rpcs3/rpcs3/Emu/Io/PadHandler.cpp

765 lines
25 KiB
C++

#include "stdafx.h"
#include "PadHandler.h"
#include "Emu/system_utils.hpp"
#include "Input/pad_thread.h"
#include "Input/product_info.h"
cfg_input g_cfg_input;
LOG_CHANNEL(input_log, "Input");
PadHandlerBase::PadHandlerBase(pad_handler type) : m_type(type)
{
}
// Search an unordered map for a string value and return found keycode
int PadHandlerBase::FindKeyCode(const std::unordered_map<u32, std::string>& map, const cfg::string& name, bool fallback)
{
const std::string def = name.def;
const std::string nam = name.to_string();
int def_code = -1;
for (auto it = map.begin(); it != map.end(); ++it)
{
if (it->second == nam)
return it->first;
if (fallback && it->second == def)
def_code = it->first;
}
if (fallback)
{
if (!nam.empty())
input_log.error("int FindKeyCode for [name = %s] returned with [def_code = %d] for [def = %s]", nam, def_code, def);
if (def_code < 0)
def_code = 0;
}
return def_code;
}
long PadHandlerBase::FindKeyCode(const std::unordered_map<u64, std::string>& map, const cfg::string& name, bool fallback)
{
const std::string def = name.def;
const std::string nam = name.to_string();
long def_code = -1;
for (auto it = map.begin(); it != map.end(); ++it)
{
if (it->second == nam)
return static_cast<long>(it->first);
if (fallback && it->second == def)
def_code = static_cast<long>(it->first);
}
if (fallback)
{
if (!nam.empty())
input_log.error("long FindKeyCode for [name = %s] returned with [def_code = %d] for [def = %s]", nam, def_code, def);
if (def_code < 0)
def_code = 0;
}
return def_code;
}
// Search an unordered map for a string value and return found keycode
int PadHandlerBase::FindKeyCodeByString(const std::unordered_map<u32, std::string>& map, const std::string& name, bool fallback)
{
for (auto it = map.begin(); it != map.end(); ++it)
{
if (it->second == name)
return it->first;
}
if (fallback)
{
if (!name.empty())
input_log.error("long FindKeyCodeByString for [name = %s] returned with 0", name);
return 0;
}
return -1;
}
// Search an unordered map for a string value and return found keycode
long PadHandlerBase::FindKeyCodeByString(const std::unordered_map<u64, std::string>& map, const std::string& name, bool fallback)
{
for (auto it = map.begin(); it != map.end(); ++it)
{
if (it->second == name)
return static_cast<long>(it->first);
}
if (fallback)
{
if (!name.empty())
input_log.error("long FindKeyCodeByString for [name = %s] returned with 0", name);
return 0;
}
return -1;
}
// Get new multiplied value based on the multiplier
s32 PadHandlerBase::MultipliedInput(s32 raw_value, s32 multiplier)
{
return (multiplier * raw_value) / 100;
}
// Get new scaled value between 0 and 255 based on its minimum and maximum
f32 PadHandlerBase::ScaledInput(s32 raw_value, int minimum, int maximum, f32 range)
{
// value based on max range converted to [0, 1]
const f32 val = static_cast<f32>(std::clamp(raw_value, minimum, maximum) - minimum) / (abs(maximum) + abs(minimum));
return range * val;
}
// Get new scaled value between -255 and 255 based on its minimum and maximum
f32 PadHandlerBase::ScaledInput2(s32 raw_value, int minimum, int maximum, f32 range)
{
// value based on max range converted to [0, 1]
const f32 val = static_cast<f32>(std::clamp(raw_value, minimum, maximum) - minimum) / (abs(maximum) + abs(minimum));
return (2.0f * range * val) - range;
}
// Get normalized trigger value based on the range defined by a threshold
u16 PadHandlerBase::NormalizeTriggerInput(u16 value, int threshold) const
{
if (value <= threshold || threshold >= trigger_max)
{
return static_cast<u16>(0);
}
else if (threshold <= trigger_min)
{
return static_cast<u16>(ScaledInput(value, trigger_min, trigger_max));
}
else
{
const s32 val = static_cast<s32>(static_cast<f32>(trigger_max) * (value - threshold) / (trigger_max - threshold));
return static_cast<u16>(ScaledInput(val, trigger_min, trigger_max));
}
}
// normalizes a directed input, meaning it will correspond to a single "button" and not an axis with two directions
// the input values must lie in 0+
u16 PadHandlerBase::NormalizeDirectedInput(s32 raw_value, s32 threshold, s32 maximum) const
{
if (threshold >= maximum || maximum <= 0)
{
return static_cast<u16>(0);
}
const f32 val = static_cast<f32>(std::clamp(raw_value, 0, maximum)) / maximum; // value based on max range converted to [0, 1]
if (threshold <= 0)
{
return static_cast<u16>(255.0f * val);
}
else
{
const f32 thresh = static_cast<f32>(threshold) / maximum; // threshold converted to [0, 1]
return static_cast<u16>(255.0f * std::min(1.0f, (val - thresh) / (1.0f - thresh)));
}
}
u16 PadHandlerBase::NormalizeStickInput(u16 raw_value, int threshold, int multiplier, bool ignore_threshold) const
{
const s32 scaled_value = MultipliedInput(raw_value, multiplier);
if (ignore_threshold)
{
return static_cast<u16>(ScaledInput(scaled_value, 0, thumb_max));
}
else
{
return NormalizeDirectedInput(scaled_value, threshold, thumb_max);
}
}
// This function normalizes stick deadzone based on the DS3's deadzone, which is ~13%
// X and Y is expected to be in (-255) to 255 range, deadzone should be in terms of thumb stick range
// return is new x and y values in 0-255 range
std::tuple<u16, u16> PadHandlerBase::NormalizeStickDeadzone(s32 inX, s32 inY, u32 deadzone) const
{
const f32 dz_range = deadzone / static_cast<f32>(std::abs(thumb_max)); // NOTE: thumb_max should be positive anyway
f32 X = inX / 255.0f;
f32 Y = inY / 255.0f;
if (dz_range > 0.f)
{
const f32 mag = std::min(sqrtf(X * X + Y * Y), 1.f);
if (mag <= 0)
{
return std::tuple<u16, u16>(ConvertAxis(X), ConvertAxis(Y));
}
if (mag > dz_range)
{
const f32 pos = std::lerp(0.13f, 1.f, (mag - dz_range) / (1 - dz_range));
const f32 scale = pos / mag;
X = X * scale;
Y = Y * scale;
}
else
{
const f32 pos = std::lerp(0.f, 0.13f, mag / dz_range);
const f32 scale = pos / mag;
X = X * scale;
Y = Y * scale;
}
}
return std::tuple<u16, u16>(ConvertAxis(X), ConvertAxis(Y));
}
// get clamped value between 0 and 255
u16 PadHandlerBase::Clamp0To255(f32 input)
{
return static_cast<u16>(std::clamp(input, 0.0f, 255.0f));
}
// get clamped value between 0 and 1023
u16 PadHandlerBase::Clamp0To1023(f32 input)
{
return static_cast<u16>(std::clamp(input, 0.0f, 1023.0f));
}
// input has to be [-1,1]. result will be [0,255]
u16 PadHandlerBase::ConvertAxis(f32 value)
{
return static_cast<u16>((value + 1.0) * (255.0 / 2.0));
}
// The DS3, (and i think xbox controllers) give a 'square-ish' type response, so that the corners will give (almost)max x/y instead of the ~30x30 from a perfect circle
// using a simple scale/sensitivity increase would *work* although it eats a chunk of our usable range in exchange
// this might be the best for now, in practice it seems to push the corners to max of 20x20, with a squircle_factor of 8000
// This function assumes inX and inY is already in 0-255
std::tuple<u16, u16> PadHandlerBase::ConvertToSquirclePoint(u16 inX, u16 inY, int squircle_factor)
{
// convert inX and Y to a (-1, 1) vector;
const f32 x = (inX - 127.5f) / 127.5f;
const f32 y = (inY - 127.5f) / 127.5f;
// compute angle and len of given point to be used for squircle radius
const f32 angle = std::atan2(y, x);
const f32 r = std::sqrt(std::pow(x, 2.f) + std::pow(y, 2.f));
// now find len/point on the given squircle from our current angle and radius in polar coords
// https://thatsmaths.com/2016/07/14/squircles/
const f32 newLen = (1 + std::pow(std::sin(2 * angle), 2.f) / (squircle_factor / 1000.f)) * r;
// we now have len and angle, convert to cartesian
const int newX = Clamp0To255(((newLen * std::cos(angle)) + 1) * 127.5f);
const int newY = Clamp0To255(((newLen * std::sin(angle)) + 1) * 127.5f);
return std::tuple<u16, u16>(newX, newY);
}
std::string PadHandlerBase::name_string() const
{
return m_name_string;
}
usz PadHandlerBase::max_devices() const
{
return m_max_devices;
}
bool PadHandlerBase::has_config() const
{
return b_has_config;
}
bool PadHandlerBase::has_rumble() const
{
return b_has_rumble;
}
bool PadHandlerBase::has_motion() const
{
return b_has_motion;
}
bool PadHandlerBase::has_deadzones() const
{
return b_has_deadzones;
}
bool PadHandlerBase::has_led() const
{
return b_has_led;
}
bool PadHandlerBase::has_rgb() const
{
return b_has_rgb;
}
bool PadHandlerBase::has_player_led() const
{
return b_has_player_led;
}
bool PadHandlerBase::has_battery() const
{
return b_has_battery;
}
bool PadHandlerBase::has_pressure_intensity_button() const
{
return b_has_pressure_intensity_button;
}
void PadHandlerBase::init_configs()
{
for (u32 i = 0; i < MAX_GAMEPADS; i++)
{
init_config(&m_pad_configs[i]);
}
}
void PadHandlerBase::get_next_button_press(const std::string& pad_id, const pad_callback& callback, const pad_fail_callback& fail_callback, bool get_blacklist, const std::vector<std::string>& /*buttons*/)
{
if (get_blacklist)
blacklist.clear();
auto device = get_device(pad_id);
const auto status = update_connection(device);
if (status == connection::disconnected)
{
if (fail_callback)
fail_callback(pad_id);
return;
}
if (status == connection::no_data)
{
return;
}
// Get the current button values
auto data = get_button_values(device);
// Check for each button in our list if its corresponding (maybe remapped) button or axis was pressed.
// Return the new value if the button was pressed (aka. its value was bigger than 0 or the defined threshold)
// Get all the legally pressed buttons and use the one with highest value (prioritize first)
struct
{
u16 value = 0;
std::string name;
} pressed_button{};
for (const auto& [keycode, name] : button_list)
{
const u16& value = data[keycode];
if (!get_blacklist && std::find(blacklist.begin(), blacklist.end(), keycode) != blacklist.end())
continue;
const bool is_trigger = get_is_left_trigger(device, keycode) || get_is_right_trigger(device, keycode);
const bool is_stick = !is_trigger && (get_is_left_stick(device, keycode) || get_is_right_stick(device, keycode));
const bool is_button = !is_trigger && !is_stick;
if ((is_trigger && (value > m_trigger_threshold)) || (is_stick && (value > m_thumb_threshold)) || (is_button && (value > 0)))
{
if (get_blacklist)
{
blacklist.emplace_back(keycode);
input_log.error("%s Calibration: Added key [ %d = %s ] to blacklist. Value = %d", m_type, keycode, name, value);
}
else if (value > pressed_button.value)
{
pressed_button = { .value = value, .name = name };
}
}
}
if (get_blacklist)
{
if (blacklist.empty())
input_log.success("%s Calibration: Blacklist is clear. No input spam detected", m_type);
return;
}
const pad_preview_values preview_values = get_preview_values(data);
const u32 battery_level = get_battery_level(pad_id);
if (callback)
{
if (pressed_button.value > 0)
return callback(pressed_button.value, pressed_button.name, pad_id, battery_level, preview_values);
else
return callback(0, "", pad_id, battery_level, preview_values);
}
}
void PadHandlerBase::get_motion_sensors(const std::string& pad_id, const motion_callback& callback, const motion_fail_callback& fail_callback, motion_preview_values preview_values, const std::array<AnalogSensor, 4>& /*sensors*/)
{
if (!b_has_motion)
{
return;
}
// Reset sensors
auto device = get_device(pad_id);
const auto status = update_connection(device);
if (status == connection::disconnected)
{
if (fail_callback)
fail_callback(pad_id, std::move(preview_values));
return;
}
if (status == connection::no_data || !callback)
{
return;
}
// Get the current motion values
std::shared_ptr<Pad> pad = std::make_shared<Pad>(m_type, 0, 0, 0);
pad->m_sensors.resize(preview_values.size(), AnalogSensor(0, 0, 0, 0, 0));
pad_ensemble binding{pad, device, nullptr};
get_extended_info(binding);
for (usz i = 0; i < preview_values.size(); i++)
{
preview_values[i] = pad->m_sensors[i].m_value;
}
callback(pad_id, std::move(preview_values));
}
void PadHandlerBase::convert_stick_values(u16& x_out, u16& y_out, const s32& x_in, const s32& y_in, const s32& deadzone, const s32& padsquircling) const
{
// Normalize our stick axis based on the deadzone
std::tie(x_out, y_out) = NormalizeStickDeadzone(x_in, y_in, deadzone);
// Apply pad squircling if necessary
if (padsquircling != 0)
{
std::tie(x_out, y_out) = ConvertToSquirclePoint(x_out, y_out, padsquircling);
}
}
// Update the pad button values based on their type and thresholds. With this you can use axis or triggers as buttons or vice versa
void PadHandlerBase::TranslateButtonPress(const std::shared_ptr<PadDevice>& device, u64 keyCode, bool& pressed, u16& val, bool ignore_stick_threshold, bool ignore_trigger_threshold)
{
if (!device || !device->config)
{
return;
}
if (get_is_left_trigger(device, keyCode))
{
pressed = val > (ignore_trigger_threshold ? 0 : device->config->ltriggerthreshold);
val = pressed ? NormalizeTriggerInput(val, device->config->ltriggerthreshold) : 0;
}
else if (get_is_right_trigger(device, keyCode))
{
pressed = val > (ignore_trigger_threshold ? 0 : device->config->rtriggerthreshold);
val = pressed ? NormalizeTriggerInput(val, device->config->rtriggerthreshold) : 0;
}
else if (get_is_left_stick(device, keyCode))
{
pressed = val > (ignore_stick_threshold ? 0 : device->config->lstickdeadzone);
val = pressed ? NormalizeStickInput(val, device->config->lstickdeadzone, device->config->lstickmultiplier, ignore_stick_threshold) : 0;
}
else if (get_is_right_stick(device, keyCode))
{
pressed = val > (ignore_stick_threshold ? 0 : device->config->rstickdeadzone);
val = pressed ? NormalizeStickInput(val, device->config->rstickdeadzone, device->config->rstickmultiplier, ignore_stick_threshold) : 0;
}
else // normal button (should in theory also support sensitive buttons)
{
pressed = val > 0;
val = pressed ? val : 0;
}
}
bool PadHandlerBase::bindPadToDevice(std::shared_ptr<Pad> pad, u8 player_id)
{
if (!pad || player_id >= g_cfg_input.player.size())
{
return false;
}
const cfg_player* player_config = g_cfg_input.player[player_id];
if (!player_config)
{
return false;
}
std::shared_ptr<PadDevice> pad_device = get_device(player_config->device);
if (!pad_device)
{
input_log.error("PadHandlerBase::bindPadToDevice: no PadDevice found for device '%s'", player_config->device.to_string());
return false;
}
m_pad_configs[player_id].from_string(player_config->config.to_string());
pad_device->config = &m_pad_configs[player_id];
pad_device->player_id = player_id;
cfg_pad* config = pad_device->config;
if (config == nullptr)
{
input_log.error("PadHandlerBase::bindPadToDevice: no profile found for device %d '%s'", m_bindings.size(), player_config->device.to_string());
return false;
}
std::array<u32, button::button_count> mapping = get_mapped_key_codes(pad_device, config);
u32 pclass_profile = 0x0;
for (const auto& product : input::get_products_by_class(config->device_class_type))
{
if (product.vendor_id == config->vendor_id && product.product_id == config->product_id)
{
pclass_profile = product.pclass_profile;
}
}
pad->Init
(
CELL_PAD_STATUS_DISCONNECTED,
CELL_PAD_CAPABILITY_PS3_CONFORMITY | CELL_PAD_CAPABILITY_PRESS_MODE | CELL_PAD_CAPABILITY_HP_ANALOG_STICK | CELL_PAD_CAPABILITY_ACTUATOR | CELL_PAD_CAPABILITY_SENSOR_MODE,
CELL_PAD_DEV_TYPE_STANDARD,
config->device_class_type,
pclass_profile,
config->vendor_id,
config->product_id,
config->pressure_intensity
);
pad->m_buttons.emplace_back(special_button_offset, mapping[button::pressure_intensity_button], special_button_value::pressure_intensity);
pad->m_pressure_intensity_button_index = static_cast<s32>(pad->m_buttons.size()) - 1;
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::up], CELL_PAD_CTRL_UP);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::down], CELL_PAD_CTRL_DOWN);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::left], CELL_PAD_CTRL_LEFT);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::right], CELL_PAD_CTRL_RIGHT);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::cross], CELL_PAD_CTRL_CROSS);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::square], CELL_PAD_CTRL_SQUARE);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::circle], CELL_PAD_CTRL_CIRCLE);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::triangle], CELL_PAD_CTRL_TRIANGLE);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::l1], CELL_PAD_CTRL_L1);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::l2], CELL_PAD_CTRL_L2);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::l3], CELL_PAD_CTRL_L3);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::r1], CELL_PAD_CTRL_R1);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::r2], CELL_PAD_CTRL_R2);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::r3], CELL_PAD_CTRL_R3);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::start], CELL_PAD_CTRL_START);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::select], CELL_PAD_CTRL_SELECT);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::ps], CELL_PAD_CTRL_PS);
pad->m_sticks.emplace_back(CELL_PAD_BTN_OFFSET_ANALOG_LEFT_X, mapping[button::ls_left], mapping[button::ls_right]);
pad->m_sticks.emplace_back(CELL_PAD_BTN_OFFSET_ANALOG_LEFT_Y, mapping[button::ls_down], mapping[button::ls_up]);
pad->m_sticks.emplace_back(CELL_PAD_BTN_OFFSET_ANALOG_RIGHT_X, mapping[button::rs_left], mapping[button::rs_right]);
pad->m_sticks.emplace_back(CELL_PAD_BTN_OFFSET_ANALOG_RIGHT_Y, mapping[button::rs_down], mapping[button::rs_up]);
pad->m_sensors.emplace_back(CELL_PAD_BTN_OFFSET_SENSOR_X, 0, 0, 0, DEFAULT_MOTION_X);
pad->m_sensors.emplace_back(CELL_PAD_BTN_OFFSET_SENSOR_Y, 0, 0, 0, DEFAULT_MOTION_Y);
pad->m_sensors.emplace_back(CELL_PAD_BTN_OFFSET_SENSOR_Z, 0, 0, 0, DEFAULT_MOTION_Z);
pad->m_sensors.emplace_back(CELL_PAD_BTN_OFFSET_SENSOR_G, 0, 0, 0, DEFAULT_MOTION_G);
pad->m_vibrateMotors.emplace_back(true, 0);
pad->m_vibrateMotors.emplace_back(false, 0);
m_bindings.emplace_back(pad, pad_device, nullptr);
return true;
}
std::array<u32, PadHandlerBase::button::button_count> PadHandlerBase::get_mapped_key_codes(const std::shared_ptr<PadDevice>& device, const cfg_pad* cfg)
{
std::array<u32, button::button_count> mapping{};
if (!device || !cfg)
return mapping;
device->trigger_code_left = FindKeyCode(button_list, cfg->l2);
device->trigger_code_right = FindKeyCode(button_list, cfg->r2);
device->axis_code_left[0] = FindKeyCode(button_list, cfg->ls_left);
device->axis_code_left[1] = FindKeyCode(button_list, cfg->ls_right);
device->axis_code_left[2] = FindKeyCode(button_list, cfg->ls_down);
device->axis_code_left[3] = FindKeyCode(button_list, cfg->ls_up);
device->axis_code_right[0] = FindKeyCode(button_list, cfg->rs_left);
device->axis_code_right[1] = FindKeyCode(button_list, cfg->rs_right);
device->axis_code_right[2] = FindKeyCode(button_list, cfg->rs_down);
device->axis_code_right[3] = FindKeyCode(button_list, cfg->rs_up);
mapping[button::up] = FindKeyCode(button_list, cfg->up);
mapping[button::down] = FindKeyCode(button_list, cfg->down);
mapping[button::left] = FindKeyCode(button_list, cfg->left);
mapping[button::right] = FindKeyCode(button_list, cfg->right);
mapping[button::cross] = FindKeyCode(button_list, cfg->cross);
mapping[button::square] = FindKeyCode(button_list, cfg->square);
mapping[button::circle] = FindKeyCode(button_list, cfg->circle);
mapping[button::triangle] = FindKeyCode(button_list, cfg->triangle);
mapping[button::start] = FindKeyCode(button_list, cfg->start);
mapping[button::select] = FindKeyCode(button_list, cfg->select);
mapping[button::l1] = FindKeyCode(button_list, cfg->l1);
mapping[button::l2] = ::narrow<u32>(device->trigger_code_left);
mapping[button::l3] = FindKeyCode(button_list, cfg->l3);
mapping[button::r1] = FindKeyCode(button_list, cfg->r1);
mapping[button::r2] = ::narrow<u32>(device->trigger_code_right);
mapping[button::r3] = FindKeyCode(button_list, cfg->r3);
mapping[button::ls_left] = ::narrow<u32>(device->axis_code_left[0]);
mapping[button::ls_right] = ::narrow<u32>(device->axis_code_left[1]);
mapping[button::ls_down] = ::narrow<u32>(device->axis_code_left[2]);
mapping[button::ls_up] = ::narrow<u32>(device->axis_code_left[3]);
mapping[button::rs_left] = ::narrow<u32>(device->axis_code_right[0]);
mapping[button::rs_right] = ::narrow<u32>(device->axis_code_right[1]);
mapping[button::rs_down] = ::narrow<u32>(device->axis_code_right[2]);
mapping[button::rs_up] = ::narrow<u32>(device->axis_code_right[3]);
mapping[button::ps] = FindKeyCode(button_list, cfg->ps);
mapping[button::pressure_intensity_button] = FindKeyCode(button_list, cfg->pressure_intensity_button);
return mapping;
}
void PadHandlerBase::get_mapping(const pad_ensemble& binding)
{
const auto& device = binding.device;
const auto& pad = binding.pad;
if (!device || !pad)
return;
auto cfg = device->config;
auto button_values = get_button_values(device);
// Find out if special buttons are pressed (introduced by RPCS3).
// These buttons will have a delay of one cycle, but whatever.
const bool adjust_pressure = pad->m_pressure_intensity_button_index >= 0 && pad->m_buttons[pad->m_pressure_intensity_button_index].m_pressed;
// Translate any corresponding keycodes to our normal DS3 buttons and triggers
for (auto& btn : pad->m_buttons)
{
// Using a temporary buffer because the values can change during translation
Button tmp = btn;
tmp.m_value = button_values[btn.m_keyCode];
TranslateButtonPress(device, tmp.m_keyCode, tmp.m_pressed, tmp.m_value);
// Modify pressure if necessary if the button was pressed
if (adjust_pressure && tmp.m_pressed)
{
tmp.m_value = pad->m_pressure_intensity;
}
btn = tmp;
}
// used to get the absolute value of an axis
s32 stick_val[4]{ 0 };
// Translate any corresponding keycodes to our two sticks. (ignoring thresholds for now)
for (int i = 0; i < static_cast<int>(pad->m_sticks.size()); i++)
{
bool pressed;
// m_keyCodeMin is the mapped key for left or down
const u32 key_min = pad->m_sticks[i].m_keyCodeMin;
u16 val_min = button_values[key_min];
TranslateButtonPress(device, key_min, pressed, val_min, true);
// m_keyCodeMax is the mapped key for right or up
const u32 key_max = pad->m_sticks[i].m_keyCodeMax;
u16 val_max = button_values[key_max];
TranslateButtonPress(device, key_max, pressed, val_max, true);
// cancel out opposing values and get the resulting difference
stick_val[i] = val_max - val_min;
}
u16 lx, ly, rx, ry;
// Normalize and apply pad squircling
convert_stick_values(lx, ly, stick_val[0], stick_val[1], cfg->lstickdeadzone, cfg->lpadsquircling);
convert_stick_values(rx, ry, stick_val[2], stick_val[3], cfg->rstickdeadzone, cfg->rpadsquircling);
if (m_type == pad_handler::ds4)
{
ly = 255 - ly;
ry = 255 - ry;
// these are added with previous value and divided to 'smooth' out the readings
// the ds4 seems to rapidly flicker sometimes between two values and this seems to stop that
pad->m_sticks[0].m_value = (lx + pad->m_sticks[0].m_value) / 2; // LX
pad->m_sticks[1].m_value = (ly + pad->m_sticks[1].m_value) / 2; // LY
pad->m_sticks[2].m_value = (rx + pad->m_sticks[2].m_value) / 2; // RX
pad->m_sticks[3].m_value = (ry + pad->m_sticks[3].m_value) / 2; // RY
}
else
{
pad->m_sticks[0].m_value = lx;
pad->m_sticks[1].m_value = 255 - ly;
pad->m_sticks[2].m_value = rx;
pad->m_sticks[3].m_value = 255 - ry;
}
}
void PadHandlerBase::ThreadProc()
{
for (usz i = 0; i < m_bindings.size(); ++i)
{
auto& device = m_bindings[i].device;
auto& pad = m_bindings[i].pad;
if (!device || !pad)
continue;
const auto status = update_connection(device);
switch (status)
{
case connection::no_data:
case connection::connected:
{
if (!last_connection_status[i])
{
input_log.success("%s device %d connected", m_type, i);
pad->m_port_status |= CELL_PAD_STATUS_CONNECTED;
pad->m_port_status |= CELL_PAD_STATUS_ASSIGN_CHANGES;
last_connection_status[i] = true;
connected_devices++;
}
if (status == connection::no_data)
{
// TODO: don't skip entirely if buddy device has data
continue;
}
break;
}
case connection::disconnected:
{
if (last_connection_status[i])
{
input_log.error("%s device %d disconnected", m_type, i);
pad->m_port_status &= ~CELL_PAD_STATUS_CONNECTED;
pad->m_port_status |= CELL_PAD_STATUS_ASSIGN_CHANGES;
last_connection_status[i] = false;
connected_devices--;
}
continue;
}
default:
break;
}
get_mapping(m_bindings[i]);
get_extended_info(m_bindings[i]);
apply_pad_data(m_bindings[i]);
}
}