rpcs3/rpcs3/Emu/RSX/GL/GLGSRender.cpp

1247 lines
38 KiB
C++

#include "stdafx.h"
#include "../Overlays/overlay_compile_notification.h"
#include "../Overlays/Shaders/shader_loading_dialog_native.h"
#include "GLGSRender.h"
#include "GLCompute.h"
#include "Emu/Memory/vm_locking.h"
#include "Emu/RSX/rsx_methods.h"
#include "Emu/RSX/NV47/HW/context_accessors.define.h"
[[noreturn]] extern void report_fatal_error(std::string_view _text, bool is_html = false, bool include_help_text = true);
namespace
{
void throw_fatal(const std::vector<std::string>& reasons)
{
const std::string delimiter = "\n- ";
const std::string reasons_list = fmt::merge(reasons, delimiter);
const std::string message = fmt::format(
"OpenGL could not be initialized on this system for the following reason(s):\n"
"\n"
"- %s",
reasons_list);
Emu.BlockingCallFromMainThread([message]()
{
report_fatal_error(message, false, false);
});
}
}
u64 GLGSRender::get_cycles()
{
return thread_ctrl::get_cycles(static_cast<named_thread<GLGSRender>&>(*this));
}
GLGSRender::GLGSRender(utils::serial* ar) noexcept : GSRender(ar)
{
m_shaders_cache = std::make_unique<gl::shader_cache>(m_prog_buffer, "opengl", "v1.94");
if (g_cfg.video.disable_vertex_cache)
m_vertex_cache = std::make_unique<gl::null_vertex_cache>();
else
m_vertex_cache = std::make_unique<gl::weak_vertex_cache>();
backend_config.supports_hw_a2c = false;
backend_config.supports_hw_a2one = false;
backend_config.supports_multidraw = true;
backend_config.supports_normalized_barycentrics = true;
}
extern CellGcmContextData current_context;
void GLGSRender::set_viewport()
{
// NOTE: scale offset matrix already contains the viewport transformation
const auto [clip_width, clip_height] = rsx::apply_resolution_scale<true>(
rsx::method_registers.surface_clip_width(), rsx::method_registers.surface_clip_height());
glViewport(0, 0, clip_width, clip_height);
}
void GLGSRender::set_scissor(bool clip_viewport)
{
areau scissor;
if (get_scissor(scissor, clip_viewport))
{
// NOTE: window origin does not affect scissor region (probably only affects viewport matrix; already applied)
// See LIMBO [NPUB-30373] which uses shader window origin = top
glScissor(scissor.x1, scissor.y1, scissor.width(), scissor.height());
gl_state.enable(GL_TRUE, GL_SCISSOR_TEST);
}
}
void GLGSRender::on_init_thread()
{
ensure(m_frame);
// NOTES: All contexts have to be created before any is bound to a thread
// This allows context sharing to work (both GLRCs passed to wglShareLists have to be idle or you get ERROR_BUSY)
m_context = m_frame->make_context();
const auto shadermode = g_cfg.video.shadermode.get();
if (shadermode != shader_mode::recompiler)
{
auto context_create_func = [m_frame = m_frame]()
{
return m_frame->make_context();
};
auto context_bind_func = [m_frame = m_frame](draw_context_t ctx)
{
m_frame->set_current(ctx);
};
auto context_destroy_func = [m_frame = m_frame](draw_context_t ctx)
{
m_frame->delete_context(ctx);
};
gl::initialize_pipe_compiler(context_create_func, context_bind_func, context_destroy_func, g_cfg.video.shader_compiler_threads_count);
}
else
{
auto null_context_create_func = []() -> draw_context_t
{
return nullptr;
};
gl::initialize_pipe_compiler(null_context_create_func, {}, {}, 1);
}
// Bind primary context to main RSX thread
m_frame->set_current(m_context);
gl::set_primary_context_thread();
zcull_ctrl.reset(static_cast<::rsx::reports::ZCULL_control*>(this));
m_occlusion_type = g_cfg.video.precise_zpass_count ? GL_SAMPLES_PASSED : GL_ANY_SAMPLES_PASSED;
gl::init();
gl::set_command_context(gl_state);
// Enable adaptive vsync if vsync is requested
gl::set_swapinterval(g_cfg.video.vsync ? -1 : 0);
if (g_cfg.video.debug_output)
gl::enable_debugging();
rsx_log.success("GL RENDERER: %s (%s)", reinterpret_cast<const char*>(glGetString(GL_RENDERER)), reinterpret_cast<const char*>(glGetString(GL_VENDOR)));
rsx_log.success("GL VERSION: %s", reinterpret_cast<const char*>(glGetString(GL_VERSION)));
rsx_log.success("GLSL VERSION: %s", reinterpret_cast<const char*>(glGetString(GL_SHADING_LANGUAGE_VERSION)));
auto& gl_caps = gl::get_driver_caps();
std::vector<std::string> exception_reasons;
if (!gl_caps.ARB_texture_buffer_supported)
{
exception_reasons.push_back("GL_ARB_texture_buffer_object is required but not supported by your GPU");
}
if (!gl_caps.ARB_dsa_supported && !gl_caps.EXT_dsa_supported)
{
exception_reasons.push_back("GL_ARB_direct_state_access or GL_EXT_direct_state_access is required but not supported by your GPU");
}
if (!exception_reasons.empty())
{
throw_fatal(exception_reasons);
}
if (!gl_caps.ARB_depth_buffer_float_supported && g_cfg.video.force_high_precision_z_buffer)
{
rsx_log.warning("High precision Z buffer requested but your GPU does not support GL_ARB_depth_buffer_float. Option ignored.");
}
if (!gl_caps.ARB_texture_barrier_supported && !gl_caps.NV_texture_barrier_supported && !g_cfg.video.strict_rendering_mode)
{
rsx_log.warning("Texture barriers are not supported by your GPU. Feedback loops will have undefined results.");
}
if (!gl_caps.ARB_bindless_texture_supported)
{
switch (shadermode)
{
case shader_mode::async_with_interpreter:
case shader_mode::interpreter_only:
rsx_log.error("Bindless texture extension required for shader interpreter is not supported on your GPU. Will use async recompiler as a fallback.");
g_cfg.video.shadermode.set(shader_mode::async_recompiler);
break;
default:
break;
}
}
if (gl_caps.NV_fragment_shader_barycentric_supported &&
gl_caps.vendor_NVIDIA &&
g_cfg.video.shader_precision != gpu_preset_level::low)
{
// NVIDIA's attribute interpolation requires some workarounds
backend_config.supports_normalized_barycentrics = false;
}
// Use industry standard resource alignment values as defaults
m_uniform_buffer_offset_align = 256;
m_min_texbuffer_alignment = 256;
m_max_texbuffer_size = 0;
glEnable(GL_VERTEX_PROGRAM_POINT_SIZE);
glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &m_uniform_buffer_offset_align);
glGetIntegerv(GL_TEXTURE_BUFFER_OFFSET_ALIGNMENT, &m_min_texbuffer_alignment);
glGetIntegerv(GL_MAX_TEXTURE_BUFFER_SIZE, &m_max_texbuffer_size);
m_vao.create();
// Set min alignment to 16-bytes for SSE optimizations with aligned addresses to work
m_min_texbuffer_alignment = std::max(m_min_texbuffer_alignment, 16);
m_uniform_buffer_offset_align = std::max(m_uniform_buffer_offset_align, 16);
rsx_log.notice("Supported texel buffer size reported: %d bytes", m_max_texbuffer_size);
if (m_max_texbuffer_size < (16 * 0x100000))
{
rsx_log.error("Max texture buffer size supported is less than 16M which is useless. Expect undefined behaviour.");
m_max_texbuffer_size = (16 * 0x100000);
}
// Array stream buffer
{
m_gl_persistent_stream_buffer = std::make_unique<gl::texture>(GL_TEXTURE_BUFFER, 0, 0, 0, 0, GL_R8UI);
gl_state.bind_texture(GL_STREAM_BUFFER_START + 0, GL_TEXTURE_BUFFER, m_gl_persistent_stream_buffer->id());
}
// Register stream buffer
{
m_gl_volatile_stream_buffer = std::make_unique<gl::texture>(GL_TEXTURE_BUFFER, 0, 0, 0, 0, GL_R8UI);
gl_state.bind_texture(GL_STREAM_BUFFER_START + 1, GL_TEXTURE_BUFFER, m_gl_volatile_stream_buffer->id());
}
// Fallback null texture instead of relying on texture0
{
std::array<u32, 8> pixeldata = { 0, 0, 0, 0, 0, 0, 0, 0 };
// 1D
auto tex1D = std::make_unique<gl::texture>(GL_TEXTURE_1D, 1, 1, 1, 1, GL_RGBA8);
tex1D->copy_from(pixeldata.data(), gl::texture::format::rgba, gl::texture::type::uint_8_8_8_8, {});
// 2D
auto tex2D = std::make_unique<gl::texture>(GL_TEXTURE_2D, 1, 1, 1, 1, GL_RGBA8);
tex2D->copy_from(pixeldata.data(), gl::texture::format::rgba, gl::texture::type::uint_8_8_8_8, {});
// 3D
auto tex3D = std::make_unique<gl::texture>(GL_TEXTURE_3D, 1, 1, 1, 1, GL_RGBA8);
tex3D->copy_from(pixeldata.data(), gl::texture::format::rgba, gl::texture::type::uint_8_8_8_8, {});
// CUBE
auto texCUBE = std::make_unique<gl::texture>(GL_TEXTURE_CUBE_MAP, 1, 1, 1, 1, GL_RGBA8);
texCUBE->copy_from(pixeldata.data(), gl::texture::format::rgba, gl::texture::type::uint_8_8_8_8, {});
m_null_textures[GL_TEXTURE_1D] = std::move(tex1D);
m_null_textures[GL_TEXTURE_2D] = std::move(tex2D);
m_null_textures[GL_TEXTURE_3D] = std::move(tex3D);
m_null_textures[GL_TEXTURE_CUBE_MAP] = std::move(texCUBE);
}
if (!gl_caps.ARB_buffer_storage_supported)
{
rsx_log.warning("Forcing use of legacy OpenGL buffers because ARB_buffer_storage is not supported");
// TODO: do not modify config options
g_cfg.video.renderdoc_compatiblity.from_string("true");
}
if (g_cfg.video.renderdoc_compatiblity)
{
rsx_log.warning("Using legacy openGL buffers.");
manually_flush_ring_buffers = true;
m_attrib_ring_buffer = std::make_unique<gl::legacy_ring_buffer>();
m_transform_constants_buffer = std::make_unique<gl::legacy_ring_buffer>();
m_fragment_constants_buffer = std::make_unique<gl::legacy_ring_buffer>();
m_fragment_env_buffer = std::make_unique<gl::legacy_ring_buffer>();
m_vertex_env_buffer = std::make_unique<gl::legacy_ring_buffer>();
m_texture_parameters_buffer = std::make_unique<gl::legacy_ring_buffer>();
m_vertex_layout_buffer = std::make_unique<gl::legacy_ring_buffer>();
m_index_ring_buffer = std::make_unique<gl::legacy_ring_buffer>();
m_vertex_instructions_buffer = std::make_unique<gl::legacy_ring_buffer>();
m_fragment_instructions_buffer = std::make_unique<gl::legacy_ring_buffer>();
m_raster_env_ring_buffer = std::make_unique<gl::legacy_ring_buffer>();
m_scratch_ring_buffer = std::make_unique<gl::legacy_ring_buffer>();
}
else
{
m_attrib_ring_buffer = std::make_unique<gl::ring_buffer>();
m_transform_constants_buffer = std::make_unique<gl::ring_buffer>();
m_fragment_constants_buffer = std::make_unique<gl::ring_buffer>();
m_fragment_env_buffer = std::make_unique<gl::ring_buffer>();
m_vertex_env_buffer = std::make_unique<gl::ring_buffer>();
m_texture_parameters_buffer = std::make_unique<gl::ring_buffer>();
m_vertex_layout_buffer = std::make_unique<gl::ring_buffer>();
m_index_ring_buffer = gl_caps.vendor_AMD ? std::make_unique<gl::transient_ring_buffer>() : std::make_unique<gl::ring_buffer>();
m_vertex_instructions_buffer = std::make_unique<gl::ring_buffer>();
m_fragment_instructions_buffer = std::make_unique<gl::ring_buffer>();
m_raster_env_ring_buffer = std::make_unique<gl::ring_buffer>();
m_scratch_ring_buffer = std::make_unique<gl::ring_buffer>();
}
m_attrib_ring_buffer->create(gl::buffer::target::texture, 256 * 0x100000);
m_index_ring_buffer->create(gl::buffer::target::element_array, 16 * 0x100000);
m_transform_constants_buffer->create(gl::buffer::target::uniform, 64 * 0x100000);
m_fragment_constants_buffer->create(gl::buffer::target::uniform, 16 * 0x100000);
m_fragment_env_buffer->create(gl::buffer::target::uniform, 16 * 0x100000);
m_vertex_env_buffer->create(gl::buffer::target::uniform, 16 * 0x100000);
m_texture_parameters_buffer->create(gl::buffer::target::uniform, 16 * 0x100000);
m_vertex_layout_buffer->create(gl::buffer::target::uniform, 16 * 0x100000);
m_raster_env_ring_buffer->create(gl::buffer::target::uniform, 16 * 0x100000);
m_scratch_ring_buffer->create(gl::buffer::target::uniform, 16 * 0x100000);
if (shadermode == shader_mode::async_with_interpreter || shadermode == shader_mode::interpreter_only)
{
m_vertex_instructions_buffer->create(gl::buffer::target::ssbo, 16 * 0x100000);
m_fragment_instructions_buffer->create(gl::buffer::target::ssbo, 16 * 0x100000);
m_shader_interpreter.create();
}
if (gl_caps.vendor_AMD)
{
// Initialize with 256k identity entries
std::vector<u32> dst(256 * 1024);
for (u32 n = 0; n < (0x100000 >> 2); ++n)
{
dst[n] = n;
}
m_identity_index_buffer = std::make_unique<gl::buffer>();
m_identity_index_buffer->create(gl::buffer::target::element_array,dst.size() * sizeof(u32), dst.data(), gl::buffer::memory_type::local);
}
else if (gl_caps.vendor_NVIDIA)
{
// NOTE: On NVIDIA cards going back decades (including the PS3) there is a slight normalization inaccuracy in compressed formats.
// Confirmed in BLES01916 (The Evil Within) which uses RGB565 for some virtual texturing data.
backend_config.supports_hw_renormalization = true;
}
m_persistent_stream_view.update(m_attrib_ring_buffer.get(), 0, std::min<u32>(static_cast<u32>(m_attrib_ring_buffer->size()), m_max_texbuffer_size));
m_volatile_stream_view.update(m_attrib_ring_buffer.get(), 0, std::min<u32>(static_cast<u32>(m_attrib_ring_buffer->size()), m_max_texbuffer_size));
m_gl_persistent_stream_buffer->copy_from(m_persistent_stream_view);
m_gl_volatile_stream_buffer->copy_from(m_volatile_stream_view);
m_vao.element_array_buffer = *m_index_ring_buffer;
int image_unit = 0;
for (auto &sampler : m_fs_sampler_states)
{
sampler.create();
sampler.bind(image_unit++);
}
for (auto &sampler : m_vs_sampler_states)
{
sampler.create();
sampler.bind(image_unit++);
}
for (auto& sampler : m_fs_sampler_mirror_states)
{
sampler.create();
sampler.apply_defaults();
sampler.bind(image_unit++);
}
//Occlusion query
for (u32 i = 0; i < rsx::reports::occlusion_query_count; ++i)
{
GLuint handle = 0;
auto &query = m_occlusion_query_data[i];
glGenQueries(1, &handle);
query.driver_handle = handle;
query.pending = false;
query.active = false;
query.result = 0;
}
m_ui_renderer.create();
m_video_output_pass.create();
m_gl_texture_cache.initialize();
m_prog_buffer.initialize
(
[this](void* const& props, const RSXVertexProgram& vp, const RSXFragmentProgram& fp)
{
// Program was linked or queued for linking
m_shaders_cache->store(props, vp, fp);
}
);
if (!m_overlay_manager)
{
m_frame->hide();
m_shaders_cache->load(nullptr);
m_frame->show();
}
else
{
rsx::shader_loading_dialog_native dlg(this);
m_shaders_cache->load(&dlg);
}
}
void GLGSRender::on_exit()
{
// Destroy internal RSX state, may call upon this->do_local_task
GSRender::on_exit();
// Globals
// TODO: Move these
gl::destroy_compute_tasks();
gl::destroy_overlay_passes();
gl::destroy_global_texture_resources();
gl::debug::g_vis_texture.reset(); // TODO
gl::destroy_pipe_compiler();
m_prog_buffer.clear();
m_rtts.destroy();
for (auto &fbo : m_framebuffer_cache)
{
fbo.remove();
}
m_framebuffer_cache.clear();
m_upscaler.reset();
for (auto& flip_tex_image : m_flip_tex_color)
{
flip_tex_image.reset();
}
if (m_vao)
{
m_vao.remove();
}
m_gl_persistent_stream_buffer.reset();
m_gl_volatile_stream_buffer.reset();
for (auto &sampler : m_fs_sampler_states)
{
sampler.remove();
}
for (auto &sampler : m_fs_sampler_mirror_states)
{
sampler.remove();
}
for (auto &sampler : m_vs_sampler_states)
{
sampler.remove();
}
if (m_attrib_ring_buffer)
{
m_attrib_ring_buffer->remove();
}
if (m_transform_constants_buffer)
{
m_transform_constants_buffer->remove();
}
if (m_fragment_constants_buffer)
{
m_fragment_constants_buffer->remove();
}
if (m_fragment_env_buffer)
{
m_fragment_env_buffer->remove();
}
if (m_vertex_env_buffer)
{
m_vertex_env_buffer->remove();
}
if (m_texture_parameters_buffer)
{
m_texture_parameters_buffer->remove();
}
if (m_vertex_layout_buffer)
{
m_vertex_layout_buffer->remove();
}
if (m_index_ring_buffer)
{
m_index_ring_buffer->remove();
}
if (m_identity_index_buffer)
{
m_identity_index_buffer->remove();
}
if (m_vertex_instructions_buffer)
{
m_vertex_instructions_buffer->remove();
}
if (m_fragment_instructions_buffer)
{
m_fragment_instructions_buffer->remove();
}
if (m_raster_env_ring_buffer)
{
m_raster_env_ring_buffer->remove();
}
if (m_scratch_ring_buffer)
{
m_scratch_ring_buffer->remove();
}
m_null_textures.clear();
m_gl_texture_cache.destroy();
m_ui_renderer.destroy();
m_video_output_pass.destroy();
m_shader_interpreter.destroy();
for (u32 i = 0; i < rsx::reports::occlusion_query_count; ++i)
{
auto &query = m_occlusion_query_data[i];
query.active = false;
query.pending = false;
GLuint handle = query.driver_handle;
glDeleteQueries(1, &handle);
query.driver_handle = 0;
}
zcull_ctrl.release();
gl::set_primary_context_thread(false);
}
void GLGSRender::clear_surface(u32 arg)
{
if (skip_current_frame) return;
// If stencil write mask is disabled, remove clear_stencil bit
if (!rsx::method_registers.stencil_mask()) arg &= ~RSX_GCM_CLEAR_STENCIL_BIT;
// Ignore invalid clear flags
if ((arg & RSX_GCM_CLEAR_ANY_MASK) == 0) return;
u8 ctx = rsx::framebuffer_creation_context::context_draw;
if (arg & RSX_GCM_CLEAR_COLOR_RGBA_MASK) ctx |= rsx::framebuffer_creation_context::context_clear_color;
if (arg & RSX_GCM_CLEAR_DEPTH_STENCIL_MASK) ctx |= rsx::framebuffer_creation_context::context_clear_depth;
init_buffers(static_cast<rsx::framebuffer_creation_context>(ctx), true);
if (!m_graphics_state.test(rsx::rtt_config_valid)) return;
gl::clear_cmd_info clear_cmd{};
gl::command_context cmd{ gl_state };
const bool full_frame =
rsx::method_registers.scissor_origin_x() == 0 &&
rsx::method_registers.scissor_origin_y() == 0 &&
rsx::method_registers.scissor_width() >= rsx::method_registers.surface_clip_width() &&
rsx::method_registers.scissor_height() >= rsx::method_registers.surface_clip_height();
bool update_color = false, update_z = false;
rsx::surface_depth_format2 surface_depth_format = rsx::method_registers.surface_depth_fmt();
if (auto ds = std::get<1>(m_rtts.m_bound_depth_stencil); arg & RSX_GCM_CLEAR_DEPTH_STENCIL_MASK)
{
if (arg & RSX_GCM_CLEAR_DEPTH_BIT)
{
u32 max_depth_value = get_max_depth_value(surface_depth_format);
u32 clear_depth = rsx::method_registers.z_clear_value(is_depth_stencil_format(surface_depth_format));
clear_cmd.clear_depth.value = f32(clear_depth) / max_depth_value;
clear_cmd.aspect_mask |= gl::image_aspect::depth;
}
if (is_depth_stencil_format(surface_depth_format))
{
if (arg & RSX_GCM_CLEAR_STENCIL_BIT)
{
clear_cmd.clear_stencil.mask = rsx::method_registers.stencil_mask();
clear_cmd.clear_stencil.value = rsx::method_registers.stencil_clear_value();
clear_cmd.aspect_mask |= gl::image_aspect::stencil;
}
if (const auto ds_mask = (arg & RSX_GCM_CLEAR_DEPTH_STENCIL_MASK);
ds_mask != RSX_GCM_CLEAR_DEPTH_STENCIL_MASK || !full_frame)
{
ensure(clear_cmd.aspect_mask);
if (ds->state_flags & rsx::surface_state_flags::erase_bkgnd && // Needs initialization
ds->old_contents.empty() && !g_cfg.video.read_depth_buffer) // No way to load data from memory, so no initialization given
{
// Only one aspect was cleared. Make sure to memory initialize the other before removing dirty flag
if (ds_mask == RSX_GCM_CLEAR_DEPTH_BIT)
{
// Depth was cleared, initialize stencil
clear_cmd.clear_stencil.mask = 0xff;
clear_cmd.clear_stencil.value = 0xff;
clear_cmd.aspect_mask |= gl::image_aspect::stencil;
}
else if (ds_mask == RSX_GCM_CLEAR_STENCIL_BIT)
{
// Stencil was cleared, initialize depth
clear_cmd.clear_depth.value = 1.f;
clear_cmd.aspect_mask |= gl::image_aspect::depth;
}
}
else
{
ds->write_barrier(cmd);
}
}
}
if (clear_cmd.aspect_mask)
{
// Memory has been initialized
update_z = true;
}
}
if (auto colormask = (arg & 0xf0))
{
u8 clear_a = rsx::method_registers.clear_color_a();
u8 clear_r = rsx::method_registers.clear_color_r();
u8 clear_g = rsx::method_registers.clear_color_g();
u8 clear_b = rsx::method_registers.clear_color_b();
switch (rsx::method_registers.surface_color())
{
case rsx::surface_color_format::x32:
case rsx::surface_color_format::w16z16y16x16:
case rsx::surface_color_format::w32z32y32x32:
{
// Nop
colormask = 0;
break;
}
case rsx::surface_color_format::b8:
{
rsx::get_b8_clear_color(clear_r, clear_g, clear_b, clear_a);
colormask = rsx::get_b8_clearmask(colormask);
break;
}
case rsx::surface_color_format::g8b8:
{
rsx::get_g8b8_clear_color(clear_r, clear_g, clear_b, clear_a);
colormask = rsx::get_g8b8_r8g8_clearmask(colormask);
break;
}
case rsx::surface_color_format::r5g6b5:
{
rsx::get_rgb565_clear_color(clear_r, clear_g, clear_b, clear_a);
break;
}
case rsx::surface_color_format::x1r5g5b5_o1r5g5b5:
{
rsx::get_a1rgb555_clear_color(clear_r, clear_g, clear_b, clear_a, 255);
break;
}
case rsx::surface_color_format::x1r5g5b5_z1r5g5b5:
{
rsx::get_a1rgb555_clear_color(clear_r, clear_g, clear_b, clear_a, 0);
break;
}
case rsx::surface_color_format::a8b8g8r8:
case rsx::surface_color_format::x8b8g8r8_o8b8g8r8:
case rsx::surface_color_format::x8b8g8r8_z8b8g8r8:
{
rsx::get_abgr8_clear_color(clear_r, clear_g, clear_b, clear_a);
colormask = rsx::get_abgr8_clearmask(colormask);
break;
}
default:
{
break;
}
}
if (colormask)
{
clear_cmd.clear_color.mask = colormask;
clear_cmd.clear_color.attachment_count = static_cast<u8>(m_rtts.m_bound_render_target_ids.size());
clear_cmd.clear_color.r = clear_r;
clear_cmd.clear_color.g = clear_g;
clear_cmd.clear_color.b = clear_b;
clear_cmd.clear_color.a = clear_a;
clear_cmd.aspect_mask |= gl::image_aspect::color;
if (!full_frame)
{
for (const auto& index : m_rtts.m_bound_render_target_ids)
{
m_rtts.m_bound_render_targets[index].second->write_barrier(cmd);
}
}
update_color = true;
}
}
if (update_color || update_z)
{
m_rtts.on_write({ update_color, update_color, update_color, update_color }, update_z);
}
if (!full_frame)
{
gl_state.enable(GL_SCISSOR_TEST);
}
gl::clear_attachments(cmd, clear_cmd);
}
bool GLGSRender::load_program()
{
const auto shadermode = g_cfg.video.shadermode.get();
if (m_graphics_state & rsx::pipeline_state::invalidate_pipeline_bits)
{
get_current_fragment_program(fs_sampler_state);
ensure(current_fragment_program.valid);
get_current_vertex_program(vs_sampler_state);
}
else if (m_program)
{
if (!m_shader_interpreter.is_interpreter(m_program)) [[likely]]
{
return true;
}
if (shadermode == shader_mode::interpreter_only)
{
m_program = m_shader_interpreter.get(current_fp_metadata);
return true;
}
}
const bool was_interpreter = m_shader_interpreter.is_interpreter(m_program);
m_vertex_prog = nullptr;
m_fragment_prog = nullptr;
if (shadermode != shader_mode::interpreter_only) [[likely]]
{
void* pipeline_properties = nullptr;
std::tie(m_program, m_vertex_prog, m_fragment_prog) = m_prog_buffer.get_graphics_pipeline(current_vertex_program, current_fragment_program, pipeline_properties,
shadermode != shader_mode::recompiler, true);
if (m_prog_buffer.check_cache_missed())
{
// Notify the user with HUD notification
if (g_cfg.misc.show_shader_compilation_hint)
{
rsx::overlays::show_shader_compile_notification();
}
}
else
{
ensure(m_program);
m_program->sync();
}
}
else
{
m_program = nullptr;
}
if (!m_program && (shadermode == shader_mode::async_with_interpreter || shadermode == shader_mode::interpreter_only))
{
// Fall back to interpreter
m_program = m_shader_interpreter.get(current_fp_metadata);
if (was_interpreter != m_shader_interpreter.is_interpreter(m_program))
{
// Program has changed, reupload
m_interpreter_state = rsx::invalidate_pipeline_bits;
}
}
return m_program != nullptr;
}
void GLGSRender::load_program_env()
{
if (!m_program)
{
fmt::throw_exception("Unreachable right now");
}
const u32 fragment_constants_size = current_fp_metadata.program_constants_buffer_length;
const bool update_transform_constants = m_graphics_state & rsx::pipeline_state::transform_constants_dirty;
const bool update_fragment_constants = (m_graphics_state & rsx::pipeline_state::fragment_constants_dirty) && fragment_constants_size;
const bool update_vertex_env = m_graphics_state & rsx::pipeline_state::vertex_state_dirty;
const bool update_fragment_env = m_graphics_state & rsx::pipeline_state::fragment_state_dirty;
const bool update_fragment_texture_env = m_graphics_state & rsx::pipeline_state::fragment_texture_state_dirty;
const bool update_instruction_buffers = !!m_interpreter_state && m_shader_interpreter.is_interpreter(m_program);
const bool update_raster_env = rsx::method_registers.polygon_stipple_enabled() && (m_graphics_state & rsx::pipeline_state::polygon_stipple_pattern_dirty);
if (manually_flush_ring_buffers)
{
if (update_fragment_env) m_fragment_env_buffer->reserve_storage_on_heap(128);
if (update_vertex_env) m_vertex_env_buffer->reserve_storage_on_heap(256);
if (update_fragment_texture_env) m_texture_parameters_buffer->reserve_storage_on_heap(256);
if (update_fragment_constants) m_fragment_constants_buffer->reserve_storage_on_heap(utils::align(fragment_constants_size, 256));
if (update_transform_constants) m_transform_constants_buffer->reserve_storage_on_heap(8192);
if (update_raster_env) m_raster_env_ring_buffer->reserve_storage_on_heap(128);
if (update_instruction_buffers)
{
m_vertex_instructions_buffer->reserve_storage_on_heap(513 * 16);
m_fragment_instructions_buffer->reserve_storage_on_heap(current_fp_metadata.program_ucode_length);
}
}
if (update_vertex_env)
{
// Vertex state
auto mapping = m_vertex_env_buffer->alloc_from_heap(144, m_uniform_buffer_offset_align);
auto buf = static_cast<u8*>(mapping.first);
fill_scale_offset_data(buf, false);
fill_user_clip_data(buf + 64);
*(reinterpret_cast<u32*>(buf + 128)) = rsx::method_registers.transform_branch_bits();
*(reinterpret_cast<f32*>(buf + 132)) = rsx::method_registers.point_size() * rsx::get_resolution_scale();
*(reinterpret_cast<f32*>(buf + 136)) = rsx::method_registers.clip_min();
*(reinterpret_cast<f32*>(buf + 140)) = rsx::method_registers.clip_max();
m_vertex_env_buffer->bind_range(GL_VERTEX_PARAMS_BIND_SLOT, mapping.second, 144);
}
if (update_transform_constants)
{
// Vertex constants
u32 mem_offset = 0;
auto mem_alloc = [&](usz size) -> std::pair<void*, usz>
{
const auto mapping = m_transform_constants_buffer->alloc_from_heap(static_cast<u32>(size), m_uniform_buffer_offset_align);
mem_offset = mapping.second;
return { mapping.first, size };
};
rsx::io_buffer io_buf(mem_alloc);
upload_transform_constants(io_buf);
if (!io_buf.empty())
{
m_transform_constants_buffer->bind_range(GL_VERTEX_CONSTANT_BUFFERS_BIND_SLOT, mem_offset, ::size32(io_buf));
}
}
if (update_fragment_constants && !update_instruction_buffers)
{
// Fragment constants
auto mapping = m_fragment_constants_buffer->alloc_from_heap(fragment_constants_size, m_uniform_buffer_offset_align);
auto buf = static_cast<u8*>(mapping.first);
m_prog_buffer.fill_fragment_constants_buffer({ reinterpret_cast<float*>(buf), fragment_constants_size },
*ensure(m_fragment_prog), current_fragment_program, true);
m_fragment_constants_buffer->bind_range(GL_FRAGMENT_CONSTANT_BUFFERS_BIND_SLOT, mapping.second, fragment_constants_size);
}
if (update_fragment_env)
{
// Fragment state
auto mapping = m_fragment_env_buffer->alloc_from_heap(32, m_uniform_buffer_offset_align);
auto buf = static_cast<u8*>(mapping.first);
fill_fragment_state_buffer(buf, current_fragment_program);
m_fragment_env_buffer->bind_range(GL_FRAGMENT_STATE_BIND_SLOT, mapping.second, 32);
}
if (update_fragment_texture_env)
{
// Fragment texture parameters
auto mapping = m_texture_parameters_buffer->alloc_from_heap(768, m_uniform_buffer_offset_align);
current_fragment_program.texture_params.write_to(mapping.first, current_fp_metadata.referenced_textures_mask);
m_texture_parameters_buffer->bind_range(GL_FRAGMENT_TEXTURE_PARAMS_BIND_SLOT, mapping.second, 768);
}
if (update_raster_env)
{
auto mapping = m_raster_env_ring_buffer->alloc_from_heap(128, m_uniform_buffer_offset_align);
std::memcpy(mapping.first, rsx::method_registers.polygon_stipple_pattern(), 128);
m_raster_env_ring_buffer->bind_range(GL_RASTERIZER_STATE_BIND_SLOT, mapping.second, 128);
m_graphics_state.clear(rsx::pipeline_state::polygon_stipple_pattern_dirty);
}
if (update_instruction_buffers)
{
if (m_interpreter_state & rsx::vertex_program_dirty)
{
// Attach vertex buffer data
const auto vp_block_length = current_vp_metadata.ucode_length + 16;
auto vp_mapping = m_vertex_instructions_buffer->alloc_from_heap(vp_block_length, 16);
auto vp_buf = static_cast<u8*>(vp_mapping.first);
auto vp_config = reinterpret_cast<u32*>(vp_buf);
vp_config[0] = current_vertex_program.base_address;
vp_config[1] = current_vertex_program.entry;
vp_config[2] = current_vertex_program.output_mask;
vp_config[3] = rsx::method_registers.two_side_light_en() ? 1u : 0u;
std::memcpy(vp_buf + 16, current_vertex_program.data.data(), current_vp_metadata.ucode_length);
m_vertex_instructions_buffer->bind_range(GL_INTERPRETER_VERTEX_BLOCK, vp_mapping.second, vp_block_length);
m_vertex_instructions_buffer->notify();
}
if (m_interpreter_state & rsx::fragment_program_dirty)
{
// Attach fragment buffer data
const auto fp_block_length = current_fp_metadata.program_ucode_length + 80;
auto fp_mapping = m_fragment_instructions_buffer->alloc_from_heap(fp_block_length, 16);
auto fp_buf = static_cast<u8*>(fp_mapping.first);
// Control mask
const auto control_masks = reinterpret_cast<u32*>(fp_buf);
control_masks[0] = rsx::method_registers.shader_control();
control_masks[1] = current_fragment_program.texture_state.texture_dimensions;
// Bind textures
m_shader_interpreter.update_fragment_textures(fs_sampler_state, current_fp_metadata.referenced_textures_mask, reinterpret_cast<u32*>(fp_buf + 16));
std::memcpy(fp_buf + 80, current_fragment_program.get_data(), current_fragment_program.ucode_length);
m_fragment_instructions_buffer->bind_range(GL_INTERPRETER_FRAGMENT_BLOCK, fp_mapping.second, fp_block_length);
m_fragment_instructions_buffer->notify();
}
}
if (manually_flush_ring_buffers)
{
if (update_fragment_env) m_fragment_env_buffer->unmap();
if (update_vertex_env) m_vertex_env_buffer->unmap();
if (update_fragment_texture_env) m_texture_parameters_buffer->unmap();
if (update_fragment_constants) m_fragment_constants_buffer->unmap();
if (update_transform_constants) m_transform_constants_buffer->unmap();
if (update_raster_env) m_raster_env_ring_buffer->unmap();
if (update_instruction_buffers)
{
m_vertex_instructions_buffer->unmap();
m_fragment_instructions_buffer->unmap();
}
}
m_graphics_state.clear(
rsx::pipeline_state::fragment_state_dirty |
rsx::pipeline_state::vertex_state_dirty |
rsx::pipeline_state::transform_constants_dirty |
rsx::pipeline_state::fragment_constants_dirty |
rsx::pipeline_state::fragment_texture_state_dirty);
}
void GLGSRender::upload_transform_constants(const rsx::io_buffer& buffer)
{
const usz transform_constants_size = (!m_vertex_prog || m_vertex_prog->has_indexed_constants) ? 8192 : m_vertex_prog->constant_ids.size() * 16;
if (transform_constants_size)
{
const auto constant_ids = (transform_constants_size == 8192)
? std::span<const u16>{}
: std::span<const u16>(m_vertex_prog->constant_ids);
buffer.reserve(transform_constants_size);
fill_vertex_program_constants_data(buffer.data(), constant_ids);
}
}
void GLGSRender::update_vertex_env(const gl::vertex_upload_info& upload_info)
{
if (manually_flush_ring_buffers)
{
m_vertex_layout_buffer->reserve_storage_on_heap(128 + 16);
}
// Vertex layout state
auto mapping = m_vertex_layout_buffer->alloc_from_heap(128 + 16, m_uniform_buffer_offset_align);
auto buf = static_cast<u32*>(mapping.first);
buf[0] = upload_info.vertex_index_base;
buf[1] = upload_info.vertex_index_offset;
buf += 4;
fill_vertex_layout_state(m_vertex_layout, upload_info.first_vertex, upload_info.allocated_vertex_count, reinterpret_cast<s32*>(buf), upload_info.persistent_mapping_offset, upload_info.volatile_mapping_offset);
m_vertex_layout_buffer->bind_range(GL_VERTEX_LAYOUT_BIND_SLOT, mapping.second, 128 + 16);
if (manually_flush_ring_buffers)
{
m_vertex_layout_buffer->unmap();
}
}
void GLGSRender::patch_transform_constants(rsx::context* ctx, u32 index, u32 count)
{
if (!m_vertex_prog)
{
// Shouldn't be reachable, but handle it correctly anyway
m_graphics_state |= rsx::pipeline_state::transform_constants_dirty;
return;
}
std::pair<u32, u32> data_range {};
void* data_source = nullptr;
const auto bound_range = m_transform_constants_buffer->bound_range();
if (m_vertex_prog->has_indexed_constants)
{
// We're working with a full range. We can do a direct patch in this case since no index translation is required.
const auto byte_count = count * 16;
const auto byte_offset = index * 16;
data_range = { bound_range.first + byte_offset, byte_count};
data_source = &REGS(ctx)->transform_constants[index];
}
else if (auto xform_id = m_vertex_prog->TranslateConstantsRange(index, count); xform_id >= 0)
{
const auto write_offset = xform_id * 16;
const auto byte_count = count * 16;
data_range = { bound_range.first + write_offset, byte_count };
data_source = &REGS(ctx)->transform_constants[index];
}
else
{
auto allocate_mem = [&](usz size) -> std::pair<void*, usz>
{
m_scratch_buffer.resize(size);
return { m_scratch_buffer.data(), size };
};
rsx::io_buffer iobuf(allocate_mem);
upload_transform_constants(iobuf);
data_range = { bound_range.first, ::size32(iobuf) };
data_source = iobuf.data();
}
// Move data to memory that the GPU can work with
if (manually_flush_ring_buffers)
{
m_scratch_ring_buffer->reserve_storage_on_heap(data_range.second);
}
auto mapping = m_scratch_ring_buffer->alloc_from_heap(data_range.second, 16);
std::memcpy(mapping.first, data_source, data_range.second);
if (manually_flush_ring_buffers)
{
m_scratch_ring_buffer->unmap();
}
m_scratch_ring_buffer->notify();
// Do the transfer to patch the constants on the host device
m_scratch_ring_buffer->copy_to(m_transform_constants_buffer.get(), mapping.second, data_range.first, data_range.second);
}
bool GLGSRender::on_access_violation(u32 address, bool is_writing)
{
const bool can_flush = is_current_thread();
const rsx::invalidation_cause cause = is_writing
? (can_flush ? rsx::invalidation_cause::write : rsx::invalidation_cause::deferred_write)
: (can_flush ? rsx::invalidation_cause::read : rsx::invalidation_cause::deferred_read);
auto cmd = can_flush ? gl::command_context{ gl_state } : gl::command_context{};
auto result = m_gl_texture_cache.invalidate_address(cmd, address, cause);
if (result.invalidate_samplers)
{
std::lock_guard lock(m_sampler_mutex);
m_samplers_dirty.store(true);
}
if (!result.violation_handled)
{
return zcull_ctrl->on_access_violation(address);
}
if (result.num_flushable > 0)
{
auto &task = post_flush_request(address, result);
m_eng_interrupt_mask |= rsx::backend_interrupt;
vm::temporary_unlock();
task.producer_wait();
}
return true;
}
void GLGSRender::on_invalidate_memory_range(const utils::address_range &range, rsx::invalidation_cause cause)
{
gl::command_context cmd{ gl_state };
auto data = m_gl_texture_cache.invalidate_range(cmd, range, cause);
AUDIT(data.empty());
if (cause == rsx::invalidation_cause::unmap && data.violation_handled)
{
m_gl_texture_cache.purge_unreleased_sections();
{
std::lock_guard lock(m_sampler_mutex);
m_samplers_dirty.store(true);
}
}
}
void GLGSRender::on_semaphore_acquire_wait()
{
if (!work_queue.empty() ||
(async_flip_requested & flip_request::emu_requested))
{
do_local_task(rsx::FIFO::state::lock_wait);
}
}
void GLGSRender::do_local_task(rsx::FIFO::state state)
{
if (!work_queue.empty())
{
std::lock_guard lock(queue_guard);
work_queue.remove_if([](auto &q) { return q.received; });
for (auto& q : work_queue)
{
if (q.processed) continue;
gl::command_context cmd{ gl_state };
q.result = m_gl_texture_cache.flush_all(cmd, q.section_data);
q.processed = true;
}
}
else if (!in_begin_end && state != rsx::FIFO::state::lock_wait)
{
if (m_graphics_state & rsx::pipeline_state::framebuffer_reads_dirty)
{
//This will re-engage locks and break the texture cache if another thread is waiting in access violation handler!
//Only call when there are no waiters
m_gl_texture_cache.do_update();
m_graphics_state.clear(rsx::pipeline_state::framebuffer_reads_dirty);
}
}
rsx::thread::do_local_task(state);
if (state == rsx::FIFO::state::lock_wait)
{
// Critical check finished
return;
}
if (m_overlay_manager)
{
const auto should_ignore = in_begin_end && state != rsx::FIFO::state::empty;
if ((async_flip_requested & flip_request::native_ui) && !should_ignore && !is_stopped())
{
rsx::display_flip_info_t info{};
info.buffer = current_display_buffer;
flip(info);
}
}
}
gl::work_item& GLGSRender::post_flush_request(u32 address, gl::texture_cache::thrashed_set& flush_data)
{
std::lock_guard lock(queue_guard);
auto &result = work_queue.emplace_back();
result.address_to_flush = address;
result.section_data = std::move(flush_data);
return result;
}
bool GLGSRender::scaled_image_from_memory(const rsx::blit_src_info& src, const rsx::blit_dst_info& dst, bool interpolate)
{
gl::command_context cmd{ gl_state };
if (m_gl_texture_cache.blit(cmd, src, dst, interpolate, m_rtts))
{
m_samplers_dirty.store(true);
return true;
}
return false;
}
void GLGSRender::notify_tile_unbound(u32 tile)
{
// TODO: Handle texture writeback
if (false)
{
u32 addr = rsx::get_address(tiles[tile].offset, tiles[tile].location);
on_notify_memory_unmapped(addr, tiles[tile].size);
m_rtts.invalidate_surface_address(addr, false);
}
{
std::lock_guard lock(m_sampler_mutex);
m_samplers_dirty.store(true);
}
}
void GLGSRender::begin_occlusion_query(rsx::reports::occlusion_query_info* query)
{
query->result = 0;
glBeginQuery(m_occlusion_type, query->driver_handle);
}
void GLGSRender::end_occlusion_query(rsx::reports::occlusion_query_info* query)
{
ensure(query->active);
glEndQuery(m_occlusion_type);
}
bool GLGSRender::check_occlusion_query_status(rsx::reports::occlusion_query_info* query)
{
if (!query->num_draws)
return true;
GLint status = GL_TRUE;
glGetQueryObjectiv(query->driver_handle, GL_QUERY_RESULT_AVAILABLE, &status);
return status != GL_FALSE;
}
void GLGSRender::get_occlusion_query_result(rsx::reports::occlusion_query_info* query)
{
if (query->num_draws)
{
GLint result = 0;
glGetQueryObjectiv(query->driver_handle, GL_QUERY_RESULT, &result);
query->result += result;
}
}
void GLGSRender::discard_occlusion_query(rsx::reports::occlusion_query_info* query)
{
if (query->active)
{
//Discard is being called on an active query, close it
glEndQuery(m_occlusion_type);
}
}