rpcs3/rpcs3/Emu/Io/PadHandler.cpp
2025-01-08 20:02:33 +01:00

962 lines
33 KiB
C++

#include "stdafx.h"
#include "PadHandler.h"
#include "Emu/system_utils.hpp"
#include "Emu/system_config.h"
#include "Emu/Cell/timers.hpp"
#include "Input/pad_thread.h"
#include "Input/product_info.h"
cfg_input g_cfg_input;
PadHandlerBase::PadHandlerBase(pad_handler type) : m_type(type)
{
}
std::set<u32> PadHandlerBase::narrow_set(const std::set<u64>& src)
{
if (src.empty())
return {};
std::set<u32> dst;
for (const u64& s : src)
{
dst.insert(::narrow<u32>(s));
}
return dst;
}
// Get new multiplied value based on the multiplier
s32 PadHandlerBase::MultipliedInput(s32 raw_value, s32 multiplier)
{
return (multiplier * raw_value) / 100;
}
// Get new scaled value between 0 and range based on its minimum and maximum
f32 PadHandlerBase::ScaledInput(f32 raw_value, f32 minimum, f32 maximum, f32 deadzone, f32 range)
{
if (deadzone > 0 && deadzone > minimum)
{
// adjust minimum so we smoothly start at 0 when we surpass the deadzone value
minimum = deadzone;
}
// convert [min, max] to [0, 1]
const f32 val = static_cast<f32>(std::clamp(raw_value, minimum, maximum) - minimum) / (maximum - minimum);
// convert [0, 1] to [0, range]
return range * val;
}
// Get new scaled value between -range and range based on its minimum and maximum
f32 PadHandlerBase::ScaledAxisInput(f32 raw_value, f32 minimum, f32 maximum, f32 deadzone, f32 range)
{
// convert [min, max] to [0, 1]
f32 val = static_cast<f32>(std::clamp(raw_value, minimum, maximum) - minimum) / (maximum - minimum);
if (deadzone > 0)
{
// convert [0, 1] to [-0.5, 0.5]
val -= 0.5f;
// Convert deadzone to [0, 0.5]
deadzone = std::max(0.0f, std::min(1.0f, deadzone / maximum)) / 2.0f;
if (val >= 0.0f)
{
// Apply deadzone. The result will be [0, 0.5]
val = ScaledInput(val, 0.0f, 0.5f, deadzone, 0.5f);
}
else
{
// Apply deadzone. The result will be [-0.5, 0]
val = ScaledInput(std::abs(val), 0, 0.5f, deadzone, 0.5f) * -1.0f;
}
// convert [-0.5, 0.5] back to [0, 1]
val += 0.5f;
}
// convert [0, 1] to [-range, range]
return (2.0f * range * val) - range;
}
// Get normalized trigger value based on the range defined by a threshold
u16 PadHandlerBase::NormalizeTriggerInput(u16 value, u32 threshold) const
{
if (value <= threshold || threshold >= trigger_max)
{
return static_cast<u16>(0);
}
return static_cast<u16>(ScaledInput(static_cast<f32>(value), static_cast<f32>(trigger_min), static_cast<f32>(trigger_max), static_cast<f32>(threshold)));
}
// normalizes a directed input, meaning it will correspond to a single "button" and not an axis with two directions
// the input values must lie in 0+
u16 PadHandlerBase::NormalizeDirectedInput(s32 raw_value, s32 threshold, s32 maximum) const
{
if (threshold >= maximum || maximum <= 0 || raw_value < 0)
{
return static_cast<u16>(0);
}
return static_cast<u16>(ScaledInput(static_cast<f32>(raw_value), 0.0f, static_cast<f32>(maximum), static_cast<f32>(threshold)));
}
u16 PadHandlerBase::NormalizeStickInput(u16 raw_value, s32 threshold, s32 multiplier, bool ignore_threshold) const
{
const s32 scaled_value = MultipliedInput(raw_value, multiplier);
if (ignore_threshold)
{
threshold = 0;
}
return static_cast<u16>(ScaledInput(static_cast<f32>(scaled_value), 0.0f, static_cast<f32>(thumb_max), static_cast<f32>(threshold)));
}
// This function normalizes stick deadzone based on the DS3's deadzone, which is ~13% (default of anti deadzone)
// X and Y is expected to be in (-255) to 255 range, deadzone should be in terms of thumb stick range
// return is new x and y values in 0-255 range
std::tuple<u16, u16> PadHandlerBase::NormalizeStickDeadzone(s32 inX, s32 inY, u32 deadzone, u32 anti_deadzone) const
{
f32 X = inX / 255.0f;
f32 Y = inY / 255.0f;
const f32 mag = std::min(sqrtf(X * X + Y * Y), 1.f);
if (mag > 0.f)
{
const f32 dz_max = static_cast<f32>(thumb_max);
const f32 dz = deadzone / dz_max;
const f32 anti_dz = anti_deadzone / dz_max;
f32 pos;
if (dz <= 0.f || mag > dz)
{
const f32 range = 1.f - dz;
pos = std::lerp(anti_dz, 1.f, (mag - dz) / range);
}
else
{
pos = std::lerp(0.f, anti_dz, mag / dz);
}
const f32 scale = pos / mag;
X *= scale;
Y *= scale;
}
return std::tuple<u16, u16>(ConvertAxis(X), ConvertAxis(Y));
}
// get clamped value between 0 and 255
u16 PadHandlerBase::Clamp0To255(f32 input)
{
return static_cast<u16>(std::clamp(input, 0.0f, 255.0f));
}
// get clamped value between 0 and 1023
u16 PadHandlerBase::Clamp0To1023(f32 input)
{
return static_cast<u16>(std::clamp(input, 0.0f, 1023.0f));
}
// input has to be [-1,1]. result will be [0,255]
u16 PadHandlerBase::ConvertAxis(f32 value)
{
return static_cast<u16>((value + 1.0) * (255.0 / 2.0));
}
// The DS3, (and i think xbox controllers) give a 'square-ish' type response, so that the corners will give (almost)max x/y instead of the ~30x30 from a perfect circle
// using a simple scale/sensitivity increase would *work* although it eats a chunk of our usable range in exchange
// this might be the best for now, in practice it seems to push the corners to max of 20x20, with a squircle_factor of 8000
// This function assumes inX and inY is already in 0-255
void PadHandlerBase::ConvertToSquirclePoint(u16& inX, u16& inY, u32 squircle_factor)
{
if (!squircle_factor)
return;
constexpr f32 radius = 127.5f;
// convert inX and Y to a (-1, 1) vector;
const f32 x = (inX - radius) / radius;
const f32 y = (inY - radius) / radius;
// compute angle and len of given point to be used for squircle radius. Clamp to circle, we don't want to exceed the squircle.
const f32 angle = std::atan2(y, x);
const f32 distance_to_center = std::min(1.0f, std::sqrt(std::pow(x, 2.f) + std::pow(y, 2.f)));
// now find len/point on the given squircle from our current angle and radius in polar coords
// https://thatsmaths.com/2016/07/14/squircles/
const f32 new_len = (1 + std::pow(std::sin(2 * angle), 2.f) / (squircle_factor / 1000.f)) * distance_to_center;
// we now have len and angle, convert to cartesian
inX = Clamp0To255(std::round(((new_len * std::cos(angle)) + 1) * radius));
inY = Clamp0To255(std::round(((new_len * std::sin(angle)) + 1) * radius));
}
void PadHandlerBase::init_configs()
{
for (u32 i = 0; i < MAX_GAMEPADS; i++)
{
init_config(&m_pad_configs[i]);
}
}
cfg_pad* PadHandlerBase::get_config(const std::string& pad_id)
{
int index = 0;
for (uint i = 0; i < MAX_GAMEPADS; i++)
{
if (g_cfg_input.player[i]->handler == m_type)
{
if (g_cfg_input.player[i]->device.to_string() == pad_id)
{
m_pad_configs[index].from_string(g_cfg_input.player[i]->config.to_string());
return &m_pad_configs[index];
}
index++;
}
}
return nullptr;
}
PadHandlerBase::connection PadHandlerBase::get_next_button_press(const std::string& pad_id, const pad_callback& callback, const pad_fail_callback& fail_callback, gui_call_type call_type, const std::vector<std::string>& /*buttons*/)
{
if (call_type == gui_call_type::blacklist)
blacklist.clear();
if (call_type == gui_call_type::reset_input || call_type == gui_call_type::blacklist)
min_button_values.clear();
auto device = get_device(pad_id);
const connection status = update_connection(device);
if (status == connection::disconnected)
{
if (fail_callback)
fail_callback(pad_id);
return status;
}
if (status == connection::no_data || call_type == gui_call_type::get_connection)
{
return status;
}
if (m_type == pad_handler::move)
{
// Keep the pad cached to reduce expensive one time requests
if (!m_pad_for_pad_settings || m_pad_for_pad_settings->m_pad_handler != m_type)
{
m_pad_for_pad_settings = std::make_shared<Pad>(m_type, 0, 0, 0, 0);
}
// Get extended device ID
pad_ensemble binding{m_pad_for_pad_settings, device, nullptr};
get_extended_info(binding);
}
// Get the current button values
auto data = get_button_values(device);
// Check for each button in our list if its corresponding (maybe remapped) button or axis was pressed.
// Return the new value if the button was pressed (aka. its value was bigger than 0 or the defined threshold)
// Get all the legally pressed buttons and use the one with highest value (prioritize first)
struct
{
u16 value = 0;
std::string name;
} pressed_button{};
for (const auto& [keycode, name] : button_list)
{
if (call_type != gui_call_type::blacklist && blacklist.contains(keycode))
continue;
const u16 value = data[keycode];
u16& min_value = min_button_values[keycode];
if (call_type == gui_call_type::reset_input || value < min_value)
{
min_value = value;
continue;
}
const bool is_trigger = get_is_left_trigger(device, keycode) || get_is_right_trigger(device, keycode);
const bool is_stick = !is_trigger && (get_is_left_stick(device, keycode) || get_is_right_stick(device, keycode));
const bool is_touch_motion = !is_trigger && !is_stick && get_is_touch_pad_motion(device, keycode);
const bool is_button = !is_trigger && !is_stick && !is_touch_motion;
if ((is_trigger && (value > m_trigger_threshold)) ||
(is_stick && (value > m_thumb_threshold)) ||
(is_button && (value > button_press_threshold)) ||
(is_touch_motion && (value > touch_threshold)))
{
if (call_type == gui_call_type::blacklist)
{
blacklist.insert(keycode);
input_log.error("%s Calibration: Added key [ %d = %s ] to blacklist. Value = %d", m_type, keycode, name, value);
continue;
}
const u16 diff = value > min_value ? value - min_value : 0;
if (diff > button_press_threshold && value > pressed_button.value)
{
pressed_button = { .value = value, .name = name };
}
}
}
if (call_type == gui_call_type::reset_input)
{
return connection::no_data;
}
if (call_type == gui_call_type::blacklist)
{
if (blacklist.empty())
input_log.success("%s Calibration: Blacklist is clear. No input spam detected", m_type);
return status;
}
if (callback)
{
pad_preview_values preview_values = get_preview_values(data);
const u32 battery_level = get_battery_level(pad_id);
if (pressed_button.value > 0)
callback(pressed_button.value, pressed_button.name, pad_id, battery_level, std::move(preview_values));
else
callback(0, "", pad_id, battery_level, std::move(preview_values));
}
return status;
}
void PadHandlerBase::get_motion_sensors(const std::string& pad_id, const motion_callback& callback, const motion_fail_callback& fail_callback, motion_preview_values preview_values, const std::array<AnalogSensor, 4>& /*sensors*/)
{
if (!b_has_motion)
{
return;
}
// Reset sensors
auto device = get_device(pad_id);
const connection status = update_connection(device);
if (status == connection::disconnected)
{
if (fail_callback)
fail_callback(pad_id, std::move(preview_values));
return;
}
if (status == connection::no_data || !callback)
{
return;
}
// Keep the pad cached to reduce expensive one time requests
if (!m_pad_for_pad_settings || m_pad_for_pad_settings->m_pad_handler != m_type)
{
m_pad_for_pad_settings = std::make_shared<Pad>(m_type, 0, 0, 0, 0);
}
// Get the current motion values
pad_ensemble binding{m_pad_for_pad_settings, device, nullptr};
get_extended_info(binding);
for (usz i = 0; i < preview_values.size(); i++)
{
preview_values[i] = m_pad_for_pad_settings->m_sensors[i].m_value;
}
callback(pad_id, std::move(preview_values));
}
void PadHandlerBase::convert_stick_values(u16& x_out, u16& y_out, s32 x_in, s32 y_in, u32 deadzone, u32 anti_deadzone, u32 padsquircling) const
{
// Normalize our stick axis based on the deadzone
std::tie(x_out, y_out) = NormalizeStickDeadzone(x_in, y_in, deadzone, anti_deadzone);
// Apply pad squircling if necessary
if (padsquircling != 0)
{
ConvertToSquirclePoint(x_out, y_out, padsquircling);
}
}
// Update the pad button values based on their type and thresholds. With this you can use axis or triggers as buttons or vice versa
void PadHandlerBase::TranslateButtonPress(const std::shared_ptr<PadDevice>& device, u64 keyCode, bool& pressed, u16& val, bool use_stick_multipliers, bool ignore_stick_threshold, bool ignore_trigger_threshold)
{
if (!device || !device->config)
{
return;
}
if (get_is_left_trigger(device, keyCode))
{
pressed = val > (ignore_trigger_threshold ? 0 : device->config->ltriggerthreshold);
val = pressed ? NormalizeTriggerInput(val, device->config->ltriggerthreshold) : 0;
}
else if (get_is_right_trigger(device, keyCode))
{
pressed = val > (ignore_trigger_threshold ? 0 : device->config->rtriggerthreshold);
val = pressed ? NormalizeTriggerInput(val, device->config->rtriggerthreshold) : 0;
}
else if (get_is_left_stick(device, keyCode))
{
pressed = val > (ignore_stick_threshold ? 0 : device->config->lstickdeadzone);
val = pressed ? NormalizeStickInput(val, device->config->lstickdeadzone, use_stick_multipliers ? device->config->lstickmultiplier : 100, ignore_stick_threshold) : 0;
}
else if (get_is_right_stick(device, keyCode))
{
pressed = val > (ignore_stick_threshold ? 0 : device->config->rstickdeadzone);
val = pressed ? NormalizeStickInput(val, device->config->rstickdeadzone, use_stick_multipliers ? device->config->rstickmultiplier : 100, ignore_stick_threshold) : 0;
}
else // normal button (should in theory also support sensitive buttons)
{
pressed = val > 0;
val = pressed ? val : 0;
}
}
bool PadHandlerBase::bindPadToDevice(std::shared_ptr<Pad> pad)
{
if (!pad || pad->m_player_id >= g_cfg_input.player.size())
{
return false;
}
const cfg_player* player_config = g_cfg_input.player[pad->m_player_id];
if (!player_config)
{
return false;
}
std::shared_ptr<PadDevice> pad_device = get_device(player_config->device);
if (!pad_device)
{
input_log.error("PadHandlerBase::bindPadToDevice: no PadDevice found for device '%s'", player_config->device.to_string());
return false;
}
m_pad_configs[pad->m_player_id].from_string(player_config->config.to_string());
pad_device->config = &m_pad_configs[pad->m_player_id];
pad_device->player_id = pad->m_player_id;
cfg_pad* config = pad_device->config;
if (config == nullptr)
{
input_log.error("PadHandlerBase::bindPadToDevice: no profile found for device %d '%s'", m_bindings.size(), player_config->device.to_string());
return false;
}
std::array<std::set<u32>, button::button_count> mapping = get_mapped_key_codes(pad_device, config);
u32 pclass_profile = 0x0;
u32 capabilities = CELL_PAD_CAPABILITY_PS3_CONFORMITY | CELL_PAD_CAPABILITY_PRESS_MODE | CELL_PAD_CAPABILITY_HP_ANALOG_STICK | CELL_PAD_CAPABILITY_ACTUATOR | CELL_PAD_CAPABILITY_SENSOR_MODE;
for (const input::product_info& product : input::get_products_by_class(config->device_class_type))
{
if (product.vendor_id == config->vendor_id && product.product_id == config->product_id)
{
pclass_profile = product.pclass_profile;
capabilities = product.capabilites;
}
}
pad->Init
(
CELL_PAD_STATUS_DISCONNECTED,
capabilities,
CELL_PAD_DEV_TYPE_STANDARD,
config->device_class_type,
pclass_profile,
config->vendor_id,
config->product_id,
config->pressure_intensity
);
if (b_has_pressure_intensity_button)
{
pad->m_buttons.emplace_back(special_button_offset, mapping[button::pressure_intensity_button], special_button_value::pressure_intensity);
pad->m_pressure_intensity_button_index = static_cast<s32>(pad->m_buttons.size()) - 1;
}
if (b_has_analog_limiter_button)
{
pad->m_buttons.emplace_back(special_button_offset, mapping[button::analog_limiter_button], special_button_value::analog_limiter);
pad->m_analog_limiter_button_index = static_cast<s32>(pad->m_buttons.size()) - 1;
}
if (b_has_orientation)
{
pad->m_buttons.emplace_back(special_button_offset, mapping[button::orientation_reset_button], special_button_value::orientation_reset);
pad->m_orientation_reset_button_index = static_cast<s32>(pad->m_buttons.size()) - 1;
}
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::up], CELL_PAD_CTRL_UP);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::down], CELL_PAD_CTRL_DOWN);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::left], CELL_PAD_CTRL_LEFT);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::right], CELL_PAD_CTRL_RIGHT);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::cross], CELL_PAD_CTRL_CROSS);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::square], CELL_PAD_CTRL_SQUARE);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::circle], CELL_PAD_CTRL_CIRCLE);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::triangle], CELL_PAD_CTRL_TRIANGLE);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::l1], CELL_PAD_CTRL_L1);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::l2], CELL_PAD_CTRL_L2);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::l3], CELL_PAD_CTRL_L3);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::r1], CELL_PAD_CTRL_R1);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL2, mapping[button::r2], CELL_PAD_CTRL_R2);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::r3], CELL_PAD_CTRL_R3);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::start], CELL_PAD_CTRL_START);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::select], CELL_PAD_CTRL_SELECT);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_DIGITAL1, mapping[button::ps], CELL_PAD_CTRL_PS);
if (pad->m_class_type == CELL_PAD_PCLASS_TYPE_SKATEBOARD)
{
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_PRESS_PIGGYBACK, mapping[button::skateboard_ir_nose], CELL_PAD_CTRL_PRESS_TRIANGLE);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_PRESS_PIGGYBACK, mapping[button::skateboard_ir_tail], CELL_PAD_CTRL_PRESS_CIRCLE);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_PRESS_PIGGYBACK, mapping[button::skateboard_ir_left], CELL_PAD_CTRL_PRESS_CROSS);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_PRESS_PIGGYBACK, mapping[button::skateboard_ir_right], CELL_PAD_CTRL_PRESS_SQUARE);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_PRESS_PIGGYBACK, mapping[button::skateboard_tilt_left], CELL_PAD_CTRL_PRESS_L1);
pad->m_buttons.emplace_back(CELL_PAD_BTN_OFFSET_PRESS_PIGGYBACK, mapping[button::skateboard_tilt_right], CELL_PAD_CTRL_PRESS_R1);
}
pad->m_sticks[0] = AnalogStick(CELL_PAD_BTN_OFFSET_ANALOG_LEFT_X, mapping[button::ls_left], mapping[button::ls_right]);
pad->m_sticks[1] = AnalogStick(CELL_PAD_BTN_OFFSET_ANALOG_LEFT_Y, mapping[button::ls_down], mapping[button::ls_up]);
pad->m_sticks[2] = AnalogStick(CELL_PAD_BTN_OFFSET_ANALOG_RIGHT_X, mapping[button::rs_left], mapping[button::rs_right]);
pad->m_sticks[3] = AnalogStick(CELL_PAD_BTN_OFFSET_ANALOG_RIGHT_Y, mapping[button::rs_down], mapping[button::rs_up]);
pad->m_sensors[0] = AnalogSensor(CELL_PAD_BTN_OFFSET_SENSOR_X, 0, 0, 0, DEFAULT_MOTION_X);
pad->m_sensors[1] = AnalogSensor(CELL_PAD_BTN_OFFSET_SENSOR_Y, 0, 0, 0, DEFAULT_MOTION_Y);
pad->m_sensors[2] = AnalogSensor(CELL_PAD_BTN_OFFSET_SENSOR_Z, 0, 0, 0, DEFAULT_MOTION_Z);
pad->m_sensors[3] = AnalogSensor(CELL_PAD_BTN_OFFSET_SENSOR_G, 0, 0, 0, DEFAULT_MOTION_G);
pad->m_vibrateMotors[0] = VibrateMotor(true, 0);
pad->m_vibrateMotors[1] = VibrateMotor(false, 0);
m_bindings.emplace_back(pad, pad_device, nullptr);
return true;
}
std::array<std::set<u32>, PadHandlerBase::button::button_count> PadHandlerBase::get_mapped_key_codes(const std::shared_ptr<PadDevice>& device, const cfg_pad* cfg)
{
std::array<std::set<u32>, button::button_count> mapping{};
if (!device || !cfg)
return mapping;
device->trigger_code_left = FindKeyCodes<u32, u64>(button_list, cfg->l2);
device->trigger_code_right = FindKeyCodes<u32, u64>(button_list, cfg->r2);
device->axis_code_left[0] = FindKeyCodes<u32, u64>(button_list, cfg->ls_left);
device->axis_code_left[1] = FindKeyCodes<u32, u64>(button_list, cfg->ls_right);
device->axis_code_left[2] = FindKeyCodes<u32, u64>(button_list, cfg->ls_down);
device->axis_code_left[3] = FindKeyCodes<u32, u64>(button_list, cfg->ls_up);
device->axis_code_right[0] = FindKeyCodes<u32, u64>(button_list, cfg->rs_left);
device->axis_code_right[1] = FindKeyCodes<u32, u64>(button_list, cfg->rs_right);
device->axis_code_right[2] = FindKeyCodes<u32, u64>(button_list, cfg->rs_down);
device->axis_code_right[3] = FindKeyCodes<u32, u64>(button_list, cfg->rs_up);
mapping[button::up] = FindKeyCodes<u32, u32>(button_list, cfg->up);
mapping[button::down] = FindKeyCodes<u32, u32>(button_list, cfg->down);
mapping[button::left] = FindKeyCodes<u32, u32>(button_list, cfg->left);
mapping[button::right] = FindKeyCodes<u32, u32>(button_list, cfg->right);
mapping[button::cross] = FindKeyCodes<u32, u32>(button_list, cfg->cross);
mapping[button::square] = FindKeyCodes<u32, u32>(button_list, cfg->square);
mapping[button::circle] = FindKeyCodes<u32, u32>(button_list, cfg->circle);
mapping[button::triangle] = FindKeyCodes<u32, u32>(button_list, cfg->triangle);
mapping[button::start] = FindKeyCodes<u32, u32>(button_list, cfg->start);
mapping[button::select] = FindKeyCodes<u32, u32>(button_list, cfg->select);
mapping[button::l1] = FindKeyCodes<u32, u32>(button_list, cfg->l1);
mapping[button::l2] = narrow_set(device->trigger_code_left);
mapping[button::l3] = FindKeyCodes<u32, u32>(button_list, cfg->l3);
mapping[button::r1] = FindKeyCodes<u32, u32>(button_list, cfg->r1);
mapping[button::r2] = narrow_set(device->trigger_code_right);
mapping[button::r3] = FindKeyCodes<u32, u32>(button_list, cfg->r3);
mapping[button::ls_left] = narrow_set(device->axis_code_left[0]);
mapping[button::ls_right] = narrow_set(device->axis_code_left[1]);
mapping[button::ls_down] = narrow_set(device->axis_code_left[2]);
mapping[button::ls_up] = narrow_set(device->axis_code_left[3]);
mapping[button::rs_left] = narrow_set(device->axis_code_right[0]);
mapping[button::rs_right] = narrow_set(device->axis_code_right[1]);
mapping[button::rs_down] = narrow_set(device->axis_code_right[2]);
mapping[button::rs_up] = narrow_set(device->axis_code_right[3]);
mapping[button::ps] = FindKeyCodes<u32, u32>(button_list, cfg->ps);
mapping[button::skateboard_ir_nose] = FindKeyCodes<u32, u32>(button_list, cfg->ir_nose);
mapping[button::skateboard_ir_tail] = FindKeyCodes<u32, u32>(button_list, cfg->ir_tail);
mapping[button::skateboard_ir_left] = FindKeyCodes<u32, u32>(button_list, cfg->ir_left);
mapping[button::skateboard_ir_right] = FindKeyCodes<u32, u32>(button_list, cfg->ir_right);
mapping[button::skateboard_tilt_left] = FindKeyCodes<u32, u32>(button_list, cfg->tilt_left);
mapping[button::skateboard_tilt_right] = FindKeyCodes<u32, u32>(button_list, cfg->tilt_right);
if (b_has_pressure_intensity_button)
{
mapping[button::pressure_intensity_button] = FindKeyCodes<u32, u32>(button_list, cfg->pressure_intensity_button);
}
if (b_has_analog_limiter_button)
{
mapping[button::analog_limiter_button] = FindKeyCodes<u32, u32>(button_list, cfg->analog_limiter_button);
}
if (b_has_orientation)
{
mapping[button::orientation_reset_button] = FindKeyCodes<u32, u32>(button_list, cfg->orientation_reset_button);
}
return mapping;
}
void PadHandlerBase::get_mapping(const pad_ensemble& binding)
{
const auto& device = binding.device;
const auto& pad = binding.pad;
if (!device || !pad)
return;
const cfg_pad* cfg = device->config;
if (!cfg)
return;
auto button_values = get_button_values(device);
// Find out if special buttons are pressed (introduced by RPCS3).
// These buttons will have a delay of one cycle, but whatever.
const bool analog_limiter_enabled = pad->get_analog_limiter_button_active(cfg->analog_limiter_toggle_mode.get(), pad->m_player_id);
const bool adjust_pressure = pad->get_pressure_intensity_button_active(cfg->pressure_intensity_toggle_mode.get(), pad->m_player_id);
const u32 pressure_intensity_deadzone = cfg->pressure_intensity_deadzone.get();
// Translate any corresponding keycodes to our normal DS3 buttons and triggers
for (Button& button : pad->m_buttons)
{
bool pressed{};
u16 value{};
for (u32 code : button.m_key_codes)
{
bool press{};
u16 val = button_values[code];
TranslateButtonPress(device, code, press, val, analog_limiter_enabled);
if (press)
{
// Modify pressure if necessary if the button was pressed
if (adjust_pressure)
{
val = pad->m_pressure_intensity;
}
else if (pressure_intensity_deadzone > 0)
{
// Ignore triggers, since they have their own deadzones
if (!get_is_left_trigger(device, code) && !get_is_right_trigger(device, code))
{
val = NormalizeDirectedInput(val, pressure_intensity_deadzone, 255);
}
}
value = std::max(value, val);
pressed = value > 0;
}
}
button.m_value = value;
button.m_pressed = pressed;
}
// used to get the absolute value of an axis
s32 stick_val[4]{};
// Translate any corresponding keycodes to our two sticks. (ignoring thresholds for now)
for (usz i = 0; i < pad->m_sticks.size(); i++)
{
bool pressed{};
u16 val_min{};
u16 val_max{};
// m_key_codes_min are the mapped keys for left or down
for (u32 key_min : pad->m_sticks[i].m_key_codes_min)
{
u16 val = button_values[key_min];
TranslateButtonPress(device, key_min, pressed, val, analog_limiter_enabled, true);
if (pressed)
{
val_min = std::max(val_min, val);
}
}
// m_key_codes_max are the mapped keys for right or up
for (u32 key_max : pad->m_sticks[i].m_key_codes_max)
{
u16 val = button_values[key_max];
TranslateButtonPress(device, key_max, pressed, val, analog_limiter_enabled, true);
if (pressed)
{
val_max = std::max(val_max, val);
}
}
// cancel out opposing values and get the resulting difference
stick_val[i] = val_max - val_min;
}
u16 lx, ly, rx, ry;
// Normalize and apply pad squircling
convert_stick_values(lx, ly, stick_val[0], stick_val[1], cfg->lstickdeadzone, cfg->lstick_anti_deadzone, cfg->lpadsquircling);
convert_stick_values(rx, ry, stick_val[2], stick_val[3], cfg->rstickdeadzone, cfg->rstick_anti_deadzone, cfg->rpadsquircling);
if (m_type == pad_handler::ds4)
{
ly = 255 - ly;
ry = 255 - ry;
// these are added with previous value and divided to 'smooth' out the readings
// the ds4 seems to rapidly flicker sometimes between two values and this seems to stop that
pad->m_sticks[0].m_value = (lx + pad->m_sticks[0].m_value) / 2; // LX
pad->m_sticks[1].m_value = (ly + pad->m_sticks[1].m_value) / 2; // LY
pad->m_sticks[2].m_value = (rx + pad->m_sticks[2].m_value) / 2; // RX
pad->m_sticks[3].m_value = (ry + pad->m_sticks[3].m_value) / 2; // RY
}
else
{
pad->m_sticks[0].m_value = lx;
pad->m_sticks[1].m_value = 255 - ly;
pad->m_sticks[2].m_value = rx;
pad->m_sticks[3].m_value = 255 - ry;
}
}
void PadHandlerBase::process()
{
for (usz i = 0; i < m_bindings.size(); ++i)
{
auto& device = m_bindings[i].device;
auto& pad = m_bindings[i].pad;
if (!device || !pad)
continue;
pad->move_data.orientation_enabled = b_has_orientation && device->config && device->config->orientation_enabled.get();
const connection status = update_connection(device);
switch (status)
{
case connection::no_data:
case connection::connected:
{
if (!last_connection_status[i])
{
input_log.success("%s device %d connected", m_type, i);
pad->m_port_status |= CELL_PAD_STATUS_CONNECTED + CELL_PAD_STATUS_ASSIGN_CHANGES;
last_connection_status[i] = true;
connected_devices++;
if (b_has_orientation)
{
device->reset_orientation();
}
}
if (status == connection::no_data)
{
// TODO: don't skip entirely if buddy device has data
apply_pad_data(m_bindings[i]);
continue;
}
break;
}
case connection::disconnected:
{
if (g_cfg.io.keep_pads_connected)
{
if (!last_connection_status[i])
{
input_log.success("%s device %d connected by force", m_type, i);
pad->m_port_status |= CELL_PAD_STATUS_CONNECTED + CELL_PAD_STATUS_ASSIGN_CHANGES;
last_connection_status[i] = true;
connected_devices++;
}
continue;
}
if (last_connection_status[i])
{
input_log.error("%s device %d disconnected", m_type, i);
pad->m_port_status &= ~CELL_PAD_STATUS_CONNECTED;
pad->m_port_status |= CELL_PAD_STATUS_ASSIGN_CHANGES;
last_connection_status[i] = false;
connected_devices--;
if (b_has_orientation)
{
device->reset_orientation();
}
}
continue;
}
}
get_mapping(m_bindings[i]);
get_extended_info(m_bindings[i]);
get_orientation(m_bindings[i]);
apply_pad_data(m_bindings[i]);
}
}
void PadHandlerBase::set_raw_orientation(ps_move_data& move_data, f32 accel_x, f32 accel_y, f32 accel_z, f32 gyro_x, f32 gyro_y, f32 gyro_z)
{
if (!move_data.orientation_enabled)
{
move_data.reset_sensors();
return;
}
// This function expects DS3 sensor accel values in linear velocity (m/s²) and gyro values in angular velocity (degree/s)
// The default position is flat on the ground, pointing forward.
// The accelerometers constantly measure G forces.
// The gyros measure changes in orientation and will reset when the device isn't moved anymore.
move_data.accelerometer_x = -accel_x; // move_data: Increases if the device is rolled to the left
move_data.accelerometer_y = accel_z; // move_data: Increases if the device is pitched upwards
move_data.accelerometer_z = accel_y; // move_data: Increases if the device is moved upwards
move_data.gyro_x = degree_to_rad(-gyro_x); // move_data: Increases if the device is pitched upwards
move_data.gyro_y = degree_to_rad(gyro_z); // move_data: Increases if the device is rolled to the right
move_data.gyro_z = degree_to_rad(-gyro_y); // move_data: Increases if the device is yawed to the left
}
void PadHandlerBase::set_raw_orientation(Pad& pad)
{
if (!pad.move_data.orientation_enabled)
{
pad.move_data.reset_sensors();
return;
}
// acceleration (linear velocity in m/s²)
const f32 accel_x = (pad.m_sensors[0].m_value - 512) / static_cast<f32>(MOTION_ONE_G);
const f32 accel_y = (pad.m_sensors[1].m_value - 512) / static_cast<f32>(MOTION_ONE_G);
const f32 accel_z = (pad.m_sensors[2].m_value - 512) / static_cast<f32>(MOTION_ONE_G);
// gyro (angular velocity in degree/s)
constexpr f32 gyro_x = 0.0f;
const f32 gyro_y = (pad.m_sensors[3].m_value - 512) / (123.f / 90.f);
constexpr f32 gyro_z = 0.0f;
set_raw_orientation(pad.move_data, accel_x, accel_y, accel_z, gyro_x, gyro_y, gyro_z);
}
void PadHandlerBase::get_orientation(const pad_ensemble& binding) const
{
if (!b_has_orientation) return;
const auto& pad = binding.pad;
const auto& device = binding.device;
if (!pad || !device) return;
if (pad->move_data.calibration_requested)
{
device->reset_orientation();
pad->move_data.quaternion = ps_move_data::default_quaternion;
pad->move_data.calibration_succeeded = true;
return;
}
if (!pad->move_data.orientation_enabled || pad->get_orientation_reset_button_active())
{
// This can be called extensively in quick succession, so let's just reset the pointer instead of creating a new object.
device->ahrs.reset();
pad->move_data.quaternion = ps_move_data::default_quaternion;
return;
}
device->update_orientation(pad->move_data);
}
void PadDevice::reset_orientation()
{
// Initialize Fusion
ahrs = std::make_shared<FusionAhrs>();
FusionAhrsInitialise(ahrs.get());
ahrs->settings.convention = FusionConvention::FusionConventionEnu;
ahrs->settings.gain = 0.0f; // If gain is set, the algorithm tries to adjust the orientation over time.
FusionAhrsSetSettings(ahrs.get(), &ahrs->settings);
FusionAhrsReset(ahrs.get());
}
void PadDevice::update_orientation(ps_move_data& move_data)
{
if (!ahrs)
{
reset_orientation();
}
// Get elapsed time since last update
const u64 now_us = get_system_time();
const float elapsed_sec = (last_ahrs_update_time_us == 0) ? 0.0f : ((now_us - last_ahrs_update_time_us) / 1'000'000.0f);
last_ahrs_update_time_us = now_us;
// The ps move handler's axis may differ from the Fusion axis, so we have to map them correctly.
// Don't ask how the axis work. It's basically been trial and error.
ensure(ahrs->settings.convention == FusionConvention::FusionConventionEnu); // East-North-Up
const FusionVector accelerometer{
.axis {
.x = -move_data.accelerometer_x,
.y = +move_data.accelerometer_y,
.z = +move_data.accelerometer_z
}
};
const FusionVector gyroscope{
.axis {
.x = +PadHandlerBase::rad_to_degree(move_data.gyro_x),
.y = +PadHandlerBase::rad_to_degree(move_data.gyro_z),
.z = -PadHandlerBase::rad_to_degree(move_data.gyro_y)
}
};
FusionVector magnetometer {};
if (move_data.magnetometer_enabled)
{
magnetometer = FusionVector{
.axis {
.x = move_data.magnetometer_x,
.y = move_data.magnetometer_y,
.z = move_data.magnetometer_z
}
};
}
// Update Fusion
FusionAhrsUpdate(ahrs.get(), gyroscope, accelerometer, magnetometer, elapsed_sec);
// Get quaternion
const FusionQuaternion quaternion = FusionAhrsGetQuaternion(ahrs.get());
move_data.quaternion[0] = quaternion.array[1];
move_data.quaternion[1] = quaternion.array[2];
move_data.quaternion[2] = quaternion.array[3];
move_data.quaternion[3] = quaternion.array[0];
}