rpcs3/rpcs3/Emu/Memory/Memory.cpp
2014-08-22 18:21:55 +04:00

793 lines
16 KiB
C++

#include "stdafx.h"
#include <atomic>
#include "Utilities/Log.h"
#include "Memory.h"
#include "Emu/System.h"
#include "Ini.h"
MemoryBase Memory;
void MemoryBase::InvalidAddress(const char* func, const u64 addr)
{
LOG_ERROR(MEMORY, "%s(): invalid address (0x%llx)", func, addr);
}
void MemoryBase::RegisterPages(u64 addr, u32 size)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
//LOG_NOTICE(MEMORY, "RegisterPages(addr=0x%llx, size=0x%x)", addr, size);
for (u64 i = addr / 4096; i < (addr + size) / 4096; i++)
{
if (i >= sizeof(m_pages) / sizeof(m_pages[0]))
{
InvalidAddress(__FUNCTION__, i * 4096);
break;
}
if (m_pages[i])
{
LOG_ERROR(MEMORY, "Page already registered (addr=0x%llx)", i * 4096);
}
m_pages[i] = 1; // TODO: define page parameters
}
}
void MemoryBase::UnregisterPages(u64 addr, u32 size)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
//LOG_NOTICE(MEMORY, "UnregisterPages(addr=0x%llx, size=0x%x)", addr, size);
for (u64 i = addr / 4096; i < (addr + size) / 4096; i++)
{
if (i >= sizeof(m_pages) / sizeof(m_pages[0]))
{
InvalidAddress(__FUNCTION__, i * 4096);
break;
}
if (!m_pages[i])
{
LOG_ERROR(MEMORY, "Page not registered (addr=0x%llx)", i * 4096);
}
m_pages[i] = 0; // TODO: define page parameters
}
}
u32 MemoryBase::InitRawSPU(MemoryBlock* raw_spu)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
u32 index;
for (index = 0; index < sizeof(RawSPUMem) / sizeof(RawSPUMem[0]); index++)
{
if (!RawSPUMem[index])
{
RawSPUMem[index] = raw_spu;
break;
}
}
MemoryBlocks.push_back(raw_spu->SetRange(RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * index, RAW_SPU_PROB_OFFSET));
return index;
}
void MemoryBase::CloseRawSPU(MemoryBlock* raw_spu, const u32 num)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
for (int i = 0; i < MemoryBlocks.size(); ++i)
{
if (MemoryBlocks[i] == raw_spu)
{
MemoryBlocks.erase(MemoryBlocks.begin() + i);
break;
}
}
if (num < sizeof(RawSPUMem) / sizeof(RawSPUMem[0])) RawSPUMem[num] = nullptr;
}
void MemoryBase::Init(MemoryType type)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if (m_inited) return;
m_inited = true;
memset(m_pages, 0, sizeof(m_pages));
memset(RawSPUMem, 0, sizeof(RawSPUMem));
#ifdef _WIN32
m_base_addr = VirtualAlloc(nullptr, 0x100000000, MEM_RESERVE, PAGE_NOACCESS);
if (!m_base_addr)
#else
m_base_addr = ::mmap(nullptr, 0x100000000, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
if (m_base_addr == (void*)-1)
#endif
{
m_base_addr = nullptr;
LOG_ERROR(MEMORY, "Initializing memory failed");
assert(0);
return;
}
else
{
LOG_NOTICE(MEMORY, "Initializing memory: m_base_addr = 0x%llx", (u64)m_base_addr);
}
switch (type)
{
case Memory_PS3:
MemoryBlocks.push_back(MainMem.SetRange(0x00010000, 0x2FFF0000));
MemoryBlocks.push_back(UserMemory = PRXMem.SetRange(0x30000000, 0x10000000));
MemoryBlocks.push_back(RSXCMDMem.SetRange(0x40000000, 0x10000000));
MemoryBlocks.push_back(MmaperMem.SetRange(0xB0000000, 0x10000000));
MemoryBlocks.push_back(RSXFBMem.SetRange(0xC0000000, 0x10000000));
MemoryBlocks.push_back(StackMem.SetRange(0xD0000000, 0x10000000));
break;
case Memory_PSV:
MemoryBlocks.push_back(PSV.RAM.SetRange(0x81000000, 0x10000000));
MemoryBlocks.push_back(UserMemory = PSV.Userspace.SetRange(0x91000000, 0x10000000));
PSV.Init(GetBaseAddr());
break;
case Memory_PSP:
MemoryBlocks.push_back(PSP.Scratchpad.SetRange(0x00010000, 0x00004000));
MemoryBlocks.push_back(PSP.VRAM.SetRange(0x04000000, 0x00200000));
MemoryBlocks.push_back(PSP.RAM.SetRange(0x08000000, 0x02000000));
MemoryBlocks.push_back(PSP.Kernel.SetRange(0x88000000, 0x00800000));
MemoryBlocks.push_back(UserMemory = PSP.Userspace.SetRange(0x08800000, 0x01800000));
PSP.Init(GetBaseAddr());
break;
}
LOG_NOTICE(MEMORY, "Memory initialized.");
}
void MemoryBase::Close()
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if (!m_inited) return;
m_inited = false;
LOG_NOTICE(MEMORY, "Closing memory...");
for (auto block : MemoryBlocks)
{
block->Delete();
}
RSXIOMem.Delete();
MemoryBlocks.clear();
#ifdef _WIN32
if (!VirtualFree(m_base_addr, 0, MEM_RELEASE))
{
LOG_ERROR(MEMORY, "VirtualFree(0x%llx) failed", (u64)m_base_addr);
}
#else
if (::munmap(m_base_addr, 0x100000000))
{
LOG_ERROR(MEMORY, "::munmap(0x%llx) failed", (u64)m_base_addr);
}
#endif
}
bool MemoryBase::Map(const u64 dst_addr, const u64 src_addr, const u32 size)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
if (IsGoodAddr(dst_addr) || !IsGoodAddr(src_addr))
{
return false;
}
MemoryBlocks.push_back((new MemoryMirror())->SetRange(GetMemFromAddr(src_addr), dst_addr, size));
LOG_WARNING(MEMORY, "memory mapped 0x%llx to 0x%llx size=0x%x", src_addr, dst_addr, size);
return true;
}
bool MemoryBase::Unmap(const u64 addr)
{
std::lock_guard<std::recursive_mutex> lock(m_mutex);
bool result = false;
for (uint i = 0; i<MemoryBlocks.size(); ++i)
{
if (MemoryBlocks[i]->IsMirror())
{
if (MemoryBlocks[i]->GetStartAddr() == addr)
{
delete MemoryBlocks[i];
MemoryBlocks.erase(MemoryBlocks.begin() + i);
return true;
}
}
}
return false;
}
MemBlockInfo::MemBlockInfo(u64 _addr, u32 _size)
: MemInfo(_addr, PAGE_4K(_size))
{
void* real_addr = (void*)((u64)Memory.GetBaseAddr() + _addr);
#ifdef _WIN32
mem = VirtualAlloc(real_addr, size, MEM_COMMIT, PAGE_READWRITE);
#else
if (::mprotect(real_addr, size, PROT_READ | PROT_WRITE))
{
mem = nullptr;
}
else
{
mem = real_addr;
}
#endif
if (mem != real_addr)
{
LOG_ERROR(MEMORY, "Memory allocation failed (addr=0x%llx, size=0x%llx)", addr, size);
Emu.Pause();
}
else
{
Memory.RegisterPages(_addr, PAGE_4K(_size));
memset(mem, 0, size);
}
}
void MemBlockInfo::Free()
{
if (mem)
{
Memory.UnregisterPages(addr, size);
#ifdef _WIN32
if (!VirtualFree(mem, size, MEM_DECOMMIT))
#else
if (::mprotect(mem, size, PROT_NONE))
#endif
{
LOG_ERROR(MEMORY, "Memory deallocation failed (addr=0x%llx, size=0x%llx)", addr, size);
Emu.Pause();
}
}
}
//MemoryBlock
MemoryBlock::MemoryBlock() : mem_inf(nullptr)
{
Init();
}
MemoryBlock::~MemoryBlock()
{
Delete();
}
void MemoryBlock::Init()
{
range_start = 0;
range_size = 0;
mem = Memory.GetMemFromAddr(0);
}
void MemoryBlock::InitMemory()
{
if (!range_size)
{
mem = Memory.GetMemFromAddr(range_start);
}
else
{
Free();
mem_inf = new MemBlockInfo(range_start, range_size);
mem = (u8*)mem_inf->mem;
}
}
void MemoryBlock::Free()
{
if (mem_inf)
{
delete mem_inf;
mem_inf = nullptr;
}
}
void MemoryBlock::Delete()
{
Free();
Init();
}
u64 MemoryBlock::FixAddr(const u64 addr) const
{
return addr - GetStartAddr();
}
MemoryBlock* MemoryBlock::SetRange(const u64 start, const u32 size)
{
if (start + size > 0x100000000) return nullptr;
range_start = start;
range_size = size;
InitMemory();
return this;
}
bool MemoryBlock::IsMyAddress(const u64 addr)
{
return mem && addr >= GetStartAddr() && addr < GetEndAddr();
}
template <typename T>
__forceinline const T MemoryBlock::FastRead(const u64 addr) const
{
volatile const T data = *(const T *)GetMem(addr);
return re(data);
}
template <>
__forceinline const u128 MemoryBlock::FastRead<u128>(const u64 addr) const
{
volatile const u128 data = *(const u128 *)GetMem(addr);
u128 ret;
ret.lo = re(data.hi);
ret.hi = re(data.lo);
return ret;
}
bool MemoryBlock::Read8(const u64 addr, u8* value)
{
if(!IsMyAddress(addr))
{
*value = 0;
return false;
}
*value = FastRead<u8>(FixAddr(addr));
return true;
}
bool MemoryBlock::Read16(const u64 addr, u16* value)
{
if(!IsMyAddress(addr))
{
*value = 0;
return false;
}
*value = FastRead<u16>(FixAddr(addr));
return true;
}
bool MemoryBlock::Read32(const u64 addr, u32* value)
{
if(!IsMyAddress(addr))
{
*value = 0;
return false;
}
*value = FastRead<u32>(FixAddr(addr));
return true;
}
bool MemoryBlock::Read64(const u64 addr, u64* value)
{
if(!IsMyAddress(addr))
{
*value = 0;
return false;
}
*value = FastRead<u64>(FixAddr(addr));
return true;
}
bool MemoryBlock::Read128(const u64 addr, u128* value)
{
if(!IsMyAddress(addr))
{
*value = u128::From32(0);
return false;
}
*value = FastRead<u128>(FixAddr(addr));
return true;
}
template <typename T>
__forceinline void MemoryBlock::FastWrite(const u64 addr, const T value)
{
*(T *)GetMem(addr) = re(value);
}
template <>
__forceinline void MemoryBlock::FastWrite<u128>(const u64 addr, const u128 value)
{
u128 res;
res.lo = re(value.hi);
res.hi = re(value.lo);
*(u128*)GetMem(addr) = res;
}
bool MemoryBlock::Write8(const u64 addr, const u8 value)
{
if(!IsMyAddress(addr) || IsLocked(addr)) return false;
FastWrite<u8>(FixAddr(addr), value);
return true;
}
bool MemoryBlock::Write16(const u64 addr, const u16 value)
{
if(!IsMyAddress(addr) || IsLocked(addr)) return false;
FastWrite<u16>(FixAddr(addr), value);
return true;
}
bool MemoryBlock::Write32(const u64 addr, const u32 value)
{
if(!IsMyAddress(addr) || IsLocked(addr)) return false;
FastWrite<u32>(FixAddr(addr), value);
return true;
}
bool MemoryBlock::Write64(const u64 addr, const u64 value)
{
if(!IsMyAddress(addr) || IsLocked(addr)) return false;
FastWrite<u64>(FixAddr(addr), value);
return true;
}
bool MemoryBlock::Write128(const u64 addr, const u128 value)
{
if(!IsMyAddress(addr) || IsLocked(addr)) return false;
FastWrite<u128>(FixAddr(addr), value);
return true;
}
bool MemoryBlockLE::Read8(const u64 addr, u8* value)
{
if(!IsMyAddress(addr)) return false;
*value = *(u8*)GetMem(FixAddr(addr));
return true;
}
bool MemoryBlockLE::Read16(const u64 addr, u16* value)
{
if(!IsMyAddress(addr)) return false;
*value = *(u16*)GetMem(FixAddr(addr));
return true;
}
bool MemoryBlockLE::Read32(const u64 addr, u32* value)
{
if(!IsMyAddress(addr)) return false;
*value = *(u32*)GetMem(FixAddr(addr));
return true;
}
bool MemoryBlockLE::Read64(const u64 addr, u64* value)
{
if(!IsMyAddress(addr)) return false;
*value = *(u64*)GetMem(FixAddr(addr));
return true;
}
bool MemoryBlockLE::Read128(const u64 addr, u128* value)
{
if(!IsMyAddress(addr)) return false;
*value = *(u128*)GetMem(FixAddr(addr));
return true;
}
bool MemoryBlockLE::Write8(const u64 addr, const u8 value)
{
if(!IsMyAddress(addr)) return false;
*(u8*)GetMem(FixAddr(addr)) = value;
return true;
}
bool MemoryBlockLE::Write16(const u64 addr, const u16 value)
{
if(!IsMyAddress(addr)) return false;
*(u16*)GetMem(FixAddr(addr)) = value;
return true;
}
bool MemoryBlockLE::Write32(const u64 addr, const u32 value)
{
if(!IsMyAddress(addr)) return false;
*(u32*)GetMem(FixAddr(addr)) = value;
return true;
}
bool MemoryBlockLE::Write64(const u64 addr, const u64 value)
{
if(!IsMyAddress(addr)) return false;
*(u64*)GetMem(FixAddr(addr)) = value;
return true;
}
bool MemoryBlockLE::Write128(const u64 addr, const u128 value)
{
if(!IsMyAddress(addr)) return false;
*(u128*)GetMem(FixAddr(addr)) = value;
return true;
}
// MemoryBase
template<> __forceinline u64 MemoryBase::ReverseData<1>(u64 val) { return val; }
template<> __forceinline u64 MemoryBase::ReverseData<2>(u64 val) { return Reverse16(val); }
template<> __forceinline u64 MemoryBase::ReverseData<4>(u64 val) { return Reverse32(val); }
template<> __forceinline u64 MemoryBase::ReverseData<8>(u64 val) { return Reverse64(val); }
VirtualMemoryBlock::VirtualMemoryBlock() : MemoryBlock(), m_reserve_size(0)
{
}
MemoryBlock* VirtualMemoryBlock::SetRange(const u64 start, const u32 size)
{
range_start = start;
range_size = size;
return this;
}
bool VirtualMemoryBlock::IsInMyRange(const u64 addr)
{
return addr >= GetStartAddr() && addr < GetStartAddr() + GetSize() - GetReservedAmount();
}
bool VirtualMemoryBlock::IsInMyRange(const u64 addr, const u32 size)
{
return IsInMyRange(addr) && IsInMyRange(addr + size - 1);
}
bool VirtualMemoryBlock::IsMyAddress(const u64 addr)
{
for(u32 i=0; i<m_mapped_memory.size(); ++i)
{
if(addr >= m_mapped_memory[i].addr && addr < m_mapped_memory[i].addr + m_mapped_memory[i].size)
{
return true;
}
}
return false;
}
u64 VirtualMemoryBlock::Map(u64 realaddr, u32 size, u64 addr)
{
if(addr)
{
if(!IsInMyRange(addr, size) && (IsMyAddress(addr) || IsMyAddress(addr + size - 1)))
return 0;
m_mapped_memory.emplace_back(addr, realaddr, size);
return addr;
}
else
{
for(u64 addr = GetStartAddr(); addr <= GetEndAddr() - GetReservedAmount() - size;)
{
bool is_good_addr = true;
// check if address is already mapped
for(u32 i=0; i<m_mapped_memory.size(); ++i)
{
if((addr >= m_mapped_memory[i].addr && addr < m_mapped_memory[i].addr + m_mapped_memory[i].size) ||
(m_mapped_memory[i].addr >= addr && m_mapped_memory[i].addr < addr + size))
{
is_good_addr = false;
addr = m_mapped_memory[i].addr + m_mapped_memory[i].size;
break;
}
}
if(!is_good_addr) continue;
m_mapped_memory.emplace_back(addr, realaddr, size);
return addr;
}
return 0;
}
}
u32 VirtualMemoryBlock::UnmapRealAddress(u64 realaddr)
{
for(u32 i=0; i<m_mapped_memory.size(); ++i)
{
if(m_mapped_memory[i].realAddress == realaddr && IsInMyRange(m_mapped_memory[i].addr, m_mapped_memory[i].size))
{
u32 size = m_mapped_memory[i].size;
m_mapped_memory.erase(m_mapped_memory.begin() + i);
return size;
}
}
return 0;
}
u32 VirtualMemoryBlock::UnmapAddress(u64 addr)
{
for(u32 i=0; i<m_mapped_memory.size(); ++i)
{
if(m_mapped_memory[i].addr == addr && IsInMyRange(m_mapped_memory[i].addr, m_mapped_memory[i].size))
{
u32 size = m_mapped_memory[i].size;
m_mapped_memory.erase(m_mapped_memory.begin() + i);
return size;
}
}
return 0;
}
bool VirtualMemoryBlock::Read8(const u64 addr, u8* value)
{
u64 realAddr;
if(!getRealAddr(addr, realAddr))
return false;
*value = Memory.Read8(realAddr);
return true;
}
bool VirtualMemoryBlock::Read16(const u64 addr, u16* value)
{
u64 realAddr;
if(!getRealAddr(addr, realAddr))
return false;
*value = Memory.Read16(realAddr);
return true;
}
bool VirtualMemoryBlock::Read32(const u64 addr, u32* value)
{
u64 realAddr;
if (!getRealAddr(addr, realAddr))
return false;
*value = Memory.Read32(realAddr);
return true;
}
bool VirtualMemoryBlock::Read64(const u64 addr, u64* value)
{
u64 realAddr;
if(!getRealAddr(addr, realAddr))
return false;
*value = Memory.Read64(realAddr);
return true;
}
bool VirtualMemoryBlock::Read128(const u64 addr, u128* value)
{
u64 realAddr;
if(!getRealAddr(addr, realAddr))
return false;
*value = Memory.Read128(realAddr);
return true;
}
bool VirtualMemoryBlock::Write8(const u64 addr, const u8 value)
{
u64 realAddr;
if(!getRealAddr(addr, realAddr))
return false;
Memory.Write8(realAddr, value);
return true;
}
bool VirtualMemoryBlock::Write16(const u64 addr, const u16 value)
{
u64 realAddr;
if(!getRealAddr(addr, realAddr))
return false;
Memory.Write16(realAddr, value);
return true;
}
bool VirtualMemoryBlock::Write32(const u64 addr, const u32 value)
{
u64 realAddr;
if(!getRealAddr(addr, realAddr))
return false;
Memory.Write32(realAddr, value);
return true;
}
bool VirtualMemoryBlock::Write64(const u64 addr, const u64 value)
{
u64 realAddr;
if(!getRealAddr(addr, realAddr))
return false;
Memory.Write64(realAddr, value);
return true;
}
bool VirtualMemoryBlock::Write128(const u64 addr, const u128 value)
{
u64 realAddr;
if(!getRealAddr(addr, realAddr))
return false;
Memory.Write128(realAddr, value);
return true;
}
bool VirtualMemoryBlock::getRealAddr(u64 addr, u64& result)
{
for(u32 i=0; i<m_mapped_memory.size(); ++i)
{
if(addr >= m_mapped_memory[i].addr && addr < m_mapped_memory[i].addr + m_mapped_memory[i].size)
{
result = m_mapped_memory[i].realAddress + (addr - m_mapped_memory[i].addr);
return true;
}
}
return false;
}
u64 VirtualMemoryBlock::getMappedAddress(u64 realAddress)
{
for(u32 i=0; i<m_mapped_memory.size(); ++i)
{
if(realAddress >= m_mapped_memory[i].realAddress && realAddress < m_mapped_memory[i].realAddress + m_mapped_memory[i].size)
{
return m_mapped_memory[i].addr + (realAddress - m_mapped_memory[i].realAddress);
}
}
return 0;
}
void VirtualMemoryBlock::Delete()
{
m_mapped_memory.clear();
MemoryBlock::Delete();
}
bool VirtualMemoryBlock::Reserve(u32 size)
{
if(size + GetReservedAmount() > GetEndAddr() - GetStartAddr())
return false;
m_reserve_size += size;
return true;
}
bool VirtualMemoryBlock::Unreserve(u32 size)
{
if(size > GetReservedAmount())
return false;
m_reserve_size -= size;
return true;
}
u32 VirtualMemoryBlock::GetReservedAmount()
{
return m_reserve_size;
}