefer BGRA8_UNORM to avoid sRGB compression (RADV)
for (auto& surface_format: surfFormats)
{
if (surface_format.format == VK_FORMAT_B8G8R8A8_UNORM)
{
format = VK_FORMAT_B8G8R8A8_UNORM;
break;
}
}
}
color_space = surfFormats[0].colorSpace;
return new swapchain_WSI(dev, presentQueueNodeIndex, graphicsQueueNodeIndex, format, surface, color_space);
}
};
class descriptor_pool
{
VkDescriptorPool pool = nullptr;
const vk::render_device *owner = nullptr;
public:
descriptor_pool() {}
~descriptor_pool() {}
void create(const vk::render_device &dev, VkDescriptorPoolSize *sizes, u32 size_descriptors_count)
{
VkDescriptorPoolCreateInfo infos = {};
infos.flags = 0;
infos.maxSets = DESCRIPTOR_MAX_DRAW_CALLS;
infos.poolSizeCount = size_descriptors_count;
infos.pPoolSizes = sizes;
infos.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
owner = &dev;
CHECK_RESULT(vkCreateDescriptorPool(dev, &infos, nullptr, &pool));
}
void destroy()
{
if (!pool) return;
vkDestroyDescriptorPool((*owner), pool, nullptr);
owner = nullptr;
pool = nullptr;
}
bool valid()
{
return (pool != nullptr);
}
operator VkDescriptorPool()
{
return pool;
}
};
class occlusion_query_pool
{
VkQueryPool query_pool = VK_NULL_HANDLE;
vk::render_device* owner = nullptr;
std::deque<u32> available_slots;
std::vector<bool> query_active_status;
public:
void create(vk::render_device &dev, u32 num_entries)
{
VkQueryPoolCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
info.queryType = VK_QUERY_TYPE_OCCLUSION;
info.queryCount = num_entries;
CHECK_RESULT(vkCreateQueryPool(dev, &info, nullptr, &query_pool));
owner = &dev;
query_active_status.resize(num_entries, false);
available_slots.resize(num_entries);
for (u32 n = 0; n < num_entries; ++n)
{
available_slots[n] = n;
}
}
void destroy()
{
if (query_pool)
{
vkDestroyQueryPool(*owner, query_pool, nullptr);
owner = nullptr;
query_pool = VK_NULL_HANDLE;
}
}
void begin_query(vk::command_buffer &cmd, u32 index)
{
if (query_active_status[index])
{
//Synchronization must be done externally
vkCmdResetQueryPool(cmd, query_pool, index, 1);
}
vkCmdBeginQuery(cmd, query_pool, index, 0);//VK_QUERY_CONTROL_PRECISE_BIT);
query_active_status[index] = true;
}
void end_query(vk::command_buffer &cmd, u32 index)
{
vkCmdEndQuery(cmd, query_pool, index);
}
bool check_query_status(u32 index)
{
u32 result[2] = {0, 0};
switch (VkResult status = vkGetQueryPoolResults(*owner, query_pool, index, 1, 8, result, 8, VK_QUERY_RESULT_WITH_AVAILABILITY_BIT))
{
case VK_SUCCESS:
break;
case VK_NOT_READY:
return false;
default:
vk::die_with_error(HERE, status);
}
return result[1] != 0;
}
u32 get_query_result(u32 index)
{
u32 result = 0;
CHECK_RESULT(vkGetQueryPoolResults(*owner, query_pool, index, 1, 4, &result, 4, VK_QUERY_RESULT_WAIT_BIT));
return result == 0u? 0u: 1u;
}
void reset_query(vk::command_buffer &cmd, u32 index)
{
if (query_active_status[index])
{
vkCmdResetQueryPool(cmd, query_pool, index, 1);
query_active_status[index] = false;
available_slots.push_back(index);
}
}
template<template<class> class _List>
void reset_queries(vk::command_buffer &cmd, _List<u32> &list)
{
for (const auto index : list)
reset_query(cmd, index);
}
void reset_all(vk::command_buffer &cmd)
{
for (u32 n = 0; n < query_active_status.size(); n++)
{
if (query_active_status[n])
reset_query(cmd, n);
}
}
u32 find_free_slot()
{
if (available_slots.empty())
{
return ~0u;
}
u32 result = available_slots.front();
available_slots.pop_front();
verify(HERE), !query_active_status[result];
return result;
}
};
class graphics_pipeline_state
{
public:
VkPipelineInputAssemblyStateCreateInfo ia;
VkPipelineDepthStencilStateCreateInfo ds;
VkPipelineColorBlendAttachmentState att_state[4];
VkPipelineColorBlendStateCreateInfo cs;
VkPipelineRasterizationStateCreateInfo rs;
graphics_pipeline_state()
{
// NOTE: Vk** structs have padding bytes
memset(this, 0, sizeof(graphics_pipeline_state));
ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
cs.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rs.polygonMode = VK_POLYGON_MODE_FILL;
rs.cullMode = VK_CULL_MODE_NONE;
rs.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rs.lineWidth = 1.f;
}
graphics_pipeline_state(const graphics_pipeline_state& other)
{
// NOTE: Vk** structs have padding bytes
memcpy(this, &other, sizeof(graphics_pipeline_state));
if (other.cs.pAttachments == other.att_state)
{
// Rebase pointer
cs.pAttachments = att_state;
}
}
~graphics_pipeline_state()
{}
graphics_pipeline_state& operator = (const graphics_pipeline_state& other)
{
if (this != &other)
{
// NOTE: Vk** structs have padding bytes
memcpy(this, &other, sizeof(graphics_pipeline_state));
if (other.cs.pAttachments == other.att_state)
{
// Rebase pointer
cs.pAttachments = att_state;
}
}
return *this;
}
void set_primitive_type(VkPrimitiveTopology type)
{
ia.topology = type;
}
void enable_primitive_restart(bool enable = true)
{
ia.primitiveRestartEnable = enable? VK_TRUE : VK_FALSE;
}
void set_color_mask(bool r, bool g, bool b, bool a)
{
VkColorComponentFlags mask = 0;
if (a) mask |= VK_COLOR_COMPONENT_A_BIT;
if (b) mask |= VK_COLOR_COMPONENT_B_BIT;
if (g) mask |= VK_COLOR_COMPONENT_G_BIT;
if (r) mask |= VK_COLOR_COMPONENT_R_BIT;
att_state[0].colorWriteMask = mask;
att_state[1].colorWriteMask = mask;
att_state[2].colorWriteMask = mask;
att_state[3].colorWriteMask = mask;
}
void set_depth_mask(bool enable)
{
ds.depthWriteEnable = enable ? VK_TRUE : VK_FALSE;
}
void set_stencil_mask(u32 mask)
{
ds.front.writeMask = mask;
ds.back.writeMask = mask;
}
void set_stencil_mask_separate(int face, u32 mask)
{
if (!face)
ds.front.writeMask = mask;
else
ds.back.writeMask = mask;
}
void enable_depth_test(VkCompareOp op)
{
ds.depthTestEnable = VK_TRUE;
ds.depthCompareOp = op;
}
void enable_depth_clamp(bool enable = true)
{
rs.depthClampEnable = enable ? VK_TRUE : VK_FALSE;
}
void enable_depth_bias(bool enable = true)
{
rs.depthBiasEnable = enable ? VK_TRUE : VK_FALSE;
}
void enable_depth_bounds_test(bool enable = true)
{
ds.depthBoundsTestEnable = enable? VK_TRUE : VK_FALSE;
}
void enable_blend(int mrt_index, VkBlendFactor src_factor_rgb, VkBlendFactor src_factor_a,
VkBlendFactor dst_factor_rgb, VkBlendFactor dst_factor_a,
VkBlendOp equation_rgb, VkBlendOp equation_a)
{
att_state[mrt_index].srcColorBlendFactor = src_factor_rgb;
att_state[mrt_index].srcAlphaBlendFactor = src_factor_a;
att_state[mrt_index].dstColorBlendFactor = dst_factor_rgb;
att_state[mrt_index].dstAlphaBlendFactor = dst_factor_a;
att_state[mrt_index].colorBlendOp = equation_rgb;
att_state[mrt_index].alphaBlendOp = equation_a;
att_state[mrt_index].blendEnable = VK_TRUE;
}
void enable_stencil_test(VkStencilOp fail, VkStencilOp zfail, VkStencilOp pass,
VkCompareOp func, u32 func_mask, u32 ref)
{
ds.front.failOp = fail;
ds.front.passOp = pass;
ds.front.depthFailOp = zfail;
ds.front.compareOp = func;
ds.front.compareMask = func_mask;
ds.front.reference = ref;
ds.back = ds.front;
ds.stencilTestEnable = VK_TRUE;
}
void enable_stencil_test_separate(int face, VkStencilOp fail, VkStencilOp zfail, VkStencilOp pass,
VkCompareOp func, u32 func_mask, u32 ref)
{
auto& face_props = (face ? ds.back : ds.front);
face_props.failOp = fail;
face_props.passOp = pass;
face_props.depthFailOp = zfail;
face_props.compareOp = func;
face_props.compareMask = func_mask;
face_props.reference = ref;
ds.stencilTestEnable = VK_TRUE;
}
void enable_logic_op(VkLogicOp op)
{
cs.logicOpEnable = VK_TRUE;
cs.logicOp = op;
}
void enable_cull_face(VkCullModeFlags cull_mode)
{
rs.cullMode = cull_mode;
}
void set_front_face(VkFrontFace face)
{
rs.frontFace = face;
}
void set_attachment_count(u32 count)
{
cs.attachmentCount = count;
cs.pAttachments = att_state;
}
};
namespace glsl
{
enum program_input_type : u32
{
input_type_uniform_buffer = 0,
input_type_texel_buffer = 1,
input_type_texture = 2,
input_type_storage_buffer = 3,
input_type_max_enum = 4
};
struct bound_sampler
{
VkFormat format;
VkImage image;
VkComponentMapping mapping;
};
struct bound_buffer
{
VkFormat format = VK_FORMAT_UNDEFINED;
VkBuffer buffer = nullptr;
u64 offset = 0;
u64 size = 0;
};
struct program_input
{
::glsl::program_domain domain;
program_input_type type;
bound_buffer as_buffer;
bound_sampler as_sampler;
u32 location;
std::string name;
};
class shader
{
::glsl::program_domain type = ::glsl::program_domain::glsl_vertex_program;
VkShaderModule m_handle = VK_NULL_HANDLE;
std::string m_source;
std::vector<u32> m_compiled;
public:
shader()
{}
~shader()
{}
void create(::glsl::program_domain domain, const std::string& source)
{
type = domain;
m_source = source;
}
VkShaderModule compile()
{
verify(HERE), m_handle == VK_NULL_HANDLE;
if (!vk::compile_glsl_to_spv(m_source, type, m_compiled))
{
std::string shader_type = type == ::glsl::program_domain::glsl_vertex_program ? "vertex" :
type == ::glsl::program_domain::glsl_fragment_program ? "fragment" : "compute";
fmt::throw_exception("Failed to compile %s shader" HERE, shader_type);
}
VkShaderModuleCreateInfo vs_info;
vs_info.codeSize = m_compiled.size() * sizeof(u32);
vs_info.pNext = nullptr;
vs_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
vs_info.pCode = (uint32_t*)m_compiled.data();
vs_info.flags = 0;
VkDevice dev = (VkDevice)*vk::get_current_renderer();
vkCreateShaderModule(dev, &vs_info, nullptr, &m_handle);
return m_handle;
}
void destroy()
{
m_source.clear();
m_compiled.clear();
if (m_handle)
{
VkDevice dev = (VkDevice)*vk::get_current_renderer();
vkDestroyShaderModule(dev, m_handle, nullptr);
m_handle = nullptr;
}
}
const std::string& get_source() const
{
return m_source;
}
const std::vector<u32> get_compiled() const
{
return m_compiled;
}
VkShaderModule get_handle() const
{
return m_handle;
}
};
class program
{
std::array<std::vector<program_input>, input_type_max_enum> uniforms;
VkDevice m_device;
std::array<u32, 16> fs_texture_bindings;
std::array<u32, 16> fs_texture_mirror_bindings;
std::array<u32, 4> vs_texture_bindings;
bool linked;
public:
VkPipeline pipeline;
u64 attribute_location_mask;
u64 vertex_attributes_mask;
program(VkDevice dev, VkPipeline p, const std::vector<program_input> &vertex_input, const std::vector<program_input>& fragment_inputs);
program(const program&) = delete;
program(program&& other) = delete;
~program();
program& load_uniforms(::glsl::program_domain domain, const std::vector<program_input>& inputs);
program& link();
bool has_uniform(program_input_type type, const std::string &uniform_name);
void bind_uniform(const VkDescriptorImageInfo &image_descriptor, const std::string &uniform_name, VkDescriptorSet &descriptor_set);
void bind_uniform(const VkDescriptorImageInfo &image_descriptor, int texture_unit, ::glsl::program_domain domain, VkDescriptorSet &descriptor_set, bool is_stencil_mirror = false);
void bind_uniform(const VkDescriptorBufferInfo &buffer_descriptor, uint32_t binding_point, VkDescriptorSet &descriptor_set);
void bind_uniform(const VkBufferView &buffer_view, program_input_type type, const std::string &binding_name, VkDescriptorSet &descriptor_set);
void bind_buffer(const VkDescriptorBufferInfo &buffer_descriptor, uint32_t binding_point, VkDescriptorType type, VkDescriptorSet &descriptor_set);
u64 get_vertex_input_attributes_mask();
};
}
struct data_heap : public ::data_heap
{
std::unique_ptr<buffer> heap;
bool mapped = false;
void *_ptr = nullptr;
std::unique_ptr<buffer> shadow;
std::vector<VkBufferCopy> dirty_ranges;
// NOTE: Some drivers (RADV) use heavyweight OS map/unmap routines that are insanely slow
// Avoid mapping/unmapping to keep these drivers from stalling
// NOTE2: HOST_CACHED flag does not keep the mapped ptr around in the driver either
void create(VkBufferUsageFlags usage, size_t size, const char *name = "unnamed", size_t guard = 0x10000)
{
::data_heap::init(size, name, guard);
const auto device = get_current_renderer();
const auto memory_map = device->get_memory_mapping();
VkFlags memory_flags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
auto memory_index = memory_map.host_visible_coherent;
if (!(get_heap_compatible_buffer_types() & usage))
{
LOG_WARNING(RSX, "Buffer usage %u is not heap-compatible using this driver, explicit staging buffer in use", (u32)usage);
shadow.reset(new buffer(*device, size, memory_index, memory_flags, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, 0));
usage |= VK_BUFFER_USAGE_TRANSFER_DST_BIT;
memory_flags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
memory_index = memory_map.device_local;
}
heap.reset(new buffer(*device, size, memory_index, memory_flags, usage, 0));
}
void destroy()
{
if (mapped)
{
unmap(true);
}
heap.reset();
shadow.reset();
}
void* map(size_t offset, size_t size)
{
if (!_ptr)
{
if (shadow)
_ptr = shadow->map(0, shadow->size());
else
_ptr = heap->map(0, heap->size());
mapped = true;
}
if (shadow)
{
dirty_ranges.push_back({offset, offset, size});
}
return (u8*)_ptr + offset;
}
void unmap(bool force = false)
{
if (force || g_cfg.video.disable_vulkan_mem_allocator)
{
if (shadow)
shadow->unmap();
else
heap->unmap();
mapped = false;
_ptr = nullptr;
}
}
bool dirty()
{
return !dirty_ranges.empty();
}
void sync(const vk::command_buffer& cmd)
{
if (!dirty_ranges.empty())
{
verify (HERE), shadow, heap;
vkCmdCopyBuffer(cmd, shadow->value, heap->value, (u32)dirty_ranges.size(), dirty_ranges.data());
dirty_ranges.resize(0);
insert_buffer_memory_barrier(cmd, heap->value, 0, heap->size(),
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT);
}
}
};
struct blitter
{
void scale_image(vk::command_buffer& cmd, vk::image* src, vk::image* dst, areai src_area, areai dst_area, bool interpolate, bool /*is_depth*/, const rsx::typeless_xfer& xfer_info);
};
}