rpcs3/rpcs3/Emu/Cell/lv2/sys_sync.h
Nekotekina 34fa010601 Improve cond_var notifiers
But nobody uses it anyway, so clean up includes.
2020-11-06 00:10:16 +03:00

382 lines
8.4 KiB
C++

#pragma once
#include "Utilities/mutex.h"
#include "Utilities/sema.h"
#include "Emu/CPU/CPUThread.h"
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/IdManager.h"
#include "Emu/IPC.h"
#include "Emu/system_config.h"
#include <deque>
#include <thread>
#include <string_view>
// attr_protocol (waiting scheduling policy)
enum lv2_protocol : u32
{
SYS_SYNC_FIFO = 0x1, // First In, First Out Order
SYS_SYNC_PRIORITY = 0x2, // Priority Order
SYS_SYNC_PRIORITY_INHERIT = 0x3, // Basic Priority Inheritance Protocol
SYS_SYNC_RETRY = 0x4, // Not selected while unlocking
};
enum : u32
{
SYS_SYNC_ATTR_PROTOCOL_MASK = 0xf,
};
// attr_recursive (recursive locks policy)
enum
{
SYS_SYNC_RECURSIVE = 0x10,
SYS_SYNC_NOT_RECURSIVE = 0x20,
SYS_SYNC_ATTR_RECURSIVE_MASK = 0xf0,
};
// attr_pshared (sharing among processes policy)
enum
{
SYS_SYNC_PROCESS_SHARED = 0x100,
SYS_SYNC_NOT_PROCESS_SHARED = 0x200,
SYS_SYNC_ATTR_PSHARED_MASK = 0xf00,
};
// attr_flags (creation policy)
enum
{
SYS_SYNC_NEWLY_CREATED = 0x1, // Create new object, fails if specified IPC key exists
SYS_SYNC_NOT_CREATE = 0x2, // Reference existing object, fails if IPC key not found
SYS_SYNC_NOT_CARE = 0x3, // Reference existing object, create new one if IPC key not found
SYS_SYNC_ATTR_FLAGS_MASK = 0xf,
};
// attr_adaptive
enum
{
SYS_SYNC_ADAPTIVE = 0x1000,
SYS_SYNC_NOT_ADAPTIVE = 0x2000,
SYS_SYNC_ATTR_ADAPTIVE_MASK = 0xf000,
};
// Base class for some kernel objects (shared set of 8192 objects).
struct lv2_obj
{
using id_type = lv2_obj;
static const u32 id_step = 0x100;
static const u32 id_count = 8192;
static constexpr std::pair<u32, u32> id_invl_range = {0, 8};
private:
enum thread_cmd : s32
{
yield_cmd = INT32_MIN,
enqueue_cmd,
};
// Function executed under IDM mutex, error will make the object creation fail and the error will be returned
CellError on_id_create()
{
return {};
}
public:
static std::string name64(u64 name_u64)
{
const auto ptr = reinterpret_cast<const char*>(&name_u64);
// NTS string, ignore invalid/newline characters
// Example: "lv2\n\0tx" will be printed as "lv2"
std::string str{ptr, std::find(ptr, ptr + 7, '\0')};
str.erase(std::remove_if(str.begin(), str.end(), [](uchar c){ return !std::isprint(c); }), str.end());
return str;
};
// Find and remove the object from the container (deque or vector)
template <typename T, typename E>
static T* unqueue(std::deque<T*>& queue, E* object)
{
for (auto found = queue.cbegin(), end = queue.cend(); found != end; found++)
{
if (*found == object)
{
queue.erase(found);
return static_cast<T*>(object);
}
}
return nullptr;
}
template <typename E, typename T>
static T* schedule(std::deque<T*>& queue, u32 protocol)
{
if (queue.empty())
{
return nullptr;
}
if (protocol == SYS_SYNC_FIFO)
{
const auto res = queue.front();
queue.pop_front();
return res;
}
s32 prio = 3071;
auto it = queue.cbegin();
for (auto found = it, end = queue.cend(); found != end; found++)
{
const s32 _prio = static_cast<E*>(*found)->prio;
if (_prio < prio)
{
it = found;
prio = _prio;
}
}
const auto res = *it;
queue.erase(it);
return res;
}
private:
// Remove the current thread from the scheduling queue, register timeout
static void sleep_unlocked(cpu_thread&, u64 timeout);
// Schedule the thread
static bool awake_unlocked(cpu_thread*, s32 prio = enqueue_cmd);
public:
static constexpr u64 max_timeout = UINT64_MAX / 1000;
static void sleep(cpu_thread& cpu, const u64 timeout = 0);
static bool awake(cpu_thread* const thread, s32 prio = enqueue_cmd);
// Returns true on successful context switch, false otherwise
static bool yield(cpu_thread& thread);
static void set_priority(cpu_thread& thread, s32 prio)
{
verify(HERE), prio + 512u < 3712;
awake(&thread, prio);
}
static inline void awake_all()
{
awake({});
g_to_awake.clear();
}
static inline void append(cpu_thread* const thread)
{
g_to_awake.emplace_back(thread);
}
static void cleanup();
template <typename T, typename F>
static error_code create(u32 pshared, u64 ipc_key, s32 flags, F&& make, bool key_not_zero = true)
{
switch (pshared)
{
case SYS_SYNC_PROCESS_SHARED:
{
if (key_not_zero && ipc_key == 0)
{
return CELL_EINVAL;
}
switch (flags)
{
case SYS_SYNC_NEWLY_CREATED:
case SYS_SYNC_NOT_CARE:
{
std::shared_ptr<T> result = make();
CellError error{};
if (!ipc_manager<T, u64>::add(ipc_key, [&]()
{
if (!idm::import<lv2_obj, T>([&]()
{
if (result && (error = result->on_id_create()))
result.reset();
return result;
}))
{
result.reset();
}
return result;
}, &result))
{
if (error)
{
return error;
}
if (flags == SYS_SYNC_NEWLY_CREATED)
{
return CELL_EEXIST;
}
error = CELL_EAGAIN;
if (!idm::import<lv2_obj, T>([&]() { if (result && (error = result->on_id_create())) result.reset(); return std::move(result); }))
{
return error;
}
return CELL_OK;
}
else if (!result)
{
return error ? CELL_EAGAIN : error;
}
else
{
return CELL_OK;
}
}
case SYS_SYNC_NOT_CREATE:
{
auto result = ipc_manager<T, u64>::get(ipc_key);
if (!result)
{
return CELL_ESRCH;
}
CellError error = CELL_EAGAIN;
if (!idm::import<lv2_obj, T>([&]() { if (result && (error = result->on_id_create())) result.reset(); return std::move(result); }))
{
return error;
}
return CELL_OK;
}
default:
{
return CELL_EINVAL;
}
}
}
case SYS_SYNC_NOT_PROCESS_SHARED:
{
std::shared_ptr<T> result = make();
CellError error = CELL_EAGAIN;
if (!idm::import<lv2_obj, T>([&]() { if (result && (error = result->on_id_create())) result.reset(); return std::move(result); }))
{
return error;
}
return CELL_OK;
}
default:
{
return CELL_EINVAL;
}
}
}
template <bool IsUsleep = false, bool Scale = true>
static bool wait_timeout(u64 usec, cpu_thread* const cpu = {})
{
static_assert(UINT64_MAX / max_timeout >= 100, "max timeout is not valid for scaling");
if constexpr (Scale)
{
// Scale time
usec = std::min<u64>(usec, UINT64_MAX / 100) * 100 / g_cfg.core.clocks_scale;
}
// Clamp
usec = std::min<u64>(usec, max_timeout);
extern u64 get_system_time();
u64 passed = 0;
u64 remaining;
const u64 start_time = get_system_time();
while (usec >= passed)
{
remaining = usec - passed;
#ifdef __linux__
// NOTE: Assumption that timer initialization has succeeded
u64 host_min_quantum = IsUsleep && remaining <= 1000 ? 10 : 50;
#else
// Host scheduler quantum for windows (worst case)
// NOTE: On ps3 this function has very high accuracy
constexpr u64 host_min_quantum = 500;
#endif
// TODO: Tune for other non windows operating sytems
if (g_cfg.core.sleep_timers_accuracy < (IsUsleep ? sleep_timers_accuracy_level::_usleep : sleep_timers_accuracy_level::_all_timers))
{
thread_ctrl::wait_for(remaining, !IsUsleep);
}
else
{
if (remaining > host_min_quantum)
{
#ifdef __linux__
// Do not wait for the last quantum to avoid loss of accuracy
thread_ctrl::wait_for(remaining - ((remaining % host_min_quantum) + host_min_quantum), !IsUsleep);
#else
// Wait on multiple of min quantum for large durations to avoid overloading low thread cpus
thread_ctrl::wait_for(remaining - (remaining % host_min_quantum), !IsUsleep);
#endif
}
else
{
// Try yielding. May cause long wake latency but helps weaker CPUs a lot by alleviating resource pressure
std::this_thread::yield();
}
}
if (thread_ctrl::state() == thread_state::aborting)
{
return false;
}
if (cpu && cpu->state & cpu_flag::signal)
{
return false;
}
passed = get_system_time() - start_time;
}
return true;
}
private:
// Scheduler mutex
static shared_mutex g_mutex;
// Pending list of threads to run
static thread_local std::vector<class cpu_thread*> g_to_awake;
// Scheduler queue for active PPU threads
static std::deque<class ppu_thread*> g_ppu;
// Waiting for the response from
static std::deque<class cpu_thread*> g_pending;
// Scheduler queue for timeouts (wait until -> thread)
static std::deque<std::pair<u64, class cpu_thread*>> g_waiting;
static void schedule_all();
};