rpcs3/rpcs3/Emu/Cell/lv2/sys_storage.cpp
Elad 575a245f8d
IDM: Implement lock-free smart pointers (#16403)
Replaces `std::shared_pointer` with `stx::atomic_ptr` and `stx::shared_ptr`.

Notes to programmers:

* This pr kills the use of `dynamic_cast`, `std::dynamic_pointer_cast` and `std::weak_ptr` on IDM objects, possible replacement is to save the object ID on the base object, then use idm::check/get_unlocked to the destination type via the saved ID which may be null. Null pointer check is how you can tell type mismatch (as dynamic cast) or object destruction (as weak_ptr locking).
* Double-inheritance on IDM objects should be used with care, `stx::shared_ptr` does not support constant-evaluated pointer offsetting to parent/child type.
* `idm::check/get_unlocked` can now be used anywhere.

Misc fixes:
* Fixes some segfaults with RPCN with interaction with IDM.
* Fix deadlocks in access violation handler due locking recursion.
* Fixes race condition in process exit-spawn on memory containers read.
* Fix bug that theoretically can prevent RPCS3 from booting - fix `id_manager::typeinfo` comparison to compare members instead of `memcmp` which can fail spuriously on padding bytes.
* Ensure all IDM inherited types of base, either has `id_base` or `id_type` defined locally, this allows to make getters such as `idm::get_unlocked<lv2_socket, lv2_socket_raw>()` which were broken before. (requires save-states invalidation)
* Removes broken operator[] overload of `stx::shared_ptr` and `stx::single_ptr` for non-array types.
2024-12-22 20:59:48 +02:00

458 lines
10 KiB
C++

#include "stdafx.h"
#include "Emu/Memory/vm.h"
#include "Emu/IdManager.h"
#include "Emu/Cell/ErrorCodes.h"
#include "sys_event.h"
#include "sys_fs.h"
#include "util/shared_ptr.hpp"
#include "sys_storage.h"
LOG_CHANNEL(sys_storage);
namespace
{
struct storage_manager
{
// This is probably wrong and should be assigned per fd or something
atomic_ptr<shared_ptr<lv2_event_queue>> asyncequeue;
};
}
error_code sys_storage_open(u64 device, u64 mode, vm::ptr<u32> fd, u64 flags)
{
sys_storage.todo("sys_storage_open(device=0x%x, mode=0x%x, fd=*0x%x, flags=0x%x)", device, mode, fd, flags);
if (device == 0)
{
return CELL_ENOENT;
}
if (!fd)
{
return CELL_EFAULT;
}
[[maybe_unused]] u64 storage_id = device & 0xFFFFF00FFFFFFFF;
fs::file file;
if (const u32 id = idm::make<lv2_storage>(device, std::move(file), mode, flags))
{
*fd = id;
return CELL_OK;
}
return CELL_EAGAIN;
}
error_code sys_storage_close(u32 fd)
{
sys_storage.todo("sys_storage_close(fd=0x%x)", fd);
idm::remove<lv2_storage>(fd);
return CELL_OK;
}
error_code sys_storage_read(u32 fd, u32 mode, u32 start_sector, u32 num_sectors, vm::ptr<void> bounce_buf, vm::ptr<u32> sectors_read, u64 flags)
{
sys_storage.todo("sys_storage_read(fd=0x%x, mode=0x%x, start_sector=0x%x, num_sectors=0x%x, bounce_buf=*0x%x, sectors_read=*0x%x, flags=0x%x)", fd, mode, start_sector, num_sectors, bounce_buf, sectors_read, flags);
if (!bounce_buf || !sectors_read)
{
return CELL_EFAULT;
}
std::memset(bounce_buf.get_ptr(), 0, num_sectors * 0x200ull);
const auto handle = idm::get_unlocked<lv2_storage>(fd);
if (!handle)
{
return CELL_ESRCH;
}
if (handle->file)
{
handle->file.seek(start_sector * 0x200ull);
const u64 size = num_sectors * 0x200ull;
const u64 result = lv2_file::op_read(handle->file, bounce_buf, size);
num_sectors = ::narrow<u32>(result / 0x200ull);
}
*sectors_read = num_sectors;
return CELL_OK;
}
error_code sys_storage_write(u32 fd, u32 mode, u32 start_sector, u32 num_sectors, vm::ptr<void> data, vm::ptr<u32> sectors_wrote, u64 flags)
{
sys_storage.todo("sys_storage_write(fd=0x%x, mode=0x%x, start_sector=0x%x, num_sectors=0x%x, data=*=0x%x, sectors_wrote=*0x%x, flags=0x%llx)", fd, mode, start_sector, num_sectors, data, sectors_wrote, flags);
if (!sectors_wrote)
{
return CELL_EFAULT;
}
const auto handle = idm::get_unlocked<lv2_storage>(fd);
if (!handle)
{
return CELL_ESRCH;
}
*sectors_wrote = num_sectors;
return CELL_OK;
}
error_code sys_storage_send_device_command(u32 dev_handle, u64 cmd, vm::ptr<void> in, u64 inlen, vm::ptr<void> out, u64 outlen)
{
sys_storage.todo("sys_storage_send_device_command(dev_handle=0x%x, cmd=0x%llx, in=*0x%, inlen=0x%x, out=*0x%x, outlen=0x%x)", dev_handle, cmd, in, inlen, out, outlen);
return CELL_OK;
}
error_code sys_storage_async_configure(u32 fd, u32 io_buf, u32 equeue_id, u32 unk)
{
sys_storage.todo("sys_storage_async_configure(fd=0x%x, io_buf=0x%x, equeue_id=0x%x, unk=*0x%x)", fd, io_buf, equeue_id, unk);
auto& manager = g_fxo->get<storage_manager>();
if (auto queue = idm::get_unlocked<lv2_obj, lv2_event_queue>(equeue_id))
{
manager.asyncequeue.store(queue);
}
else
{
return CELL_ESRCH;
}
return CELL_OK;
}
error_code sys_storage_async_send_device_command(u32 dev_handle, u64 cmd, vm::ptr<void> in, u64 inlen, vm::ptr<void> out, u64 outlen, u64 unk)
{
sys_storage.todo("sys_storage_async_send_device_command(dev_handle=0x%x, cmd=0x%llx, in=*0x%x, inlen=0x%x, out=*0x%x, outlen=0x%x, unk=0x%x)", dev_handle, cmd, in, inlen, out, outlen, unk);
auto& manager = g_fxo->get<storage_manager>();
if (auto q = *manager.asyncequeue.load())
{
q->send(0, unk, unk, unk);
}
return CELL_OK;
}
error_code sys_storage_async_read()
{
sys_storage.todo("sys_storage_async_read()");
return CELL_OK;
}
error_code sys_storage_async_write()
{
sys_storage.todo("sys_storage_async_write()");
return CELL_OK;
}
error_code sys_storage_async_cancel()
{
sys_storage.todo("sys_storage_async_cancel()");
return CELL_OK;
}
error_code sys_storage_get_device_info(u64 device, vm::ptr<StorageDeviceInfo> buffer)
{
sys_storage.todo("sys_storage_get_device_info(device=0x%x, buffer=*0x%x)", device, buffer);
if (!buffer)
{
return CELL_EFAULT;
}
memset(buffer.get_ptr(), 0, sizeof(StorageDeviceInfo));
u64 storage = device & 0xFFFFF00FFFFFFFF;
u32 dev_num = (device >> 32) & 0xFF;
if (storage == ATA_HDD) // dev_hdd?
{
if (dev_num > 2)
{
return not_an_error(-5);
}
std::string u = "unnamed";
memcpy(buffer->name, u.c_str(), u.size());
buffer->sector_size = 0x200;
buffer->one = 1;
buffer->flags[1] = 1;
buffer->flags[2] = 1;
buffer->flags[7] = 1;
// set partition size based on dev_num
// stole these sizes from kernel dump, unknown if they are 100% correct
// vsh reports only 2 partitions even though there is 3 sizes
switch (dev_num)
{
case 0:
buffer->sector_count = 0x2542EAB0; // possibly total size
break;
case 1:
buffer->sector_count = 0x24FAEA98; // which makes this hdd0
break;
case 2:
buffer->sector_count = 0x3FFFF8; // and this one hdd1
break;
}
}
else if (storage == BDVD_DRIVE) // dev_bdvd?
{
if (dev_num > 0)
{
return not_an_error(-5);
}
std::string u = "unnamed";
memcpy(buffer->name, u.c_str(), u.size());
buffer->sector_count = 0x4D955;
buffer->sector_size = 0x800;
buffer->one = 1;
buffer->flags[1] = 0;
buffer->flags[2] = 1;
buffer->flags[7] = 1;
}
else if (storage == USB_MASS_STORAGE_1(0))
{
if (dev_num > 0)
{
return not_an_error(-5);
}
std::string u = "unnamed";
memcpy(buffer->name, u.c_str(), u.size());
/*buffer->sector_count = 0x4D955;*/
buffer->sector_size = 0x200;
buffer->one = 1;
buffer->flags[1] = 0;
buffer->flags[2] = 1;
buffer->flags[7] = 1;
}
else if (storage == NAND_FLASH)
{
if (dev_num > 6)
{
return not_an_error(-5);
}
std::string u = "unnamed";
memcpy(buffer->name, u.c_str(), u.size());
buffer->sector_size = 0x200;
buffer->one = 1;
buffer->flags[1] = 1;
buffer->flags[2] = 1;
buffer->flags[7] = 1;
// see ata_hdd for explanation
switch (dev_num)
{
case 0: buffer->sector_count = 0x80000;
break;
case 1: buffer->sector_count = 0x75F8;
break;
case 2: buffer->sector_count = 0x63E00;
break;
case 3: buffer->sector_count = 0x8000;
break;
case 4: buffer->sector_count = 0x400;
break;
case 5: buffer->sector_count = 0x2000;
break;
case 6: buffer->sector_count = 0x200;
break;
}
}
else if (storage == NOR_FLASH)
{
if (dev_num > 3)
{
return not_an_error(-5);
}
std::string u = "unnamed";
memcpy(buffer->name, u.c_str(), u.size());
buffer->sector_size = 0x200;
buffer->one = 1;
buffer->flags[1] = 0;
buffer->flags[2] = 1;
buffer->flags[7] = 1;
// see ata_hdd for explanation
switch (dev_num)
{
case 0: buffer->sector_count = 0x8000;
break;
case 1: buffer->sector_count = 0x77F8;
break;
case 2: buffer->sector_count = 0x100; // offset, 0x20000
break;
case 3: buffer->sector_count = 0x400;
break;
}
}
else if (storage == NAND_UNK)
{
if (dev_num > 1)
{
return not_an_error(-5);
}
std::string u = "unnamed";
memcpy(buffer->name, u.c_str(), u.size());
buffer->sector_size = 0x800;
buffer->one = 1;
buffer->flags[1] = 0;
buffer->flags[2] = 1;
buffer->flags[7] = 1;
// see ata_hdd for explanation
switch (dev_num)
{
case 0: buffer->sector_count = 0x7FFFFFFF;
break;
}
}
else
{
sys_storage.error("sys_storage_get_device_info(device=0x%x, buffer=*0x%x)", device, buffer);
}
return CELL_OK;
}
error_code sys_storage_get_device_config(vm::ptr<u32> storages, vm::ptr<u32> devices)
{
sys_storage.todo("sys_storage_get_device_config(storages=*0x%x, devices=*0x%x)", storages, devices);
if (storages) *storages = 6; else return CELL_EFAULT;
if (devices) *devices = 17; else return CELL_EFAULT;
return CELL_OK;
}
error_code sys_storage_report_devices(u32 storages, u32 start, u32 devices, vm::ptr<u64> device_ids)
{
sys_storage.todo("sys_storage_report_devices(storages=0x%x, start=0x%x, devices=0x%x, device_ids=0x%x)", storages, start, devices, device_ids);
if (!device_ids)
{
return CELL_EFAULT;
}
static constexpr std::array<u64, 0x11> all_devs = []
{
std::array<u64, 0x11> all_devs{};
all_devs[0] = 0x10300000000000A;
for (int i = 0; i < 7; ++i)
{
all_devs[i + 1] = 0x100000000000001 | (static_cast<u64>(i) << 32);
}
for (int i = 0; i < 3; ++i)
{
all_devs[i + 8] = 0x101000000000007 | (static_cast<u64>(i) << 32);
}
all_devs[11] = 0x101000000000006;
for (int i = 0; i < 4; ++i)
{
all_devs[i + 12] = 0x100000000000004 | (static_cast<u64>(i) << 32);
}
all_devs[16] = 0x100000000000003;
return all_devs;
}();
if (!devices || start >= all_devs.size() || devices > all_devs.size() - start)
{
return CELL_EINVAL;
}
std::copy_n(all_devs.begin() + start, devices, device_ids.get_ptr());
return CELL_OK;
}
error_code sys_storage_configure_medium_event(u32 fd, u32 equeue_id, u32 c)
{
sys_storage.todo("sys_storage_configure_medium_event(fd=0x%x, equeue_id=0x%x, c=0x%x)", fd, equeue_id, c);
return CELL_OK;
}
error_code sys_storage_set_medium_polling_interval()
{
sys_storage.todo("sys_storage_set_medium_polling_interval()");
return CELL_OK;
}
error_code sys_storage_create_region()
{
sys_storage.todo("sys_storage_create_region()");
return CELL_OK;
}
error_code sys_storage_delete_region()
{
sys_storage.todo("sys_storage_delete_region()");
return CELL_OK;
}
error_code sys_storage_execute_device_command(u32 fd, u64 cmd, vm::ptr<char> cmdbuf, u64 cmdbuf_size, vm::ptr<char> databuf, u64 databuf_size, vm::ptr<u32> driver_status)
{
sys_storage.todo("sys_storage_execute_device_command(fd=0x%x, cmd=0x%llx, cmdbuf=*0x%x, cmdbuf_size=0x%llx, databuf=*0x%x, databuf_size=0x%llx, driver_status=*0x%x)", fd, cmd, cmdbuf, cmdbuf_size, databuf, databuf_size, driver_status);
// cmd == 2 is get device info,
// databuf, first byte 0 == status ok?
// byte 1, if < 0 , not ata device
return CELL_OK;
}
error_code sys_storage_check_region_acl()
{
sys_storage.todo("sys_storage_check_region_acl()");
return CELL_OK;
}
error_code sys_storage_set_region_acl()
{
sys_storage.todo("sys_storage_set_region_acl()");
return CELL_OK;
}
error_code sys_storage_get_region_offset()
{
sys_storage.todo("sys_storage_get_region_offset()");
return CELL_OK;
}
error_code sys_storage_set_emulated_speed()
{
sys_storage.todo("sys_storage_set_emulated_speed()");
// todo: only debug kernel has this
return CELL_ENOSYS;
}