rpcs3/rpcs3/Emu/RSX/RSXThread.cpp
2016-01-25 18:48:53 +01:00

809 lines
21 KiB
C++

#include "stdafx.h"
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/state.h"
#include "Emu/RSX/GSManager.h"
#include "RSXThread.h"
#include "Emu/SysCalls/Callback.h"
#include "Emu/SysCalls/CB_FUNC.h"
#include "Emu/SysCalls/lv2/sys_time.h"
#include "Common/BufferUtils.h"
#include "rsx_methods.h"
#define CMD_DEBUG 0
bool user_asked_for_frame_capture = false;
frame_capture_data frame_debug;
namespace rsx
{
std::function<bool(u32 addr, bool is_writing)> g_access_violation_handler;
std::string shaders_cache::path_to_root()
{
return fs::get_executable_dir() + "data/";
}
void shaders_cache::load(const std::string &path, shader_language lang)
{
std::string lang_name = convert::to<std::string>(lang);
auto extract_hash = [](const std::string &string)
{
return std::stoull(string.substr(0, string.find('.')).c_str(), 0, 16);
};
for (const fs::dir::entry &entry : fs::dir{ path })
{
if (entry.name == "." || entry.name == "..")
continue;
u64 hash;
try
{
hash = extract_hash(entry.name);
}
catch (...)
{
LOG_ERROR(RSX, "Cache file '%s' ignored", entry.name);
continue;
}
if (fmt::match(entry.name, "*.fs." + lang_name))
{
fs::file file{ path + entry.name };
decompiled_fragment_shaders.insert(hash, { file.to_string() });
continue;
}
if (fmt::match(entry.name, "*.vs." + lang_name))
{
fs::file file{ path + entry.name };
decompiled_vertex_shaders.insert(hash, { file.to_string() });
continue;
}
}
}
void shaders_cache::load(shader_language lang)
{
std::string root = path_to_root();
//shared cache
load(root + "cache/", lang);
std::string title_id = Emu.GetTitleID();
if (!title_id.empty())
{
load(root + title_id + "/cache/", lang);
}
}
u32 get_address(u32 offset, u32 location)
{
u32 res = 0;
switch (location)
{
case CELL_GCM_CONTEXT_DMA_MEMORY_FRAME_BUFFER:
case CELL_GCM_LOCATION_LOCAL:
{
//TODO: don't use not named constants like 0xC0000000
res = 0xC0000000 + offset;
break;
}
case CELL_GCM_CONTEXT_DMA_MEMORY_HOST_BUFFER:
case CELL_GCM_LOCATION_MAIN:
{
res = (u32)RSXIOMem.RealAddr(offset); // TODO: Error Check?
if (res == 0)
{
throw EXCEPTION("GetAddress(offset=0x%x, location=0x%x): RSXIO memory not mapped", offset, location);
}
//if (Emu.GetGSManager().GetRender().strict_ordering[offset >> 20])
//{
// _mm_mfence(); // probably doesn't have any effect on current implementation
//}
break;
}
default:
{
throw EXCEPTION("Invalid location (offset=0x%x, location=0x%x)", offset, location);
}
}
return res;
}
u32 get_vertex_type_size_on_host(vertex_base_type type, u32 size)
{
switch (type)
{
case vertex_base_type::s1:
switch (size)
{
case 1:
case 2:
case 4:
return sizeof(u16) * size;
case 3:
return sizeof(u16) * 4;
}
throw new EXCEPTION("Wrong vector size");
case vertex_base_type::f: return sizeof(f32) * size;
case vertex_base_type::sf:
switch (size)
{
case 1:
case 2:
case 4:
return sizeof(f16) * size;
case 3:
return sizeof(f16) * 4;
}
throw new EXCEPTION("Wrong vector size");
case vertex_base_type::ub:
switch (size)
{
case 1:
case 2:
case 4:
return sizeof(u8) * size;
case 3:
return sizeof(u8) * 4;
}
throw new EXCEPTION("Wrong vector size");
case vertex_base_type::s32k: return sizeof(u32) * size;
case vertex_base_type::cmp: return sizeof(u16) * 4;
case vertex_base_type::ub256: return sizeof(u8) * 4;
default:
throw new EXCEPTION("RSXVertexData::GetTypeSize: Bad vertex data type (%d)!", type);
return 0;
}
}
void tiled_region::write(const void *src, u32 width, u32 height, u32 pitch)
{
if (!tile)
{
memcpy(ptr, src, height * pitch);
return;
}
u32 offset_x = base % tile->pitch;
u32 offset_y = base / tile->pitch;
switch (tile->comp)
{
case CELL_GCM_COMPMODE_C32_2X1:
case CELL_GCM_COMPMODE_DISABLED:
for (int y = 0; y < height; ++y)
{
memcpy(ptr + (offset_y + y) * tile->pitch + offset_x, (u8*)src + pitch * y, pitch);
}
break;
/*
case CELL_GCM_COMPMODE_C32_2X1:
for (u32 y = 0; y < height; ++y)
{
for (u32 x = 0; x < width; ++x)
{
u32 value = *(u32*)((u8*)src + pitch * y + x * sizeof(u32));
*(u32*)(ptr + (offset_y + y) * tile->pitch + offset_x + (x * 2 + 0) * sizeof(u32)) = value;
*(u32*)(ptr + (offset_y + y) * tile->pitch + offset_x + (x * 2 + 1) * sizeof(u32)) = value;
}
}
break;
*/
case CELL_GCM_COMPMODE_C32_2X2:
for (u32 y = 0; y < height; ++y)
{
for (u32 x = 0; x < width; ++x)
{
u32 value = *(u32*)((u8*)src + pitch * y + x * sizeof(u32));
*(u32*)(ptr + (offset_y + y * 2 + 0) * tile->pitch + offset_x + (x * 2 + 0) * sizeof(u32)) = value;
*(u32*)(ptr + (offset_y + y * 2 + 0) * tile->pitch + offset_x + (x * 2 + 1) * sizeof(u32)) = value;
*(u32*)(ptr + (offset_y + y * 2 + 1) * tile->pitch + offset_x + (x * 2 + 0) * sizeof(u32)) = value;
*(u32*)(ptr + (offset_y + y * 2 + 1) * tile->pitch + offset_x + (x * 2 + 1) * sizeof(u32)) = value;
}
}
break;
default:
throw;
}
}
void tiled_region::read(void *dst, u32 width, u32 height, u32 pitch)
{
if (!tile)
{
memcpy(dst, ptr, height * pitch);
return;
}
u32 offset_x = base % tile->pitch;
u32 offset_y = base / tile->pitch;
switch (tile->comp)
{
case CELL_GCM_COMPMODE_C32_2X1:
case CELL_GCM_COMPMODE_DISABLED:
for (int y = 0; y < height; ++y)
{
memcpy((u8*)dst + pitch * y, ptr + (offset_y + y) * tile->pitch + offset_x, pitch);
}
break;
/*
case CELL_GCM_COMPMODE_C32_2X1:
for (u32 y = 0; y < height; ++y)
{
for (u32 x = 0; x < width; ++x)
{
u32 value = *(u32*)(ptr + (offset_y + y) * tile->pitch + offset_x + (x * 2 + 0) * sizeof(u32));
*(u32*)((u8*)dst + pitch * y + x * sizeof(u32)) = value;
}
}
break;
*/
case CELL_GCM_COMPMODE_C32_2X2:
for (u32 y = 0; y < height; ++y)
{
for (u32 x = 0; x < width; ++x)
{
u32 value = *(u32*)(ptr + (offset_y + y * 2 + 0) * tile->pitch + offset_x + (x * 2 + 0) * sizeof(u32));
*(u32*)((u8*)dst + pitch * y + x * sizeof(u32)) = value;
}
}
break;
default:
throw;
}
}
thread::thread()
{
g_access_violation_handler = [this](u32 address, bool is_writing)
{
return on_access_violation(address, is_writing);
};
}
thread::~thread()
{
g_access_violation_handler = nullptr;
}
void thread::capture_frame(const std::string &name)
{
frame_capture_data::draw_state draw_state = {};
int clip_w = rsx::method_registers[NV4097_SET_SURFACE_CLIP_HORIZONTAL] >> 16;
int clip_h = rsx::method_registers[NV4097_SET_SURFACE_CLIP_VERTICAL] >> 16;
rsx::surface_info surface = {};
surface.unpack(rsx::method_registers[NV4097_SET_SURFACE_FORMAT]);
draw_state.width = clip_w;
draw_state.height = clip_h;
draw_state.color_format = surface.color_format;
draw_state.color_buffer = std::move(copy_render_targets_to_memory());
draw_state.depth_format = surface.depth_format;
draw_state.depth_stencil = std::move(copy_depth_stencil_buffer_to_memory());
draw_state.programs = get_programs();
draw_state.name = name;
frame_debug.draw_calls.push_back(draw_state);
}
void thread::begin()
{
first_count_commands.clear();
draw_mode = to_primitive_type(method_registers[NV4097_SET_BEGIN_END]);
}
void thread::end()
{
transform_constants.clear();
if (capture_current_frame)
{
for (const auto &first_count : first_count_commands)
vertex_draw_count += first_count.second;
capture_frame("Draw " + std::to_string(vertex_draw_count));
vertex_draw_count = 0;
}
}
void thread::on_task()
{
on_init_thread();
reset();
last_flip_time = get_system_time() - 1000000;
scope_thread_t vblank(PURE_EXPR("VBlank Thread"s), [this]()
{
const u64 start_time = get_system_time();
vblank_count = 0;
// TODO: exit condition
while (!Emu.IsStopped())
{
if (get_system_time() - start_time > vblank_count * 1000000 / 60)
{
vblank_count++;
if (vblank_handler)
{
Emu.GetCallbackManager().Async([func = vblank_handler](PPUThread& ppu)
{
func(ppu, 1);
});
}
continue;
}
std::this_thread::sleep_for(1ms); // hack
}
});
// TODO: exit condition
while (true)
{
CHECK_EMU_STATUS;
be_t<u32> get = ctrl->get;
be_t<u32> put = ctrl->put;
if (put == get || !Emu.IsRunning())
{
do_internal_task();
continue;
}
const u32 cmd = ReadIO32(get);
const u32 count = (cmd >> 18) & 0x7ff;
if (cmd & CELL_GCM_METHOD_FLAG_JUMP)
{
u32 offs = cmd & 0x1fffffff;
//LOG_WARNING(RSX, "rsx jump(0x%x) #addr=0x%x, cmd=0x%x, get=0x%x, put=0x%x", offs, m_ioAddress + get, cmd, get, put);
ctrl->get = offs;
continue;
}
if (cmd & CELL_GCM_METHOD_FLAG_CALL)
{
m_call_stack.push(get + 4);
u32 offs = cmd & ~3;
//LOG_WARNING(RSX, "rsx call(0x%x) #0x%x - 0x%x", offs, cmd, get);
ctrl->get = offs;
continue;
}
if (cmd == CELL_GCM_METHOD_FLAG_RETURN)
{
u32 get = m_call_stack.top();
m_call_stack.pop();
//LOG_WARNING(RSX, "rsx return(0x%x)", get);
ctrl->get = get;
continue;
}
if (cmd == 0) //nop
{
ctrl->get = get + 4;
continue;
}
auto args = vm::ptr<u32>::make((u32)RSXIOMem.RealAddr(get + 4));
u32 first_cmd = (cmd & 0xffff) >> 2;
if (cmd & 0x3)
{
LOG_WARNING(RSX, "unaligned command: %s (0x%x from 0x%x)", get_method_name(first_cmd).c_str(), first_cmd, cmd & 0xffff);
}
for (u32 i = 0; i < count; i++)
{
u32 reg = cmd & CELL_GCM_METHOD_FLAG_NON_INCREMENT ? first_cmd : first_cmd + i;
u32 value = args[i];
if (rpcs3::config.misc.log.rsx_logging.value())
{
LOG_NOTICE(RSX, "%s(0x%x) = 0x%x", get_method_name(reg).c_str(), reg, value);
}
method_registers[reg] = value;
if (capture_current_frame)
frame_debug.command_queue.push_back(std::make_pair(reg, value));
if (auto method = methods[reg])
method(this, value);
}
ctrl->get = get + (count + 1) * 4;
}
}
std::string thread::get_name() const
{
return "rsx::thread"s;
}
void thread::fill_scale_offset_data(void *buffer, bool is_d3d) const
{
int clip_w = rsx::method_registers[NV4097_SET_SURFACE_CLIP_HORIZONTAL] >> 16;
int clip_h = rsx::method_registers[NV4097_SET_SURFACE_CLIP_VERTICAL] >> 16;
float scale_x = (float&)rsx::method_registers[NV4097_SET_VIEWPORT_SCALE] / (clip_w / 2.f);
float offset_x = (float&)rsx::method_registers[NV4097_SET_VIEWPORT_OFFSET] - (clip_w / 2.f);
offset_x /= clip_w / 2.f;
float scale_y = (float&)rsx::method_registers[NV4097_SET_VIEWPORT_SCALE + 1] / (clip_h / 2.f);
float offset_y = ((float&)rsx::method_registers[NV4097_SET_VIEWPORT_OFFSET + 1] - (clip_h / 2.f));
offset_y /= clip_h / 2.f;
if (is_d3d) scale_y *= -1;
if (is_d3d) offset_y *= -1;
float scale_z = (float&)rsx::method_registers[NV4097_SET_VIEWPORT_SCALE + 2];
float offset_z = (float&)rsx::method_registers[NV4097_SET_VIEWPORT_OFFSET + 2];
if (!is_d3d) offset_z -= .5;
float one = 1.f;
stream_vector(buffer, (u32&)scale_x, 0, 0, (u32&)offset_x);
stream_vector((char*)buffer + 16, 0, (u32&)scale_y, 0, (u32&)offset_y);
stream_vector((char*)buffer + 32, 0, 0, (u32&)scale_z, (u32&)offset_z);
stream_vector((char*)buffer + 48, 0, 0, 0, (u32&)one);
}
/**
* Fill buffer with vertex program constants.
* Buffer must be at least 512 float4 wide.
*/
void thread::fill_vertex_program_constants_data(void *buffer)
{
for (const auto &entry : transform_constants)
local_transform_constants[entry.first] = entry.second;
for (const auto &entry : local_transform_constants)
stream_vector_from_memory((char*)buffer + entry.first * 4 * sizeof(float), (void*)entry.second.rgba);
}
void thread::write_inline_array_to_buffer(void *dst_buffer)
{
u8* src = reinterpret_cast<u8*>(inline_vertex_array.data());
u8* dst = (u8*)dst_buffer;
size_t bytes_written = 0;
while (bytes_written < inline_vertex_array.size() * sizeof(u32))
{
for (int index = 0; index < rsx::limits::vertex_count; ++index)
{
const auto &info = vertex_arrays_info[index];
if (!info.size) // disabled
continue;
u32 element_size = rsx::get_vertex_type_size_on_host(info.type, info.size);
if (info.type == vertex_base_type::ub && info.size == 4)
{
dst[0] = src[3];
dst[1] = src[2];
dst[2] = src[1];
dst[3] = src[0];
}
else
memcpy(dst, src, element_size);
src += element_size;
dst += element_size;
bytes_written += element_size;
}
}
}
u64 thread::timestamp() const
{
// Get timestamp, and convert it from microseconds to nanoseconds
return get_system_time() * 1000;
}
void thread::do_internal_task()
{
if (m_internal_tasks.empty())
{
std::this_thread::sleep_for(1ms);
}
else
{
std::lock_guard<std::mutex> lock{ m_mtx_task };
internal_task_entry &front = m_internal_tasks.front();
if (front.callback())
{
front.promise.set_value();
m_internal_tasks.pop_front();
}
}
}
std::future<void> thread::add_internal_task(std::function<bool()> callback)
{
std::lock_guard<std::mutex> lock{ m_mtx_task };
m_internal_tasks.emplace_back(callback);
return m_internal_tasks.back().promise.get_future();
}
void thread::invoke(std::function<bool()> callback)
{
if (get_thread_ctrl() == thread_ctrl::get_current())
{
while (true)
{
if (callback())
{
break;
}
}
}
else
{
add_internal_task(callback).wait();
}
}
std::array<u32, 4> thread::get_color_surface_addresses() const
{
u32 offset_color[] =
{
rsx::method_registers[NV4097_SET_SURFACE_COLOR_AOFFSET],
rsx::method_registers[NV4097_SET_SURFACE_COLOR_BOFFSET],
rsx::method_registers[NV4097_SET_SURFACE_COLOR_COFFSET],
rsx::method_registers[NV4097_SET_SURFACE_COLOR_DOFFSET]
};
u32 context_dma_color[] =
{
rsx::method_registers[NV4097_SET_CONTEXT_DMA_COLOR_A],
rsx::method_registers[NV4097_SET_CONTEXT_DMA_COLOR_B],
rsx::method_registers[NV4097_SET_CONTEXT_DMA_COLOR_C],
rsx::method_registers[NV4097_SET_CONTEXT_DMA_COLOR_D]
};
return
{
rsx::get_address(offset_color[0], context_dma_color[0]),
rsx::get_address(offset_color[1], context_dma_color[1]),
rsx::get_address(offset_color[2], context_dma_color[2]),
rsx::get_address(offset_color[3], context_dma_color[3]),
};
}
u32 thread::get_zeta_surface_address() const
{
u32 m_context_dma_z = rsx::method_registers[NV4097_SET_CONTEXT_DMA_ZETA];
u32 offset_zeta = rsx::method_registers[NV4097_SET_SURFACE_ZETA_OFFSET];
return rsx::get_address(offset_zeta, m_context_dma_z);
}
RSXVertexProgram thread::get_current_vertex_program() const
{
RSXVertexProgram result = {};
u32 transform_program_start = rsx::method_registers[NV4097_SET_TRANSFORM_PROGRAM_START];
result.data.reserve((512 - transform_program_start) * 4);
for (int i = transform_program_start; i < 512; ++i)
{
result.data.resize((i - transform_program_start) * 4 + 4);
memcpy(result.data.data() + (i - transform_program_start) * 4, transform_program + i * 4, 4 * sizeof(u32));
D3 d3;
d3.HEX = transform_program[i * 4 + 3];
if (d3.end)
break;
}
result.output_mask = rsx::method_registers[NV4097_SET_VERTEX_ATTRIB_OUTPUT_MASK];
u32 input_mask = rsx::method_registers[NV4097_SET_VERTEX_ATTRIB_INPUT_MASK];
u32 modulo_mask = rsx::method_registers[NV4097_SET_FREQUENCY_DIVIDER_OPERATION];
result.rsx_vertex_inputs.clear();
for (u8 index = 0; index < rsx::limits::vertex_count; ++index)
{
bool enabled = !!(input_mask & (1 << index));
if (!enabled)
continue;
if (vertex_arrays_info[index].size > 0)
{
result.rsx_vertex_inputs.push_back(
{
index,
vertex_arrays_info[index].size,
vertex_arrays_info[index].frequency,
!!((modulo_mask >> index) & 0x1),
true
}
);
}
else if (register_vertex_info[index].size > 0)
{
result.rsx_vertex_inputs.push_back(
{
index,
register_vertex_info[index].size,
register_vertex_info[index].frequency,
!!((modulo_mask >> index) & 0x1),
false
}
);
}
}
return result;
}
void thread::reset()
{
//setup method registers
std::memset(method_registers, 0, sizeof(method_registers));
method_registers[NV4097_SET_COLOR_MASK] = CELL_GCM_COLOR_MASK_R | CELL_GCM_COLOR_MASK_G | CELL_GCM_COLOR_MASK_B | CELL_GCM_COLOR_MASK_A;
method_registers[NV4097_SET_SCISSOR_HORIZONTAL] = (4096 << 16) | 0;
method_registers[NV4097_SET_SCISSOR_VERTICAL] = (4096 << 16) | 0;
method_registers[NV4097_SET_ALPHA_FUNC] = CELL_GCM_ALWAYS;
method_registers[NV4097_SET_ALPHA_REF] = 0;
method_registers[NV4097_SET_BLEND_FUNC_SFACTOR] = (CELL_GCM_ONE << 16) | CELL_GCM_ONE;
method_registers[NV4097_SET_BLEND_FUNC_DFACTOR] = (CELL_GCM_ZERO << 16) | CELL_GCM_ZERO;
method_registers[NV4097_SET_BLEND_COLOR] = 0;
method_registers[NV4097_SET_BLEND_COLOR2] = 0;
method_registers[NV4097_SET_BLEND_EQUATION] = (CELL_GCM_FUNC_ADD << 16) | CELL_GCM_FUNC_ADD;
method_registers[NV4097_SET_STENCIL_MASK] = 0xff;
method_registers[NV4097_SET_STENCIL_FUNC] = CELL_GCM_ALWAYS;
method_registers[NV4097_SET_STENCIL_FUNC_REF] = 0x00;
method_registers[NV4097_SET_STENCIL_FUNC_MASK] = 0xff;
method_registers[NV4097_SET_STENCIL_OP_FAIL] = CELL_GCM_KEEP;
method_registers[NV4097_SET_STENCIL_OP_ZFAIL] = CELL_GCM_KEEP;
method_registers[NV4097_SET_STENCIL_OP_ZPASS] = CELL_GCM_KEEP;
method_registers[NV4097_SET_BACK_STENCIL_MASK] = 0xff;
method_registers[NV4097_SET_BACK_STENCIL_FUNC] = CELL_GCM_ALWAYS;
method_registers[NV4097_SET_BACK_STENCIL_FUNC_REF] = 0x00;
method_registers[NV4097_SET_BACK_STENCIL_FUNC_MASK] = 0xff;
method_registers[NV4097_SET_BACK_STENCIL_OP_FAIL] = CELL_GCM_KEEP;
method_registers[NV4097_SET_BACK_STENCIL_OP_ZFAIL] = CELL_GCM_KEEP;
method_registers[NV4097_SET_BACK_STENCIL_OP_ZPASS] = CELL_GCM_KEEP;
method_registers[NV4097_SET_SHADE_MODE] = CELL_GCM_SMOOTH;
method_registers[NV4097_SET_LOGIC_OP] = CELL_GCM_COPY;
(f32&)method_registers[NV4097_SET_DEPTH_BOUNDS_MIN] = 0.f;
(f32&)method_registers[NV4097_SET_DEPTH_BOUNDS_MAX] = 1.f;
(f32&)method_registers[NV4097_SET_CLIP_MIN] = 0.f;
(f32&)method_registers[NV4097_SET_CLIP_MAX] = 1.f;
method_registers[NV4097_SET_LINE_WIDTH] = 1 << 3;
method_registers[NV4097_SET_FOG_MODE] = CELL_GCM_FOG_MODE_EXP;
method_registers[NV4097_SET_DEPTH_FUNC] = CELL_GCM_LESS;
method_registers[NV4097_SET_DEPTH_MASK] = CELL_GCM_TRUE;
(f32&)method_registers[NV4097_SET_POLYGON_OFFSET_SCALE_FACTOR] = 0.f;
(f32&)method_registers[NV4097_SET_POLYGON_OFFSET_BIAS] = 0.f;
method_registers[NV4097_SET_FRONT_POLYGON_MODE] = CELL_GCM_POLYGON_MODE_FILL;
method_registers[NV4097_SET_BACK_POLYGON_MODE] = CELL_GCM_POLYGON_MODE_FILL;
method_registers[NV4097_SET_CULL_FACE] = CELL_GCM_BACK;
method_registers[NV4097_SET_FRONT_FACE] = CELL_GCM_CCW;
method_registers[NV4097_SET_RESTART_INDEX] = -1;
method_registers[NV4097_SET_CLEAR_RECT_HORIZONTAL] = (4096 << 16) | 0;
method_registers[NV4097_SET_CLEAR_RECT_VERTICAL] = (4096 << 16) | 0;
method_registers[NV4097_SET_ZSTENCIL_CLEAR_VALUE] = 0xffffffff;
method_registers[NV4097_SET_CONTEXT_DMA_REPORT] = CELL_GCM_CONTEXT_DMA_TO_MEMORY_GET_REPORT;
// Reset vertex attrib array
for (int i = 0; i < limits::vertex_count; i++)
{
vertex_arrays_info[i].size = 0;
}
// Construct Textures
for (int i = 0; i < limits::textures_count; i++)
{
textures[i].init(i);
}
for (int i = 0; i < limits::vertex_textures_count; i++)
{
vertex_textures[i].init(i);
}
}
void thread::init(const u32 ioAddress, const u32 ioSize, const u32 ctrlAddress, const u32 localAddress)
{
ctrl = vm::_ptr<CellGcmControl>(ctrlAddress);
this->ioAddress = ioAddress;
this->ioSize = ioSize;
local_mem_addr = localAddress;
flip_status = 0;
m_used_gcm_commands.clear();
on_init();
start();
}
GcmTileInfo *thread::find_tile(u32 offset, u32 location)
{
for (GcmTileInfo &tile : tiles)
{
if (!tile.binded || tile.location != location)
{
continue;
}
if (offset >= tile.offset && offset < tile.offset + tile.size)
{
return &tile;
}
}
return nullptr;
}
tiled_region thread::get_tiled_address(u32 offset, u32 location)
{
u32 address = get_address(offset, location);
GcmTileInfo *tile = find_tile(offset, location);
u32 base = 0;
if (tile)
{
base = offset - tile->offset;
address = get_address(tile->offset, location);
}
return{ address, base, tile, (u8*)vm::base(address) };
}
u32 thread::ReadIO32(u32 addr)
{
u32 value;
if (!RSXIOMem.Read32(addr, &value))
{
throw EXCEPTION("%s(addr=0x%x): RSXIO memory not mapped", __FUNCTION__, addr);
}
return value;
}
void thread::WriteIO32(u32 addr, u32 value)
{
if (!RSXIOMem.Write32(addr, value))
{
throw EXCEPTION("%s(addr=0x%x): RSXIO memory not mapped", __FUNCTION__, addr);
}
}
}