rpcs3/rpcs3/Emu/RSX/VK/VKCompute.cpp
2022-05-31 23:34:14 +03:00

402 lines
11 KiB
C++

#include "VKCompute.h"
#include "VKHelpers.h"
#include "VKRenderPass.h"
#include "vkutils/buffer_object.h"
#define VK_MAX_COMPUTE_TASKS 4096 // Max number of jobs per frame
namespace vk
{
std::vector<std::pair<VkDescriptorType, u8>> compute_task::get_descriptor_layout()
{
std::vector<std::pair<VkDescriptorType, u8>> result;
result.emplace_back(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, ssbo_count);
return result;
}
void compute_task::init_descriptors()
{
std::vector<VkDescriptorPoolSize> descriptor_pool_sizes;
std::vector<VkDescriptorSetLayoutBinding> bindings;
const auto layout = get_descriptor_layout();
for (const auto &e : layout)
{
descriptor_pool_sizes.push_back({e.first, u32(VK_MAX_COMPUTE_TASKS * e.second)});
for (unsigned n = 0; n < e.second; ++n)
{
bindings.push_back
({
u32(bindings.size()),
e.first,
1,
VK_SHADER_STAGE_COMPUTE_BIT,
nullptr
});
}
}
// Reserve descriptor pools
m_descriptor_pool.create(*g_render_device, descriptor_pool_sizes.data(), ::size32(descriptor_pool_sizes), VK_MAX_COMPUTE_TASKS, 3);
m_descriptor_layout = vk::descriptors::create_layout(bindings);
VkPipelineLayoutCreateInfo layout_info = {};
layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
layout_info.setLayoutCount = 1;
layout_info.pSetLayouts = &m_descriptor_layout;
VkPushConstantRange push_constants{};
if (use_push_constants)
{
push_constants.size = push_constants_size;
push_constants.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT;
layout_info.pushConstantRangeCount = 1;
layout_info.pPushConstantRanges = &push_constants;
}
CHECK_RESULT(vkCreatePipelineLayout(*g_render_device, &layout_info, nullptr, &m_pipeline_layout));
}
void compute_task::create()
{
if (!initialized)
{
init_descriptors();
switch (vk::get_driver_vendor())
{
case vk::driver_vendor::unknown:
case vk::driver_vendor::INTEL:
case vk::driver_vendor::ANV:
// Intel hw has 8 threads, but LDS allocation behavior makes optimal group size between 64 and 256
// Based on intel's own OpenCL recommended settings
unroll_loops = true;
optimal_kernel_size = 1;
optimal_group_size = 128;
break;
case vk::driver_vendor::NVIDIA:
// Warps are multiples of 32. Increasing kernel depth seems to hurt performance (Nier, Big Duck sample)
unroll_loops = true;
optimal_kernel_size = 1;
optimal_group_size = 32;
break;
case vk::driver_vendor::AMD:
case vk::driver_vendor::RADV:
// Wavefronts are multiples of 64
unroll_loops = false;
optimal_kernel_size = 1;
optimal_group_size = 64;
break;
case vk::driver_vendor::MVK:
unroll_loops = true;
optimal_kernel_size = 1;
optimal_group_size = 256;
break;
}
const auto& gpu = vk::g_render_device->gpu();
max_invocations_x = gpu.get_limits().maxComputeWorkGroupCount[0];
initialized = true;
}
}
void compute_task::destroy()
{
if (initialized)
{
m_shader.destroy();
m_program.reset();
m_param_buffer.reset();
vkDestroyDescriptorSetLayout(*g_render_device, m_descriptor_layout, nullptr);
vkDestroyPipelineLayout(*g_render_device, m_pipeline_layout, nullptr);
m_descriptor_pool.destroy();
initialized = false;
}
}
void compute_task::free_resources()
{
if (m_used_descriptors == 0)
return;
m_descriptor_pool.reset(0);
m_used_descriptors = 0;
}
void compute_task::load_program(VkCommandBuffer cmd)
{
if (!m_program)
{
m_shader.create(::glsl::program_domain::glsl_compute_program, m_src);
auto handle = m_shader.compile();
VkPipelineShaderStageCreateInfo shader_stage{};
shader_stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shader_stage.stage = VK_SHADER_STAGE_COMPUTE_BIT;
shader_stage.module = handle;
shader_stage.pName = "main";
VkComputePipelineCreateInfo info{};
info.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO;
info.stage = shader_stage;
info.layout = m_pipeline_layout;
info.basePipelineIndex = -1;
info.basePipelineHandle = VK_NULL_HANDLE;
auto compiler = vk::get_pipe_compiler();
m_program = compiler->compile(info, m_pipeline_layout, vk::pipe_compiler::COMPILE_INLINE);
declare_inputs();
}
ensure(m_used_descriptors < VK_MAX_COMPUTE_TASKS);
VkDescriptorSetAllocateInfo alloc_info = {};
alloc_info.descriptorPool = m_descriptor_pool;
alloc_info.descriptorSetCount = 1;
alloc_info.pSetLayouts = &m_descriptor_layout;
alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
CHECK_RESULT(vkAllocateDescriptorSets(*g_render_device, &alloc_info, m_descriptor_set.ptr()));
m_used_descriptors++;
bind_resources();
vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_COMPUTE, m_program->pipeline);
m_descriptor_set.bind(cmd, VK_PIPELINE_BIND_POINT_COMPUTE, m_pipeline_layout);
}
void compute_task::run(VkCommandBuffer cmd, u32 invocations_x, u32 invocations_y, u32 invocations_z)
{
// CmdDispatch is outside renderpass scope only
if (vk::is_renderpass_open(cmd))
{
vk::end_renderpass(cmd);
}
load_program(cmd);
vkCmdDispatch(cmd, invocations_x, invocations_y, invocations_z);
}
void compute_task::run(VkCommandBuffer cmd, u32 num_invocations)
{
u32 invocations_x, invocations_y;
if (num_invocations > max_invocations_x)
{
// AMD hw reports an annoyingly small maximum number of invocations in the X dimension
// Split the 1D job into 2 dimensions to accomodate this
invocations_x = static_cast<u32>(floor(std::sqrt(num_invocations)));
invocations_y = invocations_x;
if (num_invocations % invocations_x) invocations_y++;
}
else
{
invocations_x = num_invocations;
invocations_y = 1;
}
run(cmd, invocations_x, invocations_y, 1);
}
cs_shuffle_base::cs_shuffle_base()
{
work_kernel =
" value = data[index];\n"
" data[index] = %f(value);\n";
loop_advance =
" index++;\n";
suffix =
"}\n";
}
void cs_shuffle_base::build(const char* function_name, u32 _kernel_size)
{
// Initialize to allow detecting optimal settings
create();
kernel_size = _kernel_size? _kernel_size : optimal_kernel_size;
m_src =
#include "../Program/GLSLSnippets/ShuffleBytes.glsl"
;
const auto parameters_size = utils::align(push_constants_size, 16) / 16;
const std::pair<std::string_view, std::string> syntax_replace[] =
{
{ "%loc", "0" },
{ "%set", "set = 0"},
{ "%ws", std::to_string(optimal_group_size) },
{ "%ks", std::to_string(kernel_size) },
{ "%vars", variables },
{ "%f", function_name },
{ "%md", method_declarations },
{ "%ub", use_push_constants? "layout(push_constant) uniform ubo{ uvec4 params[" + std::to_string(parameters_size) + "]; };\n" : "" },
};
m_src = fmt::replace_all(m_src, syntax_replace);
work_kernel = fmt::replace_all(work_kernel, syntax_replace);
if (kernel_size <= 1)
{
m_src += " {\n" + work_kernel + " }\n";
}
else if (unroll_loops)
{
work_kernel += loop_advance + "\n";
m_src += std::string
(
" //Unrolled loop\n"
" {\n"
);
// Assemble body with manual loop unroll to try loweing GPR usage
for (u32 n = 0; n < kernel_size; ++n)
{
m_src += work_kernel;
}
m_src += " }\n";
}
else
{
m_src += " for (int loop = 0; loop < KERNEL_SIZE; ++loop)\n";
m_src += " {\n";
m_src += work_kernel;
m_src += loop_advance;
m_src += " }\n";
}
m_src += suffix;
}
void cs_shuffle_base::bind_resources()
{
m_program->bind_buffer({ m_data->value, m_data_offset, m_data_length }, 0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, m_descriptor_set);
}
void cs_shuffle_base::set_parameters(VkCommandBuffer cmd, const u32* params, u8 count)
{
ensure(use_push_constants);
vkCmdPushConstants(cmd, m_pipeline_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, count * 4, params);
}
void cs_shuffle_base::run(VkCommandBuffer cmd, const vk::buffer* data, u32 data_length, u32 data_offset)
{
m_data = data;
m_data_offset = data_offset;
m_data_length = data_length;
const auto num_bytes_per_invocation = optimal_group_size * kernel_size * 4;
const auto num_bytes_to_process = rsx::align2(data_length, num_bytes_per_invocation);
const auto num_invocations = num_bytes_to_process / num_bytes_per_invocation;
if ((num_bytes_to_process + data_offset) > data->size())
{
// Technically robust buffer access should keep the driver from crashing in OOB situations
rsx_log.error("Inadequate buffer length submitted for a compute operation."
"Required=%d bytes, Available=%d bytes", num_bytes_to_process, data->size());
}
compute_task::run(cmd, num_invocations);
}
cs_interleave_task::cs_interleave_task()
{
use_push_constants = true;
push_constants_size = 16;
variables =
" uint block_length = params[0].x >> 2;\n"
" uint z_offset = params[0].y >> 2;\n"
" uint s_offset = params[0].z >> 2;\n"
" uint depth;\n"
" uint stencil;\n"
" uint stencil_shift;\n"
" uint stencil_offset;\n";
}
void cs_interleave_task::bind_resources()
{
m_program->bind_buffer({ m_data->value, m_data_offset, m_ssbo_length }, 0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, m_descriptor_set);
}
void cs_interleave_task::run(VkCommandBuffer cmd, const vk::buffer* data, u32 data_offset, u32 data_length, u32 zeta_offset, u32 stencil_offset)
{
u32 parameters[4] = { data_length, zeta_offset - data_offset, stencil_offset - data_offset, 0 };
set_parameters(cmd, parameters, 4);
ensure(stencil_offset > data_offset);
m_ssbo_length = stencil_offset + (data_length / 4) - data_offset;
cs_shuffle_base::run(cmd, data, data_length, data_offset);
}
cs_scatter_d24x8::cs_scatter_d24x8()
{
work_kernel =
" if (index >= block_length)\n"
" return;\n"
"\n"
" value = data[index];\n"
" data[index + z_offset] = (value >> 8);\n"
" stencil_offset = (index / 4);\n"
" stencil_shift = (index % 4) * 8;\n"
" stencil = (value & 0xFF) << stencil_shift;\n"
" atomicOr(data[stencil_offset + s_offset], stencil);\n";
cs_shuffle_base::build("");
}
cs_aggregator::cs_aggregator()
{
ssbo_count = 2;
create();
m_src =
"#version 450\n"
"layout(local_size_x = %ws, local_size_y = 1, local_size_z = 1) in;\n\n"
"layout(set=0, binding=0, std430) readonly buffer ssbo0{ uint src[]; };\n"
"layout(set=0, binding=1, std430) writeonly buffer ssbo1{ uint result; };\n\n"
"void main()\n"
"{\n"
" if (gl_GlobalInvocationID.x < src.length())\n"
" {\n"
" atomicAdd(result, src[gl_GlobalInvocationID.x]);\n"
" }\n"
"}\n";
const std::pair<std::string_view, std::string> syntax_replace[] =
{
{ "%ws", std::to_string(optimal_group_size) },
};
m_src = fmt::replace_all(m_src, syntax_replace);
}
void cs_aggregator::bind_resources()
{
m_program->bind_buffer({ src->value, 0, block_length }, 0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, m_descriptor_set);
m_program->bind_buffer({ dst->value, 0, 4 }, 1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, m_descriptor_set);
}
void cs_aggregator::run(VkCommandBuffer cmd, const vk::buffer* dst, const vk::buffer* src, u32 num_words)
{
this->dst = dst;
this->src = src;
word_count = num_words;
block_length = num_words * 4;
const u32 linear_invocations = utils::aligned_div(word_count, optimal_group_size);
compute_task::run(cmd, linear_invocations);
}
}