rpcs3/rpcs3/Emu/Cell/SPUThread.h
Nekotekina 1b37e775be Migration to named_thread<>
Add atomic_t<>::try_dec instead of fetch_dec_sat
Add atomic_t<>::try_inc
GDBDebugServer is broken (needs rewrite)
Removed old_thread class (former named_thread)
Removed storing/rethrowing exceptions from thread
Emu.Stop doesn't inject an exception anymore
task_stack helper class removed
thread_base simplified (no shared_from_this)
thread_ctrl::spawn simplified (creates detached thread)
Implemented overrideable thread detaching logic
Disabled cellAdec, cellDmux, cellFsAio
SPUThread renamed to spu_thread
RawSPUThread removed, spu_thread used instead
Disabled deriving from ppu_thread
Partial support for thread renaming
lv2_timer... simplified, screw it
idm/fxm: butchered support for on_stop/on_init
vm: improved allocation structure (added size)
2018-10-19 22:22:35 +03:00

638 lines
15 KiB
C++

#pragma once
#include "Emu/Cell/Common.h"
#include "Emu/CPU/CPUThread.h"
#include "Emu/Cell/SPUInterpreter.h"
#include "MFC.h"
#include <map>
struct lv2_event_queue;
struct lv2_spu_group;
struct lv2_int_tag;
// JIT Block
using spu_function_t = void(*)(spu_thread&, void*, u8*);
// SPU Channels
enum : u32
{
SPU_RdEventStat = 0, // Read event status with mask applied
SPU_WrEventMask = 1, // Write event mask
SPU_WrEventAck = 2, // Write end of event processing
SPU_RdSigNotify1 = 3, // Signal notification 1
SPU_RdSigNotify2 = 4, // Signal notification 2
SPU_WrDec = 7, // Write decrementer count
SPU_RdDec = 8, // Read decrementer count
SPU_RdEventMask = 11, // Read event mask
SPU_RdMachStat = 13, // Read SPU run status
SPU_WrSRR0 = 14, // Write SPU machine state save/restore register 0 (SRR0)
SPU_RdSRR0 = 15, // Read SPU machine state save/restore register 0 (SRR0)
SPU_WrOutMbox = 28, // Write outbound mailbox contents
SPU_RdInMbox = 29, // Read inbound mailbox contents
SPU_WrOutIntrMbox = 30, // Write outbound interrupt mailbox contents (interrupting PPU)
};
// MFC Channels
enum : u32
{
MFC_WrMSSyncReq = 9, // Write multisource synchronization request
MFC_RdTagMask = 12, // Read tag mask
MFC_LSA = 16, // Write local memory address command parameter
MFC_EAH = 17, // Write high order DMA effective address command parameter
MFC_EAL = 18, // Write low order DMA effective address command parameter
MFC_Size = 19, // Write DMA transfer size command parameter
MFC_TagID = 20, // Write tag identifier command parameter
MFC_Cmd = 21, // Write and enqueue DMA command with associated class ID
MFC_WrTagMask = 22, // Write tag mask
MFC_WrTagUpdate = 23, // Write request for conditional or unconditional tag status update
MFC_RdTagStat = 24, // Read tag status with mask applied
MFC_RdListStallStat = 25, // Read DMA list stall-and-notify status
MFC_WrListStallAck = 26, // Write DMA list stall-and-notify acknowledge
MFC_RdAtomicStat = 27, // Read completion status of last completed immediate MFC atomic update command
};
// SPU Events
enum : u32
{
SPU_EVENT_MS = 0x1000, // Multisource Synchronization event
SPU_EVENT_A = 0x800, // Privileged Attention event
SPU_EVENT_LR = 0x400, // Lock Line Reservation Lost event
SPU_EVENT_S1 = 0x200, // Signal Notification Register 1 available
SPU_EVENT_S2 = 0x100, // Signal Notification Register 2 available
SPU_EVENT_LE = 0x80, // SPU Outbound Mailbox available
SPU_EVENT_ME = 0x40, // SPU Outbound Interrupt Mailbox available
SPU_EVENT_TM = 0x20, // SPU Decrementer became negative (?)
SPU_EVENT_MB = 0x10, // SPU Inbound mailbox available
SPU_EVENT_QV = 0x8, // MFC SPU Command Queue available
SPU_EVENT_SN = 0x2, // MFC List Command stall-and-notify event
SPU_EVENT_TG = 0x1, // MFC Tag Group status update event
SPU_EVENT_IMPLEMENTED = SPU_EVENT_LR | SPU_EVENT_TM | SPU_EVENT_SN, // Mask of implemented events
SPU_EVENT_INTR_IMPLEMENTED = SPU_EVENT_SN,
SPU_EVENT_WAITING = 0x80000000, // Originally unused, set when SPU thread starts waiting on ch_event_stat
//SPU_EVENT_AVAILABLE = 0x40000000, // Originally unused, channel count of the SPU_RdEventStat channel
//SPU_EVENT_INTR_ENABLED = 0x20000000, // Originally unused, represents "SPU Interrupts Enabled" status
SPU_EVENT_INTR_TEST = SPU_EVENT_INTR_IMPLEMENTED
};
// SPU Class 0 Interrupts
enum : u64
{
SPU_INT0_STAT_DMA_ALIGNMENT_INT = (1ull << 0),
SPU_INT0_STAT_INVALID_DMA_CMD_INT = (1ull << 1),
SPU_INT0_STAT_SPU_ERROR_INT = (1ull << 2),
};
// SPU Class 2 Interrupts
enum : u64
{
SPU_INT2_STAT_MAILBOX_INT = (1ull << 0),
SPU_INT2_STAT_SPU_STOP_AND_SIGNAL_INT = (1ull << 1),
SPU_INT2_STAT_SPU_HALT_OR_STEP_INT = (1ull << 2),
SPU_INT2_STAT_DMA_TAG_GROUP_COMPLETION_INT = (1ull << 3),
SPU_INT2_STAT_SPU_MAILBOX_THRESHOLD_INT = (1ull << 4),
};
enum
{
SPU_RUNCNTL_STOP_REQUEST = 0,
SPU_RUNCNTL_RUN_REQUEST = 1,
};
// SPU Status Register bits (not accurate)
enum
{
SPU_STATUS_STOPPED = 0x0,
SPU_STATUS_RUNNING = 0x1,
SPU_STATUS_STOPPED_BY_STOP = 0x2,
SPU_STATUS_STOPPED_BY_HALT = 0x4,
SPU_STATUS_WAITING_FOR_CHANNEL = 0x8,
SPU_STATUS_SINGLE_STEP = 0x10,
};
enum : u32
{
SYS_SPU_THREAD_BASE_LOW = 0xf0000000,
SYS_SPU_THREAD_OFFSET = 0x100000,
SYS_SPU_THREAD_SNR1 = 0x5400c,
SYS_SPU_THREAD_SNR2 = 0x5C00c,
};
enum
{
MFC_LSA_offs = 0x3004,
MFC_EAH_offs = 0x3008,
MFC_EAL_offs = 0x300C,
MFC_Size_Tag_offs = 0x3010,
MFC_Class_CMD_offs = 0x3014,
MFC_CMDStatus_offs = 0x3014,
MFC_QStatus_offs = 0x3104,
Prxy_QueryType_offs = 0x3204,
Prxy_QueryMask_offs = 0x321C,
Prxy_TagStatus_offs = 0x322C,
SPU_Out_MBox_offs = 0x4004,
SPU_In_MBox_offs = 0x400C,
SPU_MBox_Status_offs = 0x4014,
SPU_RunCntl_offs = 0x401C,
SPU_Status_offs = 0x4024,
SPU_NPC_offs = 0x4034,
SPU_RdSigNotify1_offs = 0x1400C,
SPU_RdSigNotify2_offs = 0x1C00C,
};
enum : u32
{
RAW_SPU_BASE_ADDR = 0xE0000000,
RAW_SPU_OFFSET = 0x00100000,
RAW_SPU_LS_OFFSET = 0x00000000,
RAW_SPU_PROB_OFFSET = 0x00040000,
};
struct spu_channel
{
// Low 32 bits contain value
atomic_t<u64> data;
public:
static const u32 off_wait = 32;
static const u32 off_count = 63;
static const u64 bit_wait = 1ull << off_wait;
static const u64 bit_count = 1ull << off_count;
// Returns true on success
bool try_push(u32 value)
{
const u64 old = data.fetch_op([=](u64& data)
{
if (UNLIKELY(data & bit_count))
{
data |= bit_wait;
}
else
{
data = bit_count | value;
}
});
return !(old & bit_count);
}
// Push performing bitwise OR with previous value, may require notification
void push_or(cpu_thread& spu, u32 value)
{
const u64 old = data.fetch_op([=](u64& data)
{
data &= ~bit_wait;
data |= bit_count | value;
});
if (old & bit_wait)
{
spu.notify();
}
}
bool push_and(u32 value)
{
return (data.fetch_and(~u64{value}) & value) != 0;
}
// Push unconditionally (overwriting previous value), may require notification
void push(cpu_thread& spu, u32 value)
{
if (data.exchange(bit_count | value) & bit_wait)
{
spu.notify();
}
}
// Returns true on success
bool try_pop(u32& out)
{
const u64 old = data.fetch_op([&](u64& data)
{
if (LIKELY(data & bit_count))
{
out = static_cast<u32>(data);
data = 0;
}
else
{
data |= bit_wait;
}
});
return (old & bit_count) != 0;
}
// Pop unconditionally (loading last value), may require notification
u32 pop(cpu_thread& spu)
{
// Value is not cleared and may be read again
const u64 old = data.fetch_and(~(bit_count | bit_wait));
if (old & bit_wait)
{
spu.notify();
}
return static_cast<u32>(old);
}
void set_value(u32 value, bool count = true)
{
const u64 new_data = u64{count} << off_count | value;
#ifdef _MSC_VER
const_cast<volatile u64&>(data.raw()) = new_data;
#else
__atomic_store_n(&data.raw(), new_data, __ATOMIC_RELAXED);
#endif
}
u32 get_value()
{
return static_cast<u32>(data);
}
u32 get_count()
{
return static_cast<u32>(data >> off_count);
}
};
struct spu_channel_4_t
{
struct alignas(16) sync_var_t
{
u8 waiting;
u8 count;
u32 value0;
u32 value1;
u32 value2;
};
atomic_t<sync_var_t> values;
atomic_t<u32> value3;
public:
void clear()
{
values.store({});
value3 = 0;
}
// push unconditionally (overwriting latest value), returns true if needs signaling
void push(cpu_thread& spu, u32 value)
{
value3 = value; _mm_sfence();
if (values.atomic_op([=](sync_var_t& data) -> bool
{
switch (data.count++)
{
case 0: data.value0 = value; break;
case 1: data.value1 = value; break;
case 2: data.value2 = value; break;
default: data.count = 4;
}
if (data.waiting)
{
data.waiting = 0;
return true;
}
return false;
}))
{
spu.notify();
}
}
// returns non-zero value on success: queue size before removal
uint try_pop(u32& out)
{
return values.atomic_op([&](sync_var_t& data)
{
const uint result = data.count;
if (result != 0)
{
data.waiting = 0;
data.count--;
out = data.value0;
data.value0 = data.value1;
data.value1 = data.value2;
_mm_lfence();
data.value2 = this->value3;
}
else
{
data.waiting = 1;
}
return result;
});
}
u32 get_count()
{
return values.raw().count;
}
void set_values(u32 count, u32 value0, u32 value1 = 0, u32 value2 = 0, u32 value3 = 0)
{
this->values.raw() = { 0, static_cast<u8>(count), value0, value1, value2 };
this->value3 = value3;
}
};
struct spu_int_ctrl_t
{
atomic_t<u64> mask;
atomic_t<u64> stat;
std::shared_ptr<struct lv2_int_tag> tag;
void set(u64 ints);
void clear(u64 ints)
{
stat &= ~ints;
}
void clear()
{
mask = 0;
stat = 0;
tag = nullptr;
}
};
struct spu_imm_table_t
{
v128 sldq_pshufb[32]; // table for SHLQBYBI, SHLQBY, SHLQBYI instructions
v128 srdq_pshufb[32]; // table for ROTQMBYBI, ROTQMBY, ROTQMBYI instructions
v128 rldq_pshufb[16]; // table for ROTQBYBI, ROTQBY, ROTQBYI instructions
class scale_table_t
{
std::array<v128, 155 + 174> m_data;
public:
scale_table_t();
FORCE_INLINE __m128 operator [] (s32 scale) const
{
return m_data[scale + 155].vf;
}
}
const scale;
spu_imm_table_t();
};
extern const spu_imm_table_t g_spu_imm;
enum FPSCR_EX
{
//Single-precision exceptions
FPSCR_SOVF = 1 << 2, //Overflow
FPSCR_SUNF = 1 << 1, //Underflow
FPSCR_SDIFF = 1 << 0, //Different (could be IEEE non-compliant)
//Double-precision exceptions
FPSCR_DOVF = 1 << 13, //Overflow
FPSCR_DUNF = 1 << 12, //Underflow
FPSCR_DINX = 1 << 11, //Inexact
FPSCR_DINV = 1 << 10, //Invalid operation
FPSCR_DNAN = 1 << 9, //NaN
FPSCR_DDENORM = 1 << 8, //Denormal
};
//Is 128 bits, but bits 0-19, 24-28, 32-49, 56-60, 64-81, 88-92, 96-115, 120-124 are unused
class SPU_FPSCR
{
public:
u32 _u32[4];
SPU_FPSCR() {}
std::string ToString() const
{
return fmt::format("%08x%08x%08x%08x", _u32[3], _u32[2], _u32[1], _u32[0]);
}
void Reset()
{
memset(this, 0, sizeof(*this));
}
//slice -> 0 - 1 (double-precision slice index)
//NOTE: slices follow v128 indexing, i.e. slice 0 is RIGHT end of register!
//roundTo -> FPSCR_RN_*
void setSliceRounding(u8 slice, u8 roundTo)
{
int shift = 8 + 2*slice;
//rounding is located in the left end of the FPSCR
this->_u32[3] = (this->_u32[3] & ~(3 << shift)) | (roundTo << shift);
}
//Slice 0 or 1
u8 checkSliceRounding(u8 slice) const
{
switch(slice)
{
case 0:
return this->_u32[3] >> 8 & 0x3;
case 1:
return this->_u32[3] >> 10 & 0x3;
default:
fmt::throw_exception("Unexpected slice value (%d)" HERE, slice);
}
}
//Single-precision exception flags (all 4 slices)
//slice -> slice number (0-3)
//exception: FPSCR_S* bitmask
void setSinglePrecisionExceptionFlags(u8 slice, u32 exceptions)
{
_u32[slice] |= exceptions;
}
//Single-precision divide-by-zero flags (all 4 slices)
//slice -> slice number (0-3)
void setDivideByZeroFlag(u8 slice)
{
_u32[0] |= 1 << (8 + slice);
}
//Double-precision exception flags
//slice -> slice number (0-1)
//exception: FPSCR_D* bitmask
void setDoublePrecisionExceptionFlags(u8 slice, u32 exceptions)
{
_u32[1+slice] |= exceptions;
}
// Write the FPSCR
void Write(const v128 & r)
{
_u32[3] = r._u32[3] & 0x00000F07;
_u32[2] = r._u32[2] & 0x00003F07;
_u32[1] = r._u32[1] & 0x00003F07;
_u32[0] = r._u32[0] & 0x00000F07;
}
// Read the FPSCR
void Read(v128 & r)
{
r._u32[3] = _u32[3];
r._u32[2] = _u32[2];
r._u32[1] = _u32[1];
r._u32[0] = _u32[0];
}
};
class spu_thread : public cpu_thread
{
public:
virtual std::string get_name() const override;
virtual std::string dump() const override;
virtual void cpu_task() override final;
virtual void cpu_mem() override;
virtual void cpu_unmem() override;
virtual ~spu_thread() override;
void cpu_init();
static const u32 id_base = 0x02000000; // TODO (used to determine thread type)
static const u32 id_step = 1;
static const u32 id_count = 2048;
spu_thread(vm::addr_t ls, lv2_spu_group* group, u32 index, std::string_view name);
u32 pc = 0;
// General-Purpose Registers
std::array<v128, 128> gpr;
SPU_FPSCR fpscr;
// MFC command data
spu_mfc_cmd ch_mfc_cmd;
// MFC command queue
spu_mfc_cmd mfc_queue[16]{};
u32 mfc_size = 0;
u32 mfc_barrier = -1;
u32 mfc_fence = -1;
atomic_t<u32> mfc_prxy_mask;
// Reservation Data
u64 rtime = 0;
std::array<u128, 8> rdata{};
u32 raddr = 0;
u32 srr0;
u32 ch_tag_upd;
u32 ch_tag_mask;
spu_channel ch_tag_stat;
u32 ch_stall_mask;
spu_channel ch_stall_stat;
spu_channel ch_atomic_stat;
spu_channel_4_t ch_in_mbox;
spu_channel ch_out_mbox;
spu_channel ch_out_intr_mbox;
u64 snr_config; // SPU SNR Config Register
spu_channel ch_snr1; // SPU Signal Notification Register 1
spu_channel ch_snr2; // SPU Signal Notification Register 2
atomic_t<u32> ch_event_mask;
atomic_t<u32> ch_event_stat;
atomic_t<bool> interrupts_enabled;
u64 ch_dec_start_timestamp; // timestamp of writing decrementer value
u32 ch_dec_value; // written decrementer value
atomic_t<u32> run_ctrl; // SPU Run Control register (only provided to get latest data written)
atomic_t<u32> status; // SPU Status register
atomic_t<u32> npc; // SPU Next Program Counter register
std::array<spu_int_ctrl_t, 3> int_ctrl; // SPU Class 0, 1, 2 Interrupt Management
std::array<std::pair<u32, std::weak_ptr<lv2_event_queue>>, 32> spuq; // Event Queue Keys for SPU Thread
std::weak_ptr<lv2_event_queue> spup[64]; // SPU Ports
const u32 index; // SPU index
const u32 offset; // SPU LS offset
lv2_spu_group* const group; // SPU Thread Group
lf_value<std::string> spu_name; // Thread name
std::unique_ptr<class spu_recompiler_base> jit; // Recompiler instance
u64 block_counter = 0;
u64 block_recover = 0;
u64 block_failure = 0;
std::array<spu_function_t, 0x10000> jit_dispatcher; // Dispatch table for indirect calls
std::array<v128, 0x4000> stack_mirror; // Return address information
void push_snr(u32 number, u32 value);
void do_dma_transfer(const spu_mfc_cmd& args);
bool do_dma_check(const spu_mfc_cmd& args);
bool do_list_transfer(spu_mfc_cmd& args);
void do_putlluc(const spu_mfc_cmd& args);
void do_mfc(bool wait = true);
u32 get_mfc_completed();
bool process_mfc_cmd(spu_mfc_cmd args);
u32 get_events(bool waiting = false);
void set_events(u32 mask);
void set_interrupt_status(bool enable);
u32 get_ch_count(u32 ch);
s64 get_ch_value(u32 ch);
bool set_ch_value(u32 ch, u32 value);
bool stop_and_signal(u32 code);
void halt();
void fast_call(u32 ls_addr);
// Convert specified SPU LS address to a pointer of specified (possibly converted to BE) type
template<typename T>
inline to_be_t<T>* _ptr(u32 lsa)
{
return static_cast<to_be_t<T>*>(vm::base(offset + lsa));
}
// Convert specified SPU LS address to a reference of specified (possibly converted to BE) type
template<typename T>
inline to_be_t<T>& _ref(u32 lsa)
{
return *_ptr<T>(lsa);
}
bool read_reg(const u32 addr, u32& value);
bool write_reg(const u32 addr, const u32 value);
static atomic_t<u32> g_raw_spu_ctr;
static atomic_t<u32> g_raw_spu_id[5];
static u32 find_raw_spu(u32 id)
{
if (LIKELY(id < std::size(g_raw_spu_id)))
{
return g_raw_spu_id[id];
}
return -1;
}
};