mirror of
https://github.com/RPCS3/rpcs3.git
synced 2025-07-02 13:01:27 +12:00
928 lines
26 KiB
C++
928 lines
26 KiB
C++
#include "stdafx.h"
|
|
#include "key_vault.h"
|
|
#include "unedat.h"
|
|
#include "sha1.h"
|
|
#include "lz.h"
|
|
#include "ec.h"
|
|
|
|
#include "Emu/system_utils.hpp"
|
|
|
|
#include "util/asm.hpp"
|
|
#include <algorithm>
|
|
#include <span>
|
|
|
|
LOG_CHANNEL(edat_log, "EDAT");
|
|
|
|
void generate_key(int crypto_mode, int version, unsigned char *key_final, unsigned char *iv_final, unsigned char *key, unsigned char *iv)
|
|
{
|
|
int mode = crypto_mode & 0xF0000000;
|
|
uchar temp_iv[16]{};
|
|
switch (mode)
|
|
{
|
|
case 0x10000000:
|
|
// Encrypted ERK.
|
|
// Decrypt the key with EDAT_KEY + EDAT_IV and copy the original IV.
|
|
memcpy(temp_iv, EDAT_IV, 0x10);
|
|
aescbc128_decrypt(const_cast<u8*>(version ? EDAT_KEY_1 : EDAT_KEY_0), temp_iv, key, key_final, 0x10);
|
|
memcpy(iv_final, iv, 0x10);
|
|
break;
|
|
case 0x20000000:
|
|
// Default ERK.
|
|
// Use EDAT_KEY and EDAT_IV.
|
|
memcpy(key_final, version ? EDAT_KEY_1 : EDAT_KEY_0, 0x10);
|
|
memcpy(iv_final, EDAT_IV, 0x10);
|
|
break;
|
|
case 0x00000000:
|
|
// Unencrypted ERK.
|
|
// Use the original key and iv.
|
|
memcpy(key_final, key, 0x10);
|
|
memcpy(iv_final, iv, 0x10);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void generate_hash(int hash_mode, int version, unsigned char *hash_final, unsigned char *hash)
|
|
{
|
|
int mode = hash_mode & 0xF0000000;
|
|
uchar temp_iv[16]{};
|
|
switch (mode)
|
|
{
|
|
case 0x10000000:
|
|
// Encrypted HASH.
|
|
// Decrypt the hash with EDAT_KEY + EDAT_IV.
|
|
memcpy(temp_iv, EDAT_IV, 0x10);
|
|
aescbc128_decrypt(const_cast<u8*>(version ? EDAT_KEY_1 : EDAT_KEY_0), temp_iv, hash, hash_final, 0x10);
|
|
break;
|
|
case 0x20000000:
|
|
// Default HASH.
|
|
// Use EDAT_HASH.
|
|
memcpy(hash_final, version ? EDAT_HASH_1 : EDAT_HASH_0, 0x10);
|
|
break;
|
|
case 0x00000000:
|
|
// Unencrypted ERK.
|
|
// Use the original hash.
|
|
memcpy(hash_final, hash, 0x10);
|
|
break;
|
|
};
|
|
}
|
|
|
|
bool decrypt(int hash_mode, int crypto_mode, int version, unsigned char *in, unsigned char *out, usz length, unsigned char *key, unsigned char *iv, unsigned char *hash, unsigned char *test_hash)
|
|
{
|
|
// Setup buffers for key, iv and hash.
|
|
unsigned char key_final[0x10] = {};
|
|
unsigned char iv_final[0x10] = {};
|
|
unsigned char hash_final_10[0x10] = {};
|
|
unsigned char hash_final_14[0x14] = {};
|
|
|
|
// Generate crypto key and hash.
|
|
generate_key(crypto_mode, version, key_final, iv_final, key, iv);
|
|
if ((hash_mode & 0xFF) == 0x01)
|
|
generate_hash(hash_mode, version, hash_final_14, hash);
|
|
else
|
|
generate_hash(hash_mode, version, hash_final_10, hash);
|
|
|
|
if ((crypto_mode & 0xFF) == 0x01) // No algorithm.
|
|
{
|
|
memcpy(out, in, length);
|
|
}
|
|
else if ((crypto_mode & 0xFF) == 0x02) // AES128-CBC
|
|
{
|
|
aescbc128_decrypt(key_final, iv_final, in, out, length);
|
|
}
|
|
else
|
|
{
|
|
edat_log.error("Unknown crypto algorithm!");
|
|
return false;
|
|
}
|
|
|
|
if ((hash_mode & 0xFF) == 0x01) // 0x14 SHA1-HMAC
|
|
{
|
|
return hmac_hash_compare(hash_final_14, 0x14, in, length, test_hash, 0x14);
|
|
}
|
|
else if ((hash_mode & 0xFF) == 0x02) // 0x10 AES-CMAC
|
|
{
|
|
return cmac_hash_compare(hash_final_10, 0x10, in, length, test_hash, 0x10);
|
|
}
|
|
else if ((hash_mode & 0xFF) == 0x04) //0x10 SHA1-HMAC
|
|
{
|
|
return hmac_hash_compare(hash_final_10, 0x10, in, length, test_hash, 0x10);
|
|
}
|
|
else
|
|
{
|
|
edat_log.error("Unknown hashing algorithm!");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// EDAT/SDAT functions.
|
|
std::tuple<u64, s32, s32> dec_section(unsigned char* metadata)
|
|
{
|
|
std::array<u8, 0x10> dec;
|
|
dec[0x00] = (metadata[0xC] ^ metadata[0x8] ^ metadata[0x10]);
|
|
dec[0x01] = (metadata[0xD] ^ metadata[0x9] ^ metadata[0x11]);
|
|
dec[0x02] = (metadata[0xE] ^ metadata[0xA] ^ metadata[0x12]);
|
|
dec[0x03] = (metadata[0xF] ^ metadata[0xB] ^ metadata[0x13]);
|
|
dec[0x04] = (metadata[0x4] ^ metadata[0x8] ^ metadata[0x14]);
|
|
dec[0x05] = (metadata[0x5] ^ metadata[0x9] ^ metadata[0x15]);
|
|
dec[0x06] = (metadata[0x6] ^ metadata[0xA] ^ metadata[0x16]);
|
|
dec[0x07] = (metadata[0x7] ^ metadata[0xB] ^ metadata[0x17]);
|
|
dec[0x08] = (metadata[0xC] ^ metadata[0x0] ^ metadata[0x18]);
|
|
dec[0x09] = (metadata[0xD] ^ metadata[0x1] ^ metadata[0x19]);
|
|
dec[0x0A] = (metadata[0xE] ^ metadata[0x2] ^ metadata[0x1A]);
|
|
dec[0x0B] = (metadata[0xF] ^ metadata[0x3] ^ metadata[0x1B]);
|
|
dec[0x0C] = (metadata[0x4] ^ metadata[0x0] ^ metadata[0x1C]);
|
|
dec[0x0D] = (metadata[0x5] ^ metadata[0x1] ^ metadata[0x1D]);
|
|
dec[0x0E] = (metadata[0x6] ^ metadata[0x2] ^ metadata[0x1E]);
|
|
dec[0x0F] = (metadata[0x7] ^ metadata[0x3] ^ metadata[0x1F]);
|
|
|
|
u64 offset = read_from_ptr<be_t<u64>>(dec, 0);
|
|
s32 length = read_from_ptr<be_t<s32>>(dec, 8);
|
|
s32 compression_end = read_from_ptr<be_t<s32>>(dec, 12);
|
|
|
|
return std::make_tuple(offset, length, compression_end);
|
|
}
|
|
|
|
u128 get_block_key(int block, NPD_HEADER *npd)
|
|
{
|
|
unsigned char empty_key[0x10] = {};
|
|
unsigned char *src_key = (npd->version <= 1) ? empty_key : npd->dev_hash;
|
|
u128 dest_key{};
|
|
std::memcpy(&dest_key, src_key, 0xC);
|
|
|
|
s32 swappedBlock = std::bit_cast<be_t<s32>>(block);
|
|
std::memcpy(reinterpret_cast<uchar*>(&dest_key) + 0xC, &swappedBlock, sizeof(swappedBlock));
|
|
return dest_key;
|
|
}
|
|
|
|
// for out data, allocate a buffer the size of 'edat->block_size'
|
|
// Also, set 'in file' to the beginning of the encrypted data, which may be offset if inside another file, but normally just reset to beginning of file
|
|
// returns number of bytes written, -1 for error
|
|
s64 decrypt_block(const fs::file* in, u8* out, EDAT_HEADER *edat, NPD_HEADER *npd, u8* crypt_key, u32 block_num, u32 total_blocks, u64 size_left, bool is_out_buffer_aligned = false)
|
|
{
|
|
// Get metadata info and setup buffers.
|
|
const int metadata_section_size = ((edat->flags & EDAT_COMPRESSED_FLAG) != 0 || (edat->flags & EDAT_FLAG_0x20) != 0) ? 0x20 : 0x10;
|
|
const int metadata_offset = 0x100;
|
|
|
|
u8 hash[0x10] = { 0 };
|
|
u8 key_result[0x10] = { 0 };
|
|
u8 hash_result[0x14] = { 0 };
|
|
|
|
u64 offset = 0;
|
|
u64 metadata_sec_offset = 0;
|
|
u64 length = 0;
|
|
s32 compression_end = 0;
|
|
unsigned char empty_iv[0x10] = {};
|
|
|
|
// Decrypt the metadata.
|
|
if ((edat->flags & EDAT_COMPRESSED_FLAG) != 0)
|
|
{
|
|
metadata_sec_offset = metadata_offset + u64{block_num} * metadata_section_size;
|
|
|
|
u8 metadata[0x20]{};
|
|
|
|
in->read_at(metadata_sec_offset, metadata, 0x20);
|
|
|
|
// If the data is compressed, decrypt the metadata.
|
|
// NOTE: For NPD version 1 the metadata is not encrypted.
|
|
if (npd->version <= 1)
|
|
{
|
|
offset = read_from_ptr<be_t<u64>>(metadata, 0x10);
|
|
length = read_from_ptr<be_t<s32>>(metadata, 0x18);
|
|
compression_end = read_from_ptr<be_t<s32>>(metadata, 0x1C);
|
|
}
|
|
else
|
|
{
|
|
std::tie(offset, length, compression_end) = dec_section(metadata);
|
|
}
|
|
|
|
std::memcpy(hash_result, metadata, 0x10);
|
|
}
|
|
else if ((edat->flags & EDAT_FLAG_0x20) != 0)
|
|
{
|
|
// If FLAG 0x20, the metadata precedes each data block.
|
|
metadata_sec_offset = metadata_offset + u64{block_num} * (metadata_section_size + edat->block_size);
|
|
|
|
u8 metadata[0x20]{};
|
|
in->read_at(metadata_sec_offset, metadata, 0x20);
|
|
|
|
std::memcpy(hash_result, metadata, 0x14);
|
|
|
|
// If FLAG 0x20 is set, apply custom xor.
|
|
for (int j = 0; j < 0x10; j++)
|
|
hash_result[j] = metadata[j] ^ metadata[j + 0x10];
|
|
|
|
offset = metadata_sec_offset + 0x20;
|
|
length = edat->block_size;
|
|
|
|
if ((block_num == (total_blocks - 1)) && (edat->file_size % edat->block_size))
|
|
length = static_cast<s32>(edat->file_size % edat->block_size);
|
|
}
|
|
else
|
|
{
|
|
metadata_sec_offset = metadata_offset + u64{block_num} * metadata_section_size;
|
|
|
|
in->read_at(metadata_sec_offset, hash_result, 0x10);
|
|
|
|
offset = metadata_offset + u64{block_num} * edat->block_size + total_blocks * metadata_section_size;
|
|
length = edat->block_size;
|
|
|
|
if ((block_num == (total_blocks - 1)) && (edat->file_size % edat->block_size))
|
|
length = static_cast<s32>(edat->file_size % edat->block_size);
|
|
}
|
|
|
|
// Locate the real data.
|
|
const usz pad_length = length;
|
|
length = utils::align<usz>(pad_length, 0x10);
|
|
|
|
// Setup buffers for decryption and read the data.
|
|
std::vector<u8> enc_data_buf(is_out_buffer_aligned || length == pad_length ? 0 : length);
|
|
std::vector<u8> dec_data_buf(length);
|
|
|
|
// Try to use out buffer for file reads if no padding is needed instead of a new buffer
|
|
u8* enc_data = enc_data_buf.empty() ? out : enc_data_buf.data();
|
|
|
|
// Variable to avoid copies when possible
|
|
u8* dec_data = dec_data_buf.data();
|
|
|
|
std::memset(hash, 0, 0x10);
|
|
std::memset(key_result, 0, 0x10);
|
|
|
|
in->read_at(offset, enc_data, length);
|
|
|
|
// Generate a key for the current block.
|
|
auto b_key = get_block_key(block_num, npd);
|
|
|
|
// Encrypt the block key with the crypto key.
|
|
aesecb128_encrypt(crypt_key, reinterpret_cast<uchar*>(&b_key), key_result);
|
|
|
|
if ((edat->flags & EDAT_FLAG_0x10) != 0)
|
|
{
|
|
aesecb128_encrypt(crypt_key, key_result, hash); // If FLAG 0x10 is set, encrypt again to get the final hash.
|
|
}
|
|
else
|
|
{
|
|
std::memcpy(hash, key_result, 0x10);
|
|
}
|
|
|
|
// Setup the crypto and hashing mode based on the extra flags.
|
|
int crypto_mode = ((edat->flags & EDAT_FLAG_0x02) == 0) ? 0x2 : 0x1;
|
|
int hash_mode;
|
|
|
|
if ((edat->flags & EDAT_FLAG_0x10) == 0)
|
|
hash_mode = 0x02;
|
|
else if ((edat->flags & EDAT_FLAG_0x20) == 0)
|
|
hash_mode = 0x04;
|
|
else
|
|
hash_mode = 0x01;
|
|
|
|
if ((edat->flags & EDAT_ENCRYPTED_KEY_FLAG) != 0)
|
|
{
|
|
crypto_mode |= 0x10000000;
|
|
hash_mode |= 0x10000000;
|
|
}
|
|
|
|
const bool should_decompress = ((edat->flags & EDAT_COMPRESSED_FLAG) != 0) && compression_end;
|
|
|
|
if ((edat->flags & EDAT_DEBUG_DATA_FLAG) != 0)
|
|
{
|
|
// Reset the flags.
|
|
crypto_mode |= 0x01000000;
|
|
hash_mode |= 0x01000000;
|
|
|
|
// Simply copy the data without the header or the footer.
|
|
if (should_decompress)
|
|
{
|
|
std::memcpy(dec_data, enc_data, length);
|
|
}
|
|
else
|
|
{
|
|
// Optimize when decompression is not needed by avoiding 2 copies
|
|
dec_data = enc_data;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// IV is null if NPD version is 1 or 0.
|
|
u8* iv = (npd->version <= 1) ? empty_iv : npd->digest;
|
|
|
|
// Call main crypto routine on this data block.
|
|
if (!decrypt(hash_mode, crypto_mode, (npd->version == 4), enc_data, dec_data, length, key_result, iv, hash, hash_result))
|
|
{
|
|
edat_log.error("Block at offset 0x%llx has invalid hash!", offset);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// Apply additional de-compression if needed and write the decrypted data.
|
|
if (should_decompress)
|
|
{
|
|
const int res = decompress(out, dec_data, edat->block_size);
|
|
|
|
size_left -= res;
|
|
|
|
if (size_left == 0)
|
|
{
|
|
if (res < 0)
|
|
{
|
|
edat_log.error("Decompression failed!");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
if (dec_data != out)
|
|
{
|
|
std::memcpy(out, dec_data, pad_length);
|
|
}
|
|
|
|
return pad_length;
|
|
}
|
|
|
|
// set file offset to beginning before calling
|
|
bool check_data(u8* key, EDAT_HEADER* edat, NPD_HEADER* npd, const fs::file* f, bool verbose)
|
|
{
|
|
u8 header[0xA0] = { 0 };
|
|
u8 empty_header[0xA0] = { 0 };
|
|
u8 header_hash[0x10] = { 0 };
|
|
u8 metadata_hash[0x10] = { 0 };
|
|
|
|
const u64 file_offset = f->pos();
|
|
|
|
// Check NPD version and flags.
|
|
if ((npd->version == 0) || (npd->version == 1))
|
|
{
|
|
if (edat->flags & 0x7EFFFFFE)
|
|
{
|
|
edat_log.error("Bad header flags!");
|
|
return false;
|
|
}
|
|
}
|
|
else if (npd->version == 2)
|
|
{
|
|
if (edat->flags & 0x7EFFFFE0)
|
|
{
|
|
edat_log.error("Bad header flags!");
|
|
return false;
|
|
}
|
|
}
|
|
else if ((npd->version == 3) || (npd->version == 4))
|
|
{
|
|
if (edat->flags & 0x7EFFFFC0)
|
|
{
|
|
edat_log.error("Bad header flags!");
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
edat_log.error("Unknown version!");
|
|
return false;
|
|
}
|
|
|
|
// Read in the file header.
|
|
f->read(header, 0xA0);
|
|
|
|
// Read in the header and metadata section hashes.
|
|
f->seek(file_offset + 0x90);
|
|
f->read(metadata_hash, 0x10);
|
|
f->read(header_hash, 0x10);
|
|
|
|
// Setup the hashing mode and the crypto mode used in the file.
|
|
const int crypto_mode = 0x1;
|
|
int hash_mode = ((edat->flags & EDAT_ENCRYPTED_KEY_FLAG) == 0) ? 0x00000002 : 0x10000002;
|
|
if ((edat->flags & EDAT_DEBUG_DATA_FLAG) != 0)
|
|
{
|
|
hash_mode |= 0x01000000;
|
|
|
|
if (verbose)
|
|
edat_log.warning("DEBUG data detected!");
|
|
}
|
|
|
|
// Setup header key and iv buffers.
|
|
unsigned char header_key[0x10] = { 0 };
|
|
unsigned char header_iv[0x10] = { 0 };
|
|
|
|
// Test the header hash (located at offset 0xA0).
|
|
if (!decrypt(hash_mode, crypto_mode, (npd->version == 4), header, empty_header, 0xA0, header_key, header_iv, key, header_hash))
|
|
{
|
|
if (verbose)
|
|
edat_log.warning("Header hash is invalid!");
|
|
|
|
// If the header hash test fails and the data is not DEBUG, then RAP/RIF/KLIC key is invalid.
|
|
if ((edat->flags & EDAT_DEBUG_DATA_FLAG) != EDAT_DEBUG_DATA_FLAG)
|
|
{
|
|
edat_log.error("RAP/RIF/KLIC key is invalid!");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Parse the metadata info.
|
|
const int metadata_section_size = ((edat->flags & EDAT_COMPRESSED_FLAG) != 0 || (edat->flags & EDAT_FLAG_0x20) != 0) ? 0x20 : 0x10;
|
|
if (((edat->flags & EDAT_COMPRESSED_FLAG) != 0))
|
|
{
|
|
if (verbose)
|
|
edat_log.warning("COMPRESSED data detected!");
|
|
}
|
|
|
|
if (!edat->block_size)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
const usz block_num = utils::aligned_div<u64>(edat->file_size, edat->block_size);
|
|
constexpr usz metadata_offset = 0x100;
|
|
const usz metadata_size = utils::mul_saturate<u64>(metadata_section_size, block_num);
|
|
u64 metadata_section_offset = metadata_offset;
|
|
|
|
if (utils::add_saturate<u64>(utils::add_saturate<u64>(file_offset, metadata_section_offset), metadata_size) > f->size())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
u64 bytes_read = 0;
|
|
const auto metadata = std::make_unique<u8[]>(metadata_size);
|
|
const auto empty_metadata = std::make_unique<u8[]>(metadata_size);
|
|
|
|
while (bytes_read < metadata_size)
|
|
{
|
|
// Locate the metadata blocks.
|
|
const usz offset = file_offset + metadata_section_offset;
|
|
|
|
// Read in the metadata.
|
|
f->read_at(offset, metadata.get() + bytes_read, metadata_section_size);
|
|
|
|
// Adjust sizes.
|
|
bytes_read += metadata_section_size;
|
|
|
|
if (((edat->flags & EDAT_FLAG_0x20) != 0)) // Metadata block before each data block.
|
|
metadata_section_offset += (metadata_section_size + edat->block_size);
|
|
else
|
|
metadata_section_offset += metadata_section_size;
|
|
}
|
|
|
|
// Test the metadata section hash (located at offset 0x90).
|
|
if (!decrypt(hash_mode, crypto_mode, (npd->version == 4), metadata.get(), empty_metadata.get(), metadata_size, header_key, header_iv, key, metadata_hash))
|
|
{
|
|
if (verbose)
|
|
edat_log.warning("Metadata section hash is invalid!");
|
|
}
|
|
|
|
// Checking ECDSA signatures.
|
|
if ((edat->flags & EDAT_DEBUG_DATA_FLAG) == 0)
|
|
{
|
|
// Setup buffers.
|
|
unsigned char metadata_signature[0x28] = { 0 };
|
|
unsigned char header_signature[0x28] = { 0 };
|
|
unsigned char signature_hash[20] = { 0 };
|
|
unsigned char signature_r[0x15] = { 0 };
|
|
unsigned char signature_s[0x15] = { 0 };
|
|
unsigned char zero_buf[0x15] = { 0 };
|
|
|
|
// Setup ECDSA curve and public key.
|
|
ecdsa_set_curve(VSH_CURVE_P, VSH_CURVE_A, VSH_CURVE_B, VSH_CURVE_N, VSH_CURVE_GX, VSH_CURVE_GY);
|
|
ecdsa_set_pub(VSH_PUB);
|
|
|
|
// Read in the metadata and header signatures.
|
|
f->seek(0xB0);
|
|
f->read(metadata_signature, 0x28);
|
|
f->read(header_signature, 0x28);
|
|
|
|
// Checking metadata signature.
|
|
// Setup signature r and s.
|
|
signature_r[0] = 0;
|
|
signature_s[0] = 0;
|
|
std::memcpy(signature_r + 1, metadata_signature, 0x14);
|
|
std::memcpy(signature_s + 1, metadata_signature + 0x14, 0x14);
|
|
if ((!std::memcmp(signature_r, zero_buf, 0x15)) || (!std::memcmp(signature_s, zero_buf, 0x15)))
|
|
{
|
|
edat_log.warning("Metadata signature is invalid!");
|
|
}
|
|
else
|
|
{
|
|
// Setup signature hash.
|
|
if ((edat->flags & EDAT_FLAG_0x20) != 0) //Sony failed again, they used buffer from 0x100 with half size of real metadata.
|
|
{
|
|
const usz metadata_buf_size = block_num * 0x10;
|
|
|
|
std::vector<u8> metadata_buf(metadata_buf_size);
|
|
|
|
f->read_at(file_offset + metadata_offset, metadata_buf.data(), metadata_buf_size);
|
|
|
|
sha1(metadata_buf.data(), metadata_buf_size, signature_hash);
|
|
}
|
|
else
|
|
sha1(metadata.get(), metadata_size, signature_hash);
|
|
|
|
if (!ecdsa_verify(signature_hash, signature_r, signature_s))
|
|
{
|
|
edat_log.warning("Metadata signature is invalid!");
|
|
if (((edat->block_size + 0ull) * block_num) > 0x100000000)
|
|
edat_log.warning("*Due to large file size, metadata signature status may be incorrect!");
|
|
}
|
|
}
|
|
|
|
// Checking header signature.
|
|
// Setup header signature r and s.
|
|
signature_r[0] = 0;
|
|
signature_s[0] = 0;
|
|
std::memcpy(signature_r + 1, header_signature, 0x14);
|
|
std::memcpy(signature_s + 1, header_signature + 0x14, 0x14);
|
|
|
|
if ((!std::memcmp(signature_r, zero_buf, 0x15)) || (!std::memcmp(signature_s, zero_buf, 0x15)))
|
|
{
|
|
edat_log.warning("Header signature is invalid!");
|
|
}
|
|
else
|
|
{
|
|
// Setup header signature hash.
|
|
std::memset(signature_hash, 0, 20);
|
|
|
|
u8 header_buf[0xD8]{};
|
|
|
|
f->read_at(file_offset, header_buf, 0xD8);
|
|
sha1(header_buf, 0xD8, signature_hash);
|
|
|
|
if (!ecdsa_verify(signature_hash, signature_r, signature_s))
|
|
edat_log.warning("Header signature is invalid!");
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool validate_dev_klic(const u8* klicensee, NPD_HEADER *npd)
|
|
{
|
|
if ((npd->license & 0x3) != 0x3)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
unsigned char dev[0x60]{};
|
|
|
|
// Build the dev buffer (first 0x60 bytes of NPD header in big-endian).
|
|
std::memcpy(dev, npd, 0x60);
|
|
|
|
// Fix endianness.
|
|
s32 version = std::bit_cast<be_t<s32>>(npd->version);
|
|
s32 license = std::bit_cast<be_t<s32>>(npd->license);
|
|
s32 type = std::bit_cast<be_t<s32>>(npd->type);
|
|
std::memcpy(dev + 0x4, &version, 4);
|
|
std::memcpy(dev + 0x8, &license, 4);
|
|
std::memcpy(dev + 0xC, &type, 4);
|
|
|
|
// Check for an empty dev_hash (can't validate if devklic is NULL);
|
|
u128 klic;
|
|
std::memcpy(&klic, klicensee, sizeof(klic));
|
|
|
|
// Generate klicensee xor key.
|
|
u128 key = klic ^ std::bit_cast<u128>(NP_OMAC_KEY_2);
|
|
|
|
// Hash with generated key and compare with dev_hash.
|
|
return cmac_hash_compare(reinterpret_cast<uchar*>(&key), 0x10, dev, 0x60, npd->dev_hash, 0x10);
|
|
}
|
|
|
|
bool validate_npd_hashes(std::string_view file_name, const u8* klicensee, NPD_HEADER* npd, EDAT_HEADER* edat, bool verbose)
|
|
{
|
|
// Ignore header validation in DEBUG data.
|
|
if (edat->flags & EDAT_DEBUG_DATA_FLAG)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
if (!validate_dev_klic(klicensee, npd))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (file_name.empty())
|
|
{
|
|
return true;
|
|
}
|
|
|
|
const usz buf_len = 0x30 + file_name.size();
|
|
|
|
std::unique_ptr<u8[]> buf(new u8[buf_len]);
|
|
std::unique_ptr<u8[]> buf_lower(new u8[buf_len]);
|
|
std::unique_ptr<u8[]> buf_upper(new u8[buf_len]);
|
|
|
|
// Build the title buffer (content_id + file_name).
|
|
std::memcpy(buf.get(), npd->content_id, 0x30);
|
|
std::memcpy(buf.get() + 0x30, file_name.data(), file_name.size());
|
|
|
|
std::memcpy(buf_lower.get(), buf.get(), buf_len);
|
|
std::memcpy(buf_upper.get(), buf.get(), buf_len);
|
|
|
|
const auto buf_span = std::span(buf.get(), buf.get() + buf_len);
|
|
const auto it = std::find(buf_span.rbegin(), buf_span.rend() - 0x30, '.');
|
|
for (usz i = std::distance(it, buf_span.rend()) - 1; i < buf_len; ++i)
|
|
{
|
|
const u8 c = buf[i];
|
|
buf_upper[i] = std::toupper(c);
|
|
buf_lower[i] = std::tolower(c);
|
|
}
|
|
|
|
// Hash with NPDRM_OMAC_KEY_3 and compare with title_hash.
|
|
// Try to ignore case sensivity with file extension
|
|
const bool title_hash_result =
|
|
cmac_hash_compare(const_cast<u8*>(NP_OMAC_KEY_3), 0x10, buf.get(), buf_len, npd->title_hash, 0x10) ||
|
|
cmac_hash_compare(const_cast<u8*>(NP_OMAC_KEY_3), 0x10, buf_lower.get(), buf_len, npd->title_hash, 0x10) ||
|
|
cmac_hash_compare(const_cast<u8*>(NP_OMAC_KEY_3), 0x10, buf_upper.get(), buf_len, npd->title_hash, 0x10);
|
|
|
|
if (verbose)
|
|
{
|
|
if (title_hash_result)
|
|
edat_log.notice("NPD title hash is valid!");
|
|
else
|
|
edat_log.warning("NPD title hash is invalid!");
|
|
}
|
|
|
|
return title_hash_result;
|
|
}
|
|
|
|
void read_npd_edat_header(const fs::file* input, NPD_HEADER& NPD, EDAT_HEADER& EDAT)
|
|
{
|
|
char npd_header[0x80]{};
|
|
char edat_header[0x10]{};
|
|
|
|
usz pos = input->pos();
|
|
pos += input->read_at(pos, npd_header, sizeof(npd_header));
|
|
input->read_at(pos, edat_header, sizeof(edat_header));
|
|
|
|
std::memcpy(&NPD.magic, npd_header, 4);
|
|
NPD.version = read_from_ptr<be_t<s32>>(npd_header, 4);
|
|
NPD.license = read_from_ptr<be_t<s32>>(npd_header, 8);
|
|
NPD.type = read_from_ptr<be_t<s32>>(npd_header, 12);
|
|
std::memcpy(NPD.content_id, &npd_header[16], 0x30);
|
|
std::memcpy(NPD.digest, &npd_header[64], 0x10);
|
|
std::memcpy(NPD.title_hash, &npd_header[80], 0x10);
|
|
std::memcpy(NPD.dev_hash, &npd_header[96], 0x10);
|
|
NPD.activate_time = read_from_ptr<be_t<s64>>(npd_header, 112);
|
|
NPD.expire_time = read_from_ptr<be_t<s64>>(npd_header, 120);
|
|
|
|
EDAT.flags = read_from_ptr<be_t<s32>>(edat_header, 0);
|
|
EDAT.block_size = read_from_ptr<be_t<s32>>(edat_header, 4);
|
|
EDAT.file_size = read_from_ptr<be_t<u64>>(edat_header, 8);
|
|
}
|
|
|
|
u128 GetEdatRifKeyFromRapFile(const fs::file& rap_file)
|
|
{
|
|
u128 rapkey{};
|
|
u128 rifkey{};
|
|
|
|
rap_file.read<u128>(rapkey);
|
|
|
|
rap_to_rif(reinterpret_cast<uchar*>(&rapkey), reinterpret_cast<uchar*>(&rifkey));
|
|
|
|
return rifkey;
|
|
}
|
|
|
|
bool VerifyEDATHeaderWithKLicense(const fs::file& input, const std::string& input_file_name, const u8* custom_klic, NPD_HEADER* npd_out)
|
|
{
|
|
// Setup NPD and EDAT/SDAT structs.
|
|
NPD_HEADER NPD;
|
|
EDAT_HEADER EDAT;
|
|
|
|
// Read in the NPD and EDAT/SDAT headers.
|
|
read_npd_edat_header(&input, NPD, EDAT);
|
|
|
|
if (NPD.magic != "NPD\0"_u32)
|
|
{
|
|
edat_log.error("%s has invalid NPD header or already decrypted.", input_file_name);
|
|
return false;
|
|
}
|
|
|
|
if ((EDAT.flags & SDAT_FLAG) == SDAT_FLAG)
|
|
{
|
|
edat_log.error("SDATA file given to edat function");
|
|
return false;
|
|
}
|
|
|
|
// Perform header validation (EDAT only).
|
|
char real_file_name[CRYPTO_MAX_PATH]{};
|
|
extract_file_name(input_file_name.c_str(), real_file_name);
|
|
if (!validate_npd_hashes(real_file_name, custom_klic, &NPD, &EDAT, false))
|
|
{
|
|
edat_log.error("NPD hash validation failed!");
|
|
return false;
|
|
}
|
|
|
|
std::string_view sv{NPD.content_id, std::size(NPD.content_id)};
|
|
sv = sv.substr(0, sv.find_first_of('\0'));
|
|
|
|
if (npd_out)
|
|
{
|
|
memcpy(npd_out, &NPD, sizeof(NPD_HEADER));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Decrypts full file
|
|
fs::file DecryptEDAT(const fs::file& input, const std::string& input_file_name, int mode, u8 *custom_klic)
|
|
{
|
|
if (!input)
|
|
{
|
|
return {};
|
|
}
|
|
|
|
// Prepare the files.
|
|
input.seek(0);
|
|
|
|
// Set DEVKLIC
|
|
u128 devklic{};
|
|
|
|
// Select the EDAT key mode.
|
|
switch (mode)
|
|
{
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
memcpy(&devklic, NP_KLIC_FREE, 0x10);
|
|
break;
|
|
case 2:
|
|
memcpy(&devklic, NP_OMAC_KEY_2, 0x10);
|
|
break;
|
|
case 3:
|
|
memcpy(&devklic, NP_OMAC_KEY_3, 0x10);
|
|
break;
|
|
case 4:
|
|
memcpy(&devklic, NP_KLIC_KEY, 0x10);
|
|
break;
|
|
case 5:
|
|
memcpy(&devklic, NP_PSX_KEY, 0x10);
|
|
break;
|
|
case 6:
|
|
memcpy(&devklic, NP_PSP_KEY_1, 0x10);
|
|
break;
|
|
case 7:
|
|
memcpy(&devklic, NP_PSP_KEY_2, 0x10);
|
|
break;
|
|
case 8:
|
|
{
|
|
if (custom_klic != NULL)
|
|
memcpy(&devklic, custom_klic, 0x10);
|
|
else
|
|
{
|
|
edat_log.error("Invalid custom klic!");
|
|
return fs::file{};
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
edat_log.error("Invalid mode!");
|
|
return fs::file{};
|
|
}
|
|
|
|
// Delete the bad output file if any errors arise.
|
|
auto data = std::make_unique<EDATADecrypter>(input, devklic, input_file_name, false);
|
|
|
|
if (!data->ReadHeader())
|
|
{
|
|
return fs::file{};
|
|
}
|
|
|
|
fs::file output;
|
|
output.reset(std::move(data));
|
|
|
|
return output;
|
|
}
|
|
|
|
bool EDATADecrypter::ReadHeader()
|
|
{
|
|
edata_file.seek(0);
|
|
|
|
// Read in the NPD and EDAT/SDAT headers.
|
|
read_npd_edat_header(&edata_file, npdHeader, edatHeader);
|
|
|
|
if (npdHeader.magic != "NPD\0"_u32)
|
|
{
|
|
edat_log.error("Not an NPDRM file");
|
|
return false;
|
|
}
|
|
|
|
// Check for SDAT flag.
|
|
if ((edatHeader.flags & SDAT_FLAG) == SDAT_FLAG)
|
|
{
|
|
// Generate SDAT key.
|
|
dec_key = std::bit_cast<u128>(npdHeader.dev_hash) ^ std::bit_cast<u128>(SDAT_KEY);
|
|
}
|
|
else
|
|
{
|
|
// extract key from RIF
|
|
char real_file_name[CRYPTO_MAX_PATH]{};
|
|
extract_file_name(m_file_name.c_str(), real_file_name);
|
|
|
|
if (!validate_npd_hashes(real_file_name, reinterpret_cast<const u8*>(&dec_key), &npdHeader, &edatHeader, false))
|
|
{
|
|
edat_log.error("NPD hash validation failed!");
|
|
return true;
|
|
}
|
|
|
|
// Select EDAT key.
|
|
if (m_is_key_final)
|
|
{
|
|
// Already provided
|
|
}
|
|
// Type 3: Use supplied dec_key.
|
|
else if ((npdHeader.license & 0x3) == 0x3)
|
|
{
|
|
//
|
|
}
|
|
// Type 2: Use key from RAP file (RIF key). (also used for type 1 at the moment)
|
|
else
|
|
{
|
|
const std::string rap_path = rpcs3::utils::get_rap_file_path(npdHeader.content_id);
|
|
|
|
if (fs::file rap{rap_path}; rap && rap.size() >= sizeof(dec_key))
|
|
{
|
|
dec_key = GetEdatRifKeyFromRapFile(rap);
|
|
}
|
|
|
|
// Make sure we don't have an empty RIF key.
|
|
if (!dec_key)
|
|
{
|
|
edat_log.error("A valid RAP file is needed for this EDAT file! (license=%d)", npdHeader.license);
|
|
return true;
|
|
}
|
|
|
|
edat_log.trace("RIFKEY: %s", std::bit_cast<be_t<u128>>(dec_key));
|
|
}
|
|
}
|
|
|
|
edata_file.seek(0);
|
|
|
|
// k the ecdsa_verify function in this check_data function takes a ridiculous amount of time
|
|
// like it slows down load time by a factor of x20, at least, so its ignored for now
|
|
//if (!check_data(reinterpret_cast<u8*>(&dec_key), &edatHeader, &npdHeader, &edata_file, false))
|
|
//{
|
|
// edat_log.error("NPDRM check_data() failed!");
|
|
// return false;
|
|
//}
|
|
|
|
file_size = edatHeader.file_size;
|
|
total_blocks = ::narrow<u32>(utils::aligned_div(edatHeader.file_size, edatHeader.block_size));
|
|
|
|
// Try decrypting the first block instead
|
|
u8 data_sample[1];
|
|
|
|
if (file_size && !ReadData(0, data_sample, 1))
|
|
{
|
|
edat_log.error("NPDRM ReadData() failed!");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
u64 EDATADecrypter::ReadData(u64 pos, u8* data, u64 size)
|
|
{
|
|
size = std::min<u64>(size, pos > edatHeader.file_size ? 0 : edatHeader.file_size - pos);
|
|
|
|
if (!size)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
// Now we need to offset things to account for the actual 'range' requested
|
|
const u64 startOffset = pos % edatHeader.block_size;
|
|
|
|
const u64 num_blocks = utils::aligned_div(startOffset + size, edatHeader.block_size);
|
|
|
|
// Find and decrypt block range covering pos + size
|
|
const u32 starting_block = ::narrow<u32>(pos / edatHeader.block_size);
|
|
const u32 ending_block = ::narrow<u32>(std::min<u64>(starting_block + num_blocks, total_blocks));
|
|
|
|
u64 writeOffset = 0;
|
|
|
|
std::vector<u8> data_buf(edatHeader.block_size + 16);
|
|
|
|
for (u32 i = starting_block; i < ending_block; i++)
|
|
{
|
|
u64 res = decrypt_block(&edata_file, data_buf.data(), &edatHeader, &npdHeader, reinterpret_cast<uchar*>(&dec_key), i, total_blocks, edatHeader.file_size, true);
|
|
|
|
if (res == umax)
|
|
{
|
|
edat_log.error("Error Decrypting data");
|
|
return 0;
|
|
}
|
|
|
|
const usz skip_start = (i == starting_block ? startOffset : 0);
|
|
|
|
if (skip_start >= res)
|
|
{
|
|
break;
|
|
}
|
|
|
|
const usz end_pos = (i != total_blocks - 1 ? edatHeader.block_size : (edatHeader.file_size - 1) % edatHeader.block_size + 1);
|
|
const usz read_end = std::min<usz>(res, i == ending_block - 1 ? std::min<usz>(end_pos, (startOffset + size - 1) % edatHeader.block_size + 1) : end_pos);
|
|
|
|
std::memcpy(data + writeOffset, data_buf.data() + skip_start, read_end - skip_start);
|
|
std::memset(data_buf.data(), 0, read_end - skip_start);
|
|
|
|
writeOffset += read_end - skip_start;
|
|
}
|
|
|
|
return writeOffset;
|
|
}
|