rpcs3/rpcs3/Emu/SysCalls/Modules/cellSync.cpp
Nekotekina 18b69cac99 waiter_map_t : concept changed
Purpose-specific waiter_map_t objects instead of global one. SM_Sleep()
removed.
2014-10-16 20:29:41 +04:00

2043 lines
No EOL
52 KiB
C++

#include "stdafx.h"
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/Callback.h"
#include "Emu/SysCalls/lv2/sys_process.h"
#include "Emu/Event.h"
#include "cellSync.h"
Module *cellSync = nullptr;
#ifdef PRX_DEBUG
#include "prx_libsre.h"
u32 libsre;
u32 libsre_rtoc;
#endif
waiter_map_t sync_mutex_wm("sync_mutex_wm");
waiter_map_t sync_barrier_wait_wm("sync_barrier_wait_wm");
waiter_map_t sync_barrier_notify_wm("sync_barrier_notify_wm");
s32 syncMutexInitialize(vm::ptr<CellSyncMutex> mutex)
{
if (!mutex)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (mutex.addr() % 4)
{
return CELL_SYNC_ERROR_ALIGN;
}
// prx: set zero and sync
mutex->data.exchange({});
return CELL_OK;
}
s32 cellSyncMutexInitialize(vm::ptr<CellSyncMutex> mutex)
{
cellSync->Log("cellSyncMutexInitialize(mutex_addr=0x%x)", mutex.addr());
return syncMutexInitialize(mutex);
}
s32 cellSyncMutexLock(vm::ptr<CellSyncMutex> mutex)
{
cellSync->Log("cellSyncMutexLock(mutex_addr=0x%x)", mutex.addr());
if (!mutex)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (mutex.addr() % 4)
{
return CELL_SYNC_ERROR_ALIGN;
}
// prx: increase m_acq and remember its old value
be_t<u16> order;
mutex->data.atomic_op([&order](CellSyncMutex::data_t& mutex)
{
order = mutex.m_acq++;
});
// prx: wait until this old value is equal to m_rel
sync_mutex_wm.waiter_op(mutex.addr(), [mutex, order]()
{
return order == mutex->data.read_relaxed().m_rel;
});
// prx: sync
mutex->data.read_sync();
return CELL_OK;
}
s32 cellSyncMutexTryLock(vm::ptr<CellSyncMutex> mutex)
{
cellSync->Log("cellSyncMutexTryLock(mutex_addr=0x%x)", mutex.addr());
if (!mutex)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (mutex.addr() % 4)
{
return CELL_SYNC_ERROR_ALIGN;
}
// prx: exit if m_acq and m_rel are not equal, increase m_acq
return mutex->data.atomic_op(CELL_OK, [](CellSyncMutex::data_t& mutex) -> s32
{
if (mutex.m_acq++ != mutex.m_rel)
{
return CELL_SYNC_ERROR_BUSY;
}
return CELL_OK;
});
}
s32 cellSyncMutexUnlock(vm::ptr<CellSyncMutex> mutex)
{
cellSync->Log("cellSyncMutexUnlock(mutex_addr=0x%x)", mutex.addr());
if (!mutex)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (mutex.addr() % 4)
{
return CELL_SYNC_ERROR_ALIGN;
}
mutex->data.atomic_op_sync([](CellSyncMutex::data_t& mutex)
{
mutex.m_rel++;
});
sync_mutex_wm.notify(mutex.addr());
return CELL_OK;
}
s32 syncBarrierInitialize(vm::ptr<CellSyncBarrier> barrier, u16 total_count)
{
if (!barrier)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (barrier.addr() % 4)
{
return CELL_SYNC_ERROR_ALIGN;
}
if (!total_count || total_count > 32767)
{
return CELL_SYNC_ERROR_INVAL;
}
// prx: zeroize first u16, write total_count in second u16 and sync
barrier->data.exchange({ be_t<s16>::make(0), be_t<s16>::make(total_count) });
return CELL_OK;
}
s32 cellSyncBarrierInitialize(vm::ptr<CellSyncBarrier> barrier, u16 total_count)
{
cellSync->Log("cellSyncBarrierInitialize(barrier_addr=0x%x, total_count=%d)", barrier.addr(), total_count);
return syncBarrierInitialize(barrier, total_count);
}
s32 syncBarrierTryNotifyOp(CellSyncBarrier::data_t& barrier)
{
// prx: extract m_value (repeat if < 0), increase, compare with second s16, set sign bit if equal, insert it back
s16 value = (s16)barrier.m_value;
if (value < 0)
{
return CELL_SYNC_ERROR_BUSY;
}
value++;
if (value == (s16)barrier.m_count)
{
value |= 0x8000;
}
barrier.m_value = value;
return CELL_OK;
};
s32 cellSyncBarrierNotify(vm::ptr<CellSyncBarrier> barrier)
{
cellSync->Log("cellSyncBarrierNotify(barrier_addr=0x%x)", barrier.addr());
if (!barrier)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (barrier.addr() % 4)
{
return CELL_SYNC_ERROR_ALIGN;
}
sync_barrier_notify_wm.waiter_op(barrier.addr(), [barrier]()
{
return barrier->data.atomic_op_sync(CELL_OK, syncBarrierTryNotifyOp) == CELL_OK;
});
sync_barrier_wait_wm.notify(barrier.addr());
return CELL_OK;
}
s32 cellSyncBarrierTryNotify(vm::ptr<CellSyncBarrier> barrier)
{
cellSync->Log("cellSyncBarrierTryNotify(barrier_addr=0x%x)", barrier.addr());
if (!barrier)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (barrier.addr() % 4)
{
return CELL_SYNC_ERROR_ALIGN;
}
if (s32 res = barrier->data.atomic_op_sync(CELL_OK, syncBarrierTryNotifyOp))
{
return res;
}
sync_barrier_wait_wm.notify(barrier.addr());
return CELL_OK;
}
s32 syncBarrierTryWaitOp(CellSyncBarrier::data_t& barrier)
{
// prx: extract m_value (repeat if >= 0), decrease it, set 0 if == 0x8000, insert it back
s16 value = (s16)barrier.m_value;
if (value >= 0)
{
return CELL_SYNC_ERROR_BUSY;
}
value--;
if (value == (s16)0x8000)
{
value = 0;
}
barrier.m_value = value;
return CELL_OK;
}
s32 cellSyncBarrierWait(vm::ptr<CellSyncBarrier> barrier)
{
cellSync->Log("cellSyncBarrierWait(barrier_addr=0x%x)", barrier.addr());
if (!barrier)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (barrier.addr() % 4)
{
return CELL_SYNC_ERROR_ALIGN;
}
sync_barrier_wait_wm.waiter_op(barrier.addr(), [barrier]()
{
return barrier->data.atomic_op_sync(CELL_OK, syncBarrierTryWaitOp) == CELL_OK;
});
sync_barrier_notify_wm.notify(barrier.addr());
return CELL_OK;
}
s32 cellSyncBarrierTryWait(vm::ptr<CellSyncBarrier> barrier)
{
cellSync->Log("cellSyncBarrierTryWait(barrier_addr=0x%x)", barrier.addr());
if (!barrier)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (barrier.addr() % 4)
{
return CELL_SYNC_ERROR_ALIGN;
}
if (s32 res = barrier->data.atomic_op_sync(CELL_OK, syncBarrierTryWaitOp))
{
return res;
}
sync_barrier_notify_wm.notify(barrier.addr());
return CELL_OK;
}
s32 syncRwmInitialize(vm::ptr<CellSyncRwm> rwm, vm::ptr<void> buffer, u32 buffer_size)
{
if (!rwm || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (rwm.addr() % 16 || buffer.addr() % 128)
{
return CELL_SYNC_ERROR_ALIGN;
}
if (buffer_size % 128 || buffer_size > 0x4000)
{
return CELL_SYNC_ERROR_INVAL;
}
// prx: zeroize first u16 and second u16, write buffer_size in second u32, write buffer_addr in second u64 and sync
rwm->m_size = buffer_size;
rwm->m_buffer = buffer;
rwm->data.exchange({});
return CELL_OK;
}
s32 cellSyncRwmInitialize(vm::ptr<CellSyncRwm> rwm, vm::ptr<void> buffer, u32 buffer_size)
{
cellSync->Log("cellSyncRwmInitialize(rwm_addr=0x%x, buffer_addr=0x%x, buffer_size=0x%x)", rwm.addr(), buffer.addr(), buffer_size);
return syncRwmInitialize(rwm, buffer, buffer_size);
}
s32 syncRwmTryReadBeginOp(CellSyncRwm::data_t& rwm)
{
if (rwm.m_writers.ToBE())
{
return CELL_SYNC_ERROR_BUSY;
}
rwm.m_readers++;
return CELL_OK;
}
s32 syncRwmReadEndOp(CellSyncRwm::data_t& rwm)
{
if (!rwm.m_readers.ToBE())
{
cellSync->Error("syncRwmReadEndOp(rwm_addr=0x%x): m_readers == 0 (m_writers=%d)", Memory.RealToVirtualAddr(&rwm), (u16)rwm.m_writers);
return CELL_SYNC_ERROR_ABORT;
}
rwm.m_readers--;
return CELL_OK;
}
s32 cellSyncRwmRead(vm::ptr<CellSyncRwm> rwm, vm::ptr<void> buffer)
{
cellSync->Log("cellSyncRwmRead(rwm_addr=0x%x, buffer_addr=0x%x)", rwm.addr(), buffer.addr());
if (!rwm || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (rwm.addr() % 16)
{
return CELL_SYNC_ERROR_ALIGN;
}
// prx: increase m_readers, wait until m_writers is zero
while (rwm->data.atomic_op(CELL_OK, syncRwmTryReadBeginOp))
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (Emu.IsStopped())
{
cellSync->Warning("cellSyncRwmRead(rwm_addr=0x%x) aborted", rwm.addr());
return CELL_OK;
}
}
// copy data to buffer_addr
memcpy(buffer.get_ptr(), rwm->m_buffer.get_ptr(), (u32)rwm->m_size);
// prx: decrease m_readers (return 0x8041010C if already zero)
return rwm->data.atomic_op(CELL_OK, syncRwmReadEndOp);
}
s32 cellSyncRwmTryRead(vm::ptr<CellSyncRwm> rwm, vm::ptr<void> buffer)
{
cellSync->Log("cellSyncRwmTryRead(rwm_addr=0x%x, buffer_addr=0x%x)", rwm.addr(), buffer.addr());
if (!rwm || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (rwm.addr() % 16)
{
return CELL_SYNC_ERROR_ALIGN;
}
if (s32 res = rwm->data.atomic_op(CELL_OK, syncRwmTryReadBeginOp))
{
return res;
}
memcpy(buffer.get_ptr(), rwm->m_buffer.get_ptr(), (u32)rwm->m_size);
return rwm->data.atomic_op(CELL_OK, syncRwmReadEndOp);
}
s32 syncRwmTryWriteBeginOp(CellSyncRwm::data_t& rwm)
{
if (rwm.m_writers.ToBE())
{
return CELL_SYNC_ERROR_BUSY;
}
rwm.m_writers = 1;
return CELL_OK;
}
s32 cellSyncRwmWrite(vm::ptr<CellSyncRwm> rwm, vm::ptr<const void> buffer)
{
cellSync->Log("cellSyncRwmWrite(rwm_addr=0x%x, buffer_addr=0x%x)", rwm.addr(), buffer.addr());
if (!rwm || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (rwm.addr() % 16)
{
return CELL_SYNC_ERROR_ALIGN;
}
while (rwm->data.atomic_op(CELL_OK, syncRwmTryWriteBeginOp))
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (Emu.IsStopped())
{
cellSync->Warning("cellSyncRwmWrite(rwm_addr=0x%x) aborted (I)", rwm.addr());
return CELL_OK;
}
}
// prx: wait until m_readers == 0
while (rwm->data.read_relaxed().m_readers.ToBE())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (Emu.IsStopped())
{
cellSync->Warning("cellSyncRwmWrite(rwm_addr=0x%x) aborted (II)", rwm.addr());
return CELL_OK;
}
}
// prx: copy data from buffer_addr
memcpy(rwm->m_buffer.get_ptr(), buffer.get_ptr(), (u32)rwm->m_size);
// prx: sync and zeroize m_readers and m_writers
rwm->data.exchange({});
return CELL_OK;
}
s32 cellSyncRwmTryWrite(vm::ptr<CellSyncRwm> rwm, vm::ptr<const void> buffer)
{
cellSync->Log("cellSyncRwmTryWrite(rwm_addr=0x%x, buffer_addr=0x%x)", rwm.addr(), buffer.addr());
if (!rwm || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (rwm.addr() % 16)
{
return CELL_SYNC_ERROR_ALIGN;
}
// prx: compare m_readers | m_writers with 0, return if not zero, set m_writers to 1
if (!rwm->data.compare_and_swap_test({}, {be_t<u16>::make(0), be_t<u16>::make(1)}))
{
return CELL_SYNC_ERROR_BUSY;
}
// prx: copy data from buffer_addr
memcpy(rwm->m_buffer.get_ptr(), buffer.get_ptr(), (u32)rwm->m_size);
// prx: sync and zeroize m_readers and m_writers
rwm->data.exchange({});
return CELL_OK;
}
s32 syncQueueInitialize(vm::ptr<CellSyncQueue> queue, vm::ptr<u8> buffer, u32 size, u32 depth)
{
if (!queue)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (size && !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 32 || buffer.addr() % 16)
{
return CELL_SYNC_ERROR_ALIGN;
}
if (!depth || size % 16)
{
return CELL_SYNC_ERROR_INVAL;
}
// prx: zeroize first u64, write size in third u32, write depth in fourth u32, write address in third u64 and sync
queue->m_size = size;
queue->m_depth = depth;
queue->m_buffer = buffer;
queue->data.exchange({});
return CELL_OK;
}
s32 cellSyncQueueInitialize(vm::ptr<CellSyncQueue> queue, vm::ptr<u8> buffer, u32 size, u32 depth)
{
cellSync->Log("cellSyncQueueInitialize(queue_addr=0x%x, buffer_addr=0x%x, size=0x%x, depth=0x%x)", queue.addr(), buffer.addr(), size, depth);
return syncQueueInitialize(queue, buffer, size, depth);
}
s32 syncQueueTryPushOp(CellSyncQueue::data_t& queue, u32 depth, u32& position)
{
const u32 v1 = (u32)queue.m_v1;
const u32 v2 = (u32)queue.m_v2;
// prx: compare 5th u8 with zero (break if not zero)
// prx: compare (second u32 (u24) + first u8) with depth (break if greater or equal)
if ((v2 >> 24) || ((v2 & 0xffffff) + (v1 >> 24)) >= depth)
{
return CELL_SYNC_ERROR_BUSY;
}
// prx: extract first u32 (u24) (-> position), calculate (position + 1) % depth, insert it back
// prx: insert 1 in 5th u8
// prx: extract second u32 (u24), increase it, insert it back
position = (v1 & 0xffffff);
queue.m_v1 = (v1 & 0xff000000) | ((position + 1) % depth);
queue.m_v2 = (1 << 24) | ((v2 & 0xffffff) + 1);
return CELL_OK;
}
s32 cellSyncQueuePush(vm::ptr<CellSyncQueue> queue, vm::ptr<const void> buffer)
{
cellSync->Log("cellSyncQueuePush(queue_addr=0x%x, buffer_addr=0x%x)", queue.addr(), buffer.addr());
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 32)
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 size = (u32)queue->m_size;
const u32 depth = (u32)queue->m_depth;
const auto data = queue->data.read_relaxed();
assert(((u32)data.m_v1 & 0xffffff) <= depth && ((u32)data.m_v2 & 0xffffff) <= depth);
u32 position;
while (queue->data.atomic_op(CELL_OK, [depth, &position](CellSyncQueue::data_t& queue) -> s32
{
return syncQueueTryPushOp(queue, depth, position);
}))
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (Emu.IsStopped())
{
cellSync->Warning("cellSyncQueuePush(queue_addr=0x%x) aborted", queue.addr());
return CELL_OK;
}
}
// prx: memcpy(position * m_size + m_addr, buffer_addr, m_size), sync
memcpy(&queue->m_buffer[position * size], buffer.get_ptr(), size);
// prx: atomically insert 0 in 5th u8
queue->data &= { be_t<u32>::make(~0), be_t<u32>::make(0xffffff) };
return CELL_OK;
}
s32 cellSyncQueueTryPush(vm::ptr<CellSyncQueue> queue, vm::ptr<const void> buffer)
{
cellSync->Log("cellSyncQueueTryPush(queue_addr=0x%x, buffer_addr=0x%x)", queue.addr(), buffer.addr());
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 32)
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 size = (u32)queue->m_size;
const u32 depth = (u32)queue->m_depth;
const auto data = queue->data.read_relaxed();
assert(((u32)data.m_v1 & 0xffffff) <= depth && ((u32)data.m_v2 & 0xffffff) <= depth);
u32 position;
if (s32 res = queue->data.atomic_op(CELL_OK, [depth, &position](CellSyncQueue::data_t& queue) -> s32
{
return syncQueueTryPushOp(queue, depth, position);
}))
{
return res;
}
memcpy(&queue->m_buffer[position * size], buffer.get_ptr(), size);
queue->data &= { be_t<u32>::make(~0), be_t<u32>::make(0xffffff) };
return CELL_OK;
}
s32 syncQueueTryPopOp(CellSyncQueue::data_t& queue, u32 depth, u32& position)
{
const u32 v1 = (u32)queue.m_v1;
const u32 v2 = (u32)queue.m_v2;
// prx: extract first u8, repeat if not zero
// prx: extract second u32 (u24), subtract 5th u8, compare with zero, repeat if less or equal
if ((v1 >> 24) || ((v2 & 0xffffff) <= (v2 >> 24)))
{
return CELL_SYNC_ERROR_BUSY;
}
// prx: insert 1 in first u8
// prx: extract first u32 (u24), add depth, subtract second u32 (u24), calculate (% depth), save to position
// prx: extract second u32 (u24), decrease it, insert it back
queue.m_v1 = 0x1000000 | v1;
position = ((v1 & 0xffffff) + depth - (v2 & 0xffffff)) % depth;
queue.m_v2 = (v2 & 0xff000000) | ((v2 & 0xffffff) - 1);
return CELL_OK;
}
s32 cellSyncQueuePop(vm::ptr<CellSyncQueue> queue, vm::ptr<void> buffer)
{
cellSync->Log("cellSyncQueuePop(queue_addr=0x%x, buffer_addr=0x%x)", queue.addr(), buffer.addr());
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 32)
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 size = (u32)queue->m_size;
const u32 depth = (u32)queue->m_depth;
const auto data = queue->data.read_relaxed();
assert(((u32)data.m_v1 & 0xffffff) <= depth && ((u32)data.m_v2 & 0xffffff) <= depth);
u32 position;
while (queue->data.atomic_op(CELL_OK, [depth, &position](CellSyncQueue::data_t& queue) -> s32
{
return syncQueueTryPopOp(queue, depth, position);
}))
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (Emu.IsStopped())
{
cellSync->Warning("cellSyncQueuePop(queue_addr=0x%x) aborted", queue.addr());
return CELL_OK;
}
}
// prx: (sync), memcpy(buffer_addr, position * m_size + m_addr, m_size)
memcpy(buffer.get_ptr(), &queue->m_buffer[position * size], size);
// prx: atomically insert 0 in first u8
queue->data &= { be_t<u32>::make(0xffffff), be_t<u32>::make(~0) };
return CELL_OK;
}
s32 cellSyncQueueTryPop(vm::ptr<CellSyncQueue> queue, vm::ptr<void> buffer)
{
cellSync->Log("cellSyncQueueTryPop(queue_addr=0x%x, buffer_addr=0x%x)", queue.addr(), buffer.addr());
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 32)
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 size = (u32)queue->m_size;
const u32 depth = (u32)queue->m_depth;
const auto data = queue->data.read_relaxed();
assert(((u32)data.m_v1 & 0xffffff) <= depth && ((u32)data.m_v2 & 0xffffff) <= depth);
u32 position;
if (s32 res = queue->data.atomic_op(CELL_OK, [depth, &position](CellSyncQueue::data_t& queue) -> s32
{
return syncQueueTryPopOp(queue, depth, position);
}))
{
return res;
}
memcpy(buffer.get_ptr(), &queue->m_buffer[position * size], size);
queue->data &= { be_t<u32>::make(0xffffff), be_t<u32>::make(~0) };
return CELL_OK;
}
s32 syncQueueTryPeekOp(CellSyncQueue::data_t& queue, u32 depth, u32& position)
{
const u32 v1 = (u32)queue.m_v1;
const u32 v2 = (u32)queue.m_v2;
if ((v1 >> 24) || ((v2 & 0xffffff) <= (v2 >> 24)))
{
return CELL_SYNC_ERROR_BUSY;
}
queue.m_v1 = 0x1000000 | v1;
position = ((v1 & 0xffffff) + depth - (v2 & 0xffffff)) % depth;
return CELL_OK;
}
s32 cellSyncQueuePeek(vm::ptr<CellSyncQueue> queue, vm::ptr<void> buffer)
{
cellSync->Log("cellSyncQueuePeek(queue_addr=0x%x, buffer_addr=0x%x)", queue.addr(), buffer.addr());
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 32)
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 size = (u32)queue->m_size;
const u32 depth = (u32)queue->m_depth;
const auto data = queue->data.read_relaxed();
assert(((u32)data.m_v1 & 0xffffff) <= depth && ((u32)data.m_v2 & 0xffffff) <= depth);
u32 position;
while (queue->data.atomic_op(CELL_OK, [depth, &position](CellSyncQueue::data_t& queue) -> s32
{
return syncQueueTryPeekOp(queue, depth, position);
}))
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (Emu.IsStopped())
{
cellSync->Warning("cellSyncQueuePeek(queue_addr=0x%x) aborted", queue.addr());
return CELL_OK;
}
}
memcpy(buffer.get_ptr(), &queue->m_buffer[position * size], size);
queue->data &= { be_t<u32>::make(0xffffff), be_t<u32>::make(~0) };
return CELL_OK;
}
s32 cellSyncQueueTryPeek(vm::ptr<CellSyncQueue> queue, vm::ptr<void> buffer)
{
cellSync->Log("cellSyncQueueTryPeek(queue_addr=0x%x, buffer_addr=0x%x)", queue.addr(), buffer.addr());
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 32)
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 size = (u32)queue->m_size;
const u32 depth = (u32)queue->m_depth;
const auto data = queue->data.read_relaxed();
assert(((u32)data.m_v1 & 0xffffff) <= depth && ((u32)data.m_v2 & 0xffffff) <= depth);
u32 position;
if (s32 res = queue->data.atomic_op(CELL_OK, [depth, &position](CellSyncQueue::data_t& queue) -> s32
{
return syncQueueTryPeekOp(queue, depth, position);
}))
{
return res;
}
memcpy(buffer.get_ptr(), &queue->m_buffer[position * size], size);
queue->data &= { be_t<u32>::make(0xffffff), be_t<u32>::make(~0) };
return CELL_OK;
}
s32 cellSyncQueueSize(vm::ptr<CellSyncQueue> queue)
{
cellSync->Log("cellSyncQueueSize(queue_addr=0x%x)", queue.addr());
if (!queue)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 32)
{
return CELL_SYNC_ERROR_ALIGN;
}
const auto data = queue->data.read_relaxed();
const u32 count = (u32)data.m_v2 & 0xffffff;
const u32 depth = (u32)queue->m_depth;
assert(((u32)data.m_v1 & 0xffffff) <= depth && count <= depth);
return count;
}
s32 cellSyncQueueClear(vm::ptr<CellSyncQueue> queue)
{
cellSync->Log("cellSyncQueueClear(queue_addr=0x%x)", queue.addr());
if (!queue)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 32)
{
return CELL_SYNC_ERROR_ALIGN;
}
const u32 depth = (u32)queue->m_depth;
const auto data = queue->data.read_relaxed();
assert(((u32)data.m_v1 & 0xffffff) <= depth && ((u32)data.m_v2 & 0xffffff) <= depth);
// TODO: optimize if possible
while (queue->data.atomic_op(CELL_OK, [depth](CellSyncQueue::data_t& queue) -> s32
{
const u32 v1 = (u32)queue.m_v1;
// prx: extract first u8, repeat if not zero, insert 1
if (v1 >> 24)
{
return CELL_SYNC_ERROR_BUSY;
}
queue.m_v1 = v1 | 0x1000000;
return CELL_OK;
}))
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (Emu.IsStopped())
{
cellSync->Warning("cellSyncQueueClear(queue_addr=0x%x) aborted (I)", queue.addr());
return CELL_OK;
}
}
while (queue->data.atomic_op(CELL_OK, [depth](CellSyncQueue::data_t& queue) -> s32
{
const u32 v2 = (u32)queue.m_v2;
// prx: extract 5th u8, repeat if not zero, insert 1
if (v2 >> 24)
{
return CELL_SYNC_ERROR_BUSY;
}
queue.m_v2 = v2 | 0x1000000;
return CELL_OK;
}))
{
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (Emu.IsStopped())
{
cellSync->Warning("cellSyncQueueClear(queue_addr=0x%x) aborted (II)", queue.addr());
return CELL_OK;
}
}
queue->data.exchange({});
return CELL_OK;
}
// LFQueue functions
void syncLFQueueDump(vm::ptr<CellSyncLFQueue> queue)
{
cellSync->Notice("CellSyncLFQueue dump: addr = 0x%x", queue.addr());
for (u32 i = 0; i < sizeof(CellSyncLFQueue) / 16; i++)
{
cellSync->Notice("*** 0x%.16llx 0x%.16llx", vm::read64(queue.addr() + i * 16), vm::read64(queue.addr() + i * 16 + 8));
}
}
void syncLFQueueInit(vm::ptr<CellSyncLFQueue> queue, vm::ptr<u8> buffer, u32 size, u32 depth, CellSyncQueueDirection direction, vm::ptr<void> eaSignal)
{
queue->m_size = size;
queue->m_depth = depth;
queue->m_buffer = buffer;
queue->m_direction = direction;
*queue->m_hs1 = {};
*queue->m_hs2 = {};
queue->m_eaSignal = eaSignal;
if (direction == CELL_SYNC_QUEUE_ANY2ANY)
{
queue->pop1.write_relaxed({});
queue->push1.write_relaxed({});
queue->m_buffer.set(queue->m_buffer.addr() | be_t<u64>::make(1));
queue->m_bs[0] = -1;
queue->m_bs[1] = -1;
//m_bs[2]
//m_bs[3]
queue->m_v1 = -1;
queue->push2.write_relaxed({ be_t<u16>::make(-1) });
queue->pop2.write_relaxed({ be_t<u16>::make(-1) });
}
else
{
queue->pop1.write_relaxed({ be_t<u16>::make(0), be_t<u16>::make(0), queue->pop1.read_relaxed().m_h3, be_t<u16>::make(0) });
queue->push1.write_relaxed({ be_t<u16>::make(0), be_t<u16>::make(0), queue->push1.read_relaxed().m_h7, be_t<u16>::make(0) });
queue->m_bs[0] = -1; // written as u32
queue->m_bs[1] = -1;
queue->m_bs[2] = -1;
queue->m_bs[3] = -1;
queue->m_v1 = 0;
queue->push2.write_relaxed({});
queue->pop2.write_relaxed({});
}
queue->m_v2 = 0;
queue->m_eq_id = 0;
}
s32 syncLFQueueInitialize(vm::ptr<CellSyncLFQueue> queue, vm::ptr<u8> buffer, u32 size, u32 depth, CellSyncQueueDirection direction, vm::ptr<void> eaSignal)
{
#ifdef PRX_DEBUG_XXX
return cb_caller<s32, vm::ptr<CellSyncLFQueue>, vm::ptr<u8>, u32, u32, CellSyncQueueDirection, vm::ptr<void>>::call(GetCurrentPPUThread(), libsre + 0x205C, libsre_rtoc,
queue, buffer, size, depth, direction, eaSignal);
#endif
if (!queue)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (size)
{
if (!buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (size > 0x4000 || size % 16)
{
return CELL_SYNC_ERROR_INVAL;
}
}
if (!depth || (depth >> 15) || direction > 3)
{
return CELL_SYNC_ERROR_INVAL;
}
if (queue.addr() % 128 || buffer.addr() % 16)
{
return CELL_SYNC_ERROR_ALIGN;
}
// prx: get sdk version of current process, return non-zero result of sys_process_get_sdk_version
s32 sdk_ver;
s32 ret = process_get_sdk_version(process_getpid(), sdk_ver);
if (ret != CELL_OK)
{
return ret;
}
if (sdk_ver == -1)
{
sdk_ver = 0x460000;
}
// prx: reserve u32 at 0x2c offset
u32 old_value;
while (true)
{
const auto old = queue->init.read_relaxed();
auto init = old;
if (old.ToBE())
{
if (sdk_ver > 0x17ffff && old != 2)
{
return CELL_SYNC_ERROR_STAT;
}
old_value = old.ToLE();
}
else
{
if (sdk_ver > 0x17ffff)
{
auto data = vm::get_ptr<u64>(queue.addr());
for (u32 i = 0; i < sizeof(CellSyncLFQueue) / sizeof(u64); i++)
{
if (data[i])
{
return CELL_SYNC_ERROR_STAT;
}
}
}
init = 1;
old_value = 1;
}
if (queue->init.compare_and_swap_test(old, init)) break;
}
if (old_value == 2)
{
if ((u32)queue->m_size != size || (u32)queue->m_depth != depth || queue->m_buffer.addr() != buffer.addr())
{
return CELL_SYNC_ERROR_INVAL;
}
if (sdk_ver > 0x17ffff)
{
if (queue->m_eaSignal.addr() != eaSignal.addr() || (u32)queue->m_direction != direction)
{
return CELL_SYNC_ERROR_INVAL;
}
}
}
else
{
// prx: call internal function with same arguments
syncLFQueueInit(queue, buffer, size, depth, direction, eaSignal);
// prx: sync, zeroize u32 at 0x2c offset
queue->init.exchange({});
}
// prx: sync
queue->init.read_sync();
return CELL_OK;
}
s32 cellSyncLFQueueInitialize(vm::ptr<CellSyncLFQueue> queue, vm::ptr<u8> buffer, u32 size, u32 depth, CellSyncQueueDirection direction, vm::ptr<void> eaSignal)
{
cellSync->Warning("cellSyncLFQueueInitialize(queue_addr=0x%x, buffer_addr=0x%x, size=0x%x, depth=0x%x, direction=%d, eaSignal_addr=0x%x)",
queue.addr(), buffer.addr(), size, depth, direction, eaSignal.addr());
return syncLFQueueInitialize(queue, buffer, size, depth, direction, eaSignal);
}
s32 syncLFQueueGetPushPointer(vm::ptr<CellSyncLFQueue> queue, s32& pointer, u32 isBlocking, u32 useEventQueue)
{
if (queue->m_direction.ToBE() != se32(CELL_SYNC_QUEUE_PPU2SPU))
{
return CELL_SYNC_ERROR_PERM;
}
u32 var1 = 0;
s32 depth = (u32)queue->m_depth;
while (true)
{
while (true)
{
if (Emu.IsStopped())
{
return -1;
}
const auto old = queue->push1.read_sync();
auto push = old;
if (var1)
{
push.m_h7 = 0;
}
if (isBlocking && useEventQueue && *(u32*)queue->m_bs == -1)
{
return CELL_SYNC_ERROR_STAT;
}
s32 var2 = (s32)(s16)push.m_h8;
s32 res;
if (useEventQueue && ((s32)push.m_h5 != var2 || push.m_h7.ToBE() != 0))
{
res = CELL_SYNC_ERROR_BUSY;
}
else
{
var2 -= (s32)(u16)queue->pop1.read_relaxed().m_h1;
if (var2 < 0)
{
var2 += depth * 2;
}
if (var2 < depth)
{
pointer = (s16)push.m_h8;
if (pointer + 1 >= depth * 2)
{
push.m_h8 = 0;
}
else
{
push.m_h8++;
}
res = CELL_OK;
}
else if (!isBlocking)
{
res = CELL_SYNC_ERROR_AGAIN;
if (!push.m_h7.ToBE() || res)
{
return res;
}
break;
}
else if (!useEventQueue)
{
continue;
}
else
{
res = CELL_OK;
push.m_h7 = 3;
if (isBlocking != 3)
{
break;
}
}
}
if (queue->push1.compare_and_swap_test(old, push))
{
if (!push.m_h7.ToBE() || res)
{
return res;
}
break;
}
}
assert(sys_event_queue_receive(queue->m_eq_id, vm::ptr<sys_event_data>::make(0), 0) == CELL_OK);
var1 = 1;
}
}
s32 _cellSyncLFQueueGetPushPointer(vm::ptr<CellSyncLFQueue> queue, vm::ptr<be_t<u32>> pointer, u32 isBlocking, u32 useEventQueue)
{
cellSync->Todo("_cellSyncLFQueueGetPushPointer(queue_addr=0x%x, pointer_addr=0x%x, isBlocking=%d, useEventQueue=%d)",
queue.addr(), pointer.addr(), isBlocking, useEventQueue);
s32 pointer_value;
s32 result = syncLFQueueGetPushPointer(queue, pointer_value, isBlocking, useEventQueue);
*pointer = pointer_value;
return result;
}
s32 syncLFQueueGetPushPointer2(vm::ptr<CellSyncLFQueue> queue, s32& pointer, u32 isBlocking, u32 useEventQueue)
{
// TODO
//pointer = 0;
assert(0);
return CELL_OK;
}
s32 _cellSyncLFQueueGetPushPointer2(vm::ptr<CellSyncLFQueue> queue, vm::ptr<be_t<u32>> pointer, u32 isBlocking, u32 useEventQueue)
{
// arguments copied from _cellSyncLFQueueGetPushPointer
cellSync->Todo("_cellSyncLFQueueGetPushPointer2(queue_addr=0x%x, pointer_addr=0x%x, isBlocking=%d, useEventQueue=%d)",
queue.addr(), pointer.addr(), isBlocking, useEventQueue);
s32 pointer_value;
s32 result = syncLFQueueGetPushPointer2(queue, pointer_value, isBlocking, useEventQueue);
*pointer = pointer_value;
return result;
}
s32 syncLFQueueCompletePushPointer(vm::ptr<CellSyncLFQueue> queue, s32 pointer, const std::function<s32(u32 addr, u32 arg)> fpSendSignal)
{
if (queue->m_direction.ToBE() != se32(CELL_SYNC_QUEUE_PPU2SPU))
{
return CELL_SYNC_ERROR_PERM;
}
s32 depth = (u32)queue->m_depth;
while (true)
{
const auto old = queue->push2.read_sync();
auto push2 = old;
const auto old2 = queue->push3.read_relaxed();
auto push3 = old2;
s32 var1 = pointer - (u16)push3.m_h5;
if (var1 < 0)
{
var1 += depth * 2;
}
s32 var2 = (s32)(s16)queue->pop1.read_relaxed().m_h4 - (s32)(u16)queue->pop1.read_relaxed().m_h1;
if (var2 < 0)
{
var2 += depth * 2;
}
s32 var9_ = 15 - var1;
// calculate (u16)(1 slw (15 - var1))
if (var9_ & 0x30)
{
var9_ = 0;
}
else
{
var9_ = 1 << var9_;
}
s32 var9 = cntlz32((u32)(u16)~(var9_ | (u16)push3.m_h6)) - 16; // count leading zeros in u16
s32 var5 = (s32)(u16)push3.m_h6 | var9_;
if (var9 & 0x30)
{
var5 = 0;
}
else
{
var5 <<= var9;
}
s32 var3 = (u16)push3.m_h5 + var9;
if (var3 >= depth * 2)
{
var3 -= depth * 2;
}
u16 pack = push2.pack; // three packed 5-bit fields
s32 var4 = ((pack >> 10) & 0x1f) - ((pack >> 5) & 0x1f);
if (var4 < 0)
{
var4 += 0x1e;
}
u32 var6;
if (var2 + var4 <= 15 && ((pack >> 10) & 0x1f) != (pack & 0x1f))
{
s32 var8 = (pack & 0x1f) - ((pack >> 10) & 0x1f);
if (var8 < 0)
{
var8 += 0x1e;
}
if (var9 > 1 && (u32)var8 > 1)
{
assert(16 - var2 <= 1);
}
s32 var11 = (pack >> 10) & 0x1f;
if (var11 >= 15)
{
var11 -= 15;
}
u16 var12 = (pack >> 10) & 0x1f;
if (var12 == 0x1d)
{
var12 = 0;
}
else
{
var12 = (var12 + 1) << 10;
}
push2.pack = (pack & 0x83ff) | var12;
var6 = (u16)queue->m_hs1[var11];
}
else
{
var6 = -1;
}
push3.m_h5 = (u16)var3;
push3.m_h6 = (u16)var5;
if (queue->push2.compare_and_swap_test(old, push2))
{
assert(var2 + var4 < 16);
if (var6 != -1)
{
bool exch = queue->push3.compare_and_swap_test(old2, push3);
assert(exch);
if (exch)
{
assert(fpSendSignal);
return fpSendSignal((u32)queue->m_eaSignal.addr(), var6);
}
}
else
{
pack = queue->push2.read_relaxed().pack;
if ((pack & 0x1f) == ((pack >> 10) & 0x1f))
{
if (queue->push3.compare_and_swap_test(old2, push3))
{
return CELL_OK;
}
}
}
}
}
}
s32 _cellSyncLFQueueCompletePushPointer(vm::ptr<CellSyncLFQueue> queue, s32 pointer, vm::ptr<s32(*)(u32 addr, u32 arg)> fpSendSignal)
{
cellSync->Todo("_cellSyncLFQueueCompletePushPointer(queue_addr=0x%x, pointer=%d, fpSendSignal_addr=0x%x)",
queue.addr(), pointer, fpSendSignal.addr());
return syncLFQueueCompletePushPointer(queue, pointer, fpSendSignal);
}
s32 syncLFQueueCompletePushPointer2(vm::ptr<CellSyncLFQueue> queue, s32 pointer, const std::function<s32(u32 addr, u32 arg)> fpSendSignal)
{
// TODO
//if (fpSendSignal) return fpSendSignal(0, 0);
assert(0);
return CELL_OK;
}
s32 _cellSyncLFQueueCompletePushPointer2(vm::ptr<CellSyncLFQueue> queue, s32 pointer, vm::ptr<s32(*)(u32 addr, u32 arg)> fpSendSignal)
{
// arguments copied from _cellSyncLFQueueCompletePushPointer
cellSync->Todo("_cellSyncLFQueueCompletePushPointer2(queue_addr=0x%x, pointer=%d, fpSendSignal_addr=0x%x)",
queue.addr(), pointer, fpSendSignal.addr());
return syncLFQueueCompletePushPointer2(queue, pointer, fpSendSignal);
}
s32 _cellSyncLFQueuePushBody(vm::ptr<CellSyncLFQueue> queue, vm::ptr<const void> buffer, u32 isBlocking)
{
// cellSyncLFQueuePush has 1 in isBlocking param, cellSyncLFQueueTryPush has 0
cellSync->Warning("_cellSyncLFQueuePushBody(queue_addr=0x%x, buffer_addr=0x%x, isBlocking=%d)", queue.addr(), buffer.addr(), isBlocking);
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 128 || buffer.addr() % 16)
{
return CELL_SYNC_ERROR_ALIGN;
}
s32 position;
//syncLFQueueDump(queue);
#ifdef PRX_DEBUG
vm::var<be_t<s32>> position_v;
#endif
while (true)
{
s32 res;
if (queue->m_direction.ToBE() != se32(CELL_SYNC_QUEUE_ANY2ANY))
{
#ifdef PRX_DEBUG_XXX
res = cb_caller<s32, vm::ptr<CellSyncLFQueue>, u32, u32, u64>::call(GetCurrentPPUThread(), libsre + 0x24B0, libsre_rtoc,
queue, position_v.addr(), isBlocking, 0);
position = position_v->ToLE();
#else
res = syncLFQueueGetPushPointer(queue, position, isBlocking, 0);
#endif
}
else
{
#ifdef PRX_DEBUG
res = cb_call<s32, vm::ptr<CellSyncLFQueue>, u32, u32, u64>(GetCurrentPPUThread(), libsre + 0x3050, libsre_rtoc,
queue, position_v.addr(), isBlocking, 0);
position = position_v->ToLE();
#else
res = syncLFQueueGetPushPointer2(queue, position, isBlocking, 0);
#endif
}
//LOG_NOTICE(HLE, "... position = %d", position);
//syncLFQueueDump(queue);
if (!isBlocking || res != CELL_SYNC_ERROR_AGAIN)
{
if (res)
{
return res;
}
break;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (Emu.IsStopped())
{
cellSync->Warning("_cellSyncLFQueuePushBody(queue_addr=0x%x) aborted", queue.addr());
return CELL_OK;
}
}
s32 depth = (u32)queue->m_depth;
s32 size = (u32)queue->m_size;
memcpy(vm::get_ptr<void>((u64)(queue->m_buffer.addr() & ~1ull) + size * (position >= depth ? position - depth : position)), buffer.get_ptr(), size);
s32 res;
if (queue->m_direction.ToBE() != se32(CELL_SYNC_QUEUE_ANY2ANY))
{
#ifdef PRX_DEBUG_XXX
res = cb_caller<s32, vm::ptr<CellSyncLFQueue>, s32, u64>::call(GetCurrentPPUThread(), libsre + 0x26C0, libsre_rtoc,
queue, position, 0);
#else
res = syncLFQueueCompletePushPointer(queue, position, nullptr);
#endif
}
else
{
#ifdef PRX_DEBUG
res = cb_call<s32, vm::ptr<CellSyncLFQueue>, s32, u64>(GetCurrentPPUThread(), libsre + 0x355C, libsre_rtoc,
queue, position, 0);
#else
res = syncLFQueueCompletePushPointer2(queue, position, nullptr);
#endif
}
//syncLFQueueDump(queue);
return res;
}
s32 syncLFQueueGetPopPointer(vm::ptr<CellSyncLFQueue> queue, s32& pointer, u32 isBlocking, u32, u32 useEventQueue)
{
if (queue->m_direction.ToBE() != se32(CELL_SYNC_QUEUE_SPU2PPU))
{
return CELL_SYNC_ERROR_PERM;
}
u32 var1 = 0;
s32 depth = (u32)queue->m_depth;
while (true)
{
while (true)
{
if (Emu.IsStopped())
{
return -1;
}
const auto old = queue->pop1.read_sync();
auto pop = old;
if (var1)
{
pop.m_h3 = 0;
}
if (isBlocking && useEventQueue && *(u32*)queue->m_bs == -1)
{
return CELL_SYNC_ERROR_STAT;
}
s32 var2 = (s32)(s16)pop.m_h4;
s32 res;
if (useEventQueue && ((s32)(u16)pop.m_h1 != var2 || pop.m_h3.ToBE() != 0))
{
res = CELL_SYNC_ERROR_BUSY;
}
else
{
var2 = (s32)(u16)queue->push1.read_relaxed().m_h5 - var2;
if (var2 < 0)
{
var2 += depth * 2;
}
if (var2 > 0)
{
pointer = (s16)pop.m_h4;
if (pointer + 1 >= depth * 2)
{
pop.m_h4 = 0;
}
else
{
pop.m_h4++;
}
res = CELL_OK;
}
else if (!isBlocking)
{
res = CELL_SYNC_ERROR_AGAIN;
if (!pop.m_h3.ToBE() || res)
{
return res;
}
break;
}
else if (!useEventQueue)
{
continue;
}
else
{
res = CELL_OK;
pop.m_h3 = 3;
if (isBlocking != 3)
{
break;
}
}
}
if (queue->pop1.compare_and_swap_test(old, pop))
{
if (!pop.m_h3.ToBE() || res)
{
return res;
}
break;
}
}
assert(sys_event_queue_receive(queue->m_eq_id, vm::ptr<sys_event_data>::make(0), 0) == CELL_OK);
var1 = 1;
}
}
s32 _cellSyncLFQueueGetPopPointer(vm::ptr<CellSyncLFQueue> queue, vm::ptr<be_t<u32>> pointer, u32 isBlocking, u32 arg4, u32 useEventQueue)
{
cellSync->Todo("_cellSyncLFQueueGetPopPointer(queue_addr=0x%x, pointer_addr=0x%x, isBlocking=%d, arg4=%d, useEventQueue=%d)",
queue.addr(), pointer.addr(), isBlocking, arg4, useEventQueue);
s32 pointer_value;
s32 result = syncLFQueueGetPopPointer(queue, pointer_value, isBlocking, arg4, useEventQueue);
*pointer = pointer_value;
return result;
}
s32 syncLFQueueGetPopPointer2(vm::ptr<CellSyncLFQueue> queue, s32& pointer, u32 isBlocking, u32 useEventQueue)
{
// TODO
//pointer = 0;
assert(0);
return CELL_OK;
}
s32 _cellSyncLFQueueGetPopPointer2(vm::ptr<CellSyncLFQueue> queue, vm::ptr<be_t<u32>> pointer, u32 isBlocking, u32 useEventQueue)
{
// arguments copied from _cellSyncLFQueueGetPopPointer
cellSync->Todo("_cellSyncLFQueueGetPopPointer2(queue_addr=0x%x, pointer_addr=0x%x, isBlocking=%d, useEventQueue=%d)",
queue.addr(), pointer.addr(), isBlocking, useEventQueue);
s32 pointer_value;
s32 result = syncLFQueueGetPopPointer2(queue, pointer_value, isBlocking, useEventQueue);
*pointer = pointer_value;
return result;
}
s32 syncLFQueueCompletePopPointer(vm::ptr<CellSyncLFQueue> queue, s32 pointer, const std::function<s32(u32 addr, u32 arg)> fpSendSignal, u32 noQueueFull)
{
if (queue->m_direction.ToBE() != se32(CELL_SYNC_QUEUE_SPU2PPU))
{
return CELL_SYNC_ERROR_PERM;
}
s32 depth = (u32)queue->m_depth;
while (true)
{
const auto old = queue->pop2.read_sync();
auto pop2 = old;
const auto old2 = queue->pop3.read_relaxed();
auto pop3 = old2;
s32 var1 = pointer - (u16)pop3.m_h1;
if (var1 < 0)
{
var1 += depth * 2;
}
s32 var2 = (s32)(s16)queue->push1.read_relaxed().m_h8 - (s32)(u16)queue->push1.read_relaxed().m_h5;
if (var2 < 0)
{
var2 += depth * 2;
}
s32 var9_ = 15 - var1;
// calculate (u16)(1 slw (15 - var1))
if (var9_ & 0x30)
{
var9_ = 0;
}
else
{
var9_ = 1 << var9_;
}
s32 var9 = cntlz32((u32)(u16)~(var9_ | (u16)pop3.m_h2)) - 16; // count leading zeros in u16
s32 var5 = (s32)(u16)pop3.m_h2 | var9_;
if (var9 & 0x30)
{
var5 = 0;
}
else
{
var5 <<= var9;
}
s32 var3 = (u16)pop3.m_h1 + var9;
if (var3 >= depth * 2)
{
var3 -= depth * 2;
}
u16 pack = pop2.pack; // three packed 5-bit fields
s32 var4 = ((pack >> 10) & 0x1f) - ((pack >> 5) & 0x1f);
if (var4 < 0)
{
var4 += 0x1e;
}
u32 var6;
if (noQueueFull || var2 + var4 > 15 || ((pack >> 10) & 0x1f) == (pack & 0x1f))
{
var6 = -1;
}
else
{
s32 var8 = (pack & 0x1f) - ((pack >> 10) & 0x1f);
if (var8 < 0)
{
var8 += 0x1e;
}
if (var9 > 1 && (u32)var8 > 1)
{
assert(16 - var2 <= 1);
}
s32 var11 = (pack >> 10) & 0x1f;
if (var11 >= 15)
{
var11 -= 15;
}
u16 var12 = (pack >> 10) & 0x1f;
if (var12 == 0x1d)
{
var12 = 0;
}
else
{
var12 = (var12 + 1) << 10;
}
pop2.pack = (pack & 0x83ff) | var12;
var6 = (u16)queue->m_hs2[var11];
}
pop3.m_h1 = (u16)var3;
pop3.m_h2 = (u16)var5;
if (queue->pop2.compare_and_swap_test(old, pop2))
{
if (var6 != -1)
{
bool exch = queue->pop3.compare_and_swap_test(old2, pop3);
assert(exch);
if (exch)
{
assert(fpSendSignal);
return fpSendSignal((u32)queue->m_eaSignal.addr(), var6);
}
}
else
{
pack = queue->pop2.read_relaxed().pack;
if ((pack & 0x1f) == ((pack >> 10) & 0x1f))
{
if (queue->pop3.compare_and_swap_test(old2, pop3))
{
return CELL_OK;
}
}
}
}
}
}
s32 _cellSyncLFQueueCompletePopPointer(vm::ptr<CellSyncLFQueue> queue, s32 pointer, vm::ptr<s32(*)(u32 addr, u32 arg)> fpSendSignal, u32 noQueueFull)
{
// arguments copied from _cellSyncLFQueueCompletePushPointer + unknown argument (noQueueFull taken from LFQueue2CompletePopPointer)
cellSync->Todo("_cellSyncLFQueueCompletePopPointer(queue_addr=0x%x, pointer=%d, fpSendSignal_addr=0x%x, noQueueFull=%d)",
queue.addr(), pointer, fpSendSignal.addr(), noQueueFull);
return syncLFQueueCompletePopPointer(queue, pointer, fpSendSignal, noQueueFull);
}
s32 syncLFQueueCompletePopPointer2(vm::ptr<CellSyncLFQueue> queue, s32 pointer, const std::function<s32(u32 addr, u32 arg)> fpSendSignal, u32 noQueueFull)
{
// TODO
//if (fpSendSignal) fpSendSignal(0, 0);
assert(0);
return CELL_OK;
}
s32 _cellSyncLFQueueCompletePopPointer2(vm::ptr<CellSyncLFQueue> queue, s32 pointer, vm::ptr<s32(*)(u32 addr, u32 arg)> fpSendSignal, u32 noQueueFull)
{
// arguments copied from _cellSyncLFQueueCompletePopPointer
cellSync->Todo("_cellSyncLFQueueCompletePopPointer2(queue_addr=0x%x, pointer=%d, fpSendSignal_addr=0x%x, noQueueFull=%d)",
queue.addr(), pointer, fpSendSignal.addr(), noQueueFull);
return syncLFQueueCompletePopPointer2(queue, pointer, fpSendSignal, noQueueFull);
}
s32 _cellSyncLFQueuePopBody(vm::ptr<CellSyncLFQueue> queue, vm::ptr<void> buffer, u32 isBlocking)
{
// cellSyncLFQueuePop has 1 in isBlocking param, cellSyncLFQueueTryPop has 0
cellSync->Warning("_cellSyncLFQueuePopBody(queue_addr=0x%x, buffer_addr=0x%x, isBlocking=%d)", queue.addr(), buffer.addr(), isBlocking);
if (!queue || !buffer)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 128 || buffer.addr() % 16)
{
return CELL_SYNC_ERROR_ALIGN;
}
s32 position;
#ifdef PRX_DEBUG
vm::var<be_t<s32>> position_v;
#endif
while (true)
{
s32 res;
if (queue->m_direction.ToBE() != se32(CELL_SYNC_QUEUE_ANY2ANY))
{
#ifdef PRX_DEBUG_XXX
res = cb_caller<s32, vm::ptr<CellSyncLFQueue>, u32, u32, u64, u64>::call(GetCurrentPPUThread(), libsre + 0x2A90, libsre_rtoc,
queue, position_v.addr(), isBlocking, 0, 0);
position = position_v->ToLE();
#else
res = syncLFQueueGetPopPointer(queue, position, isBlocking, 0, 0);
#endif
}
else
{
#ifdef PRX_DEBUG
res = cb_call<s32, vm::ptr<CellSyncLFQueue>, u32, u32, u64>(GetCurrentPPUThread(), libsre + 0x39AC, libsre_rtoc,
queue, position_v.addr(), isBlocking, 0);
position = position_v->ToLE();
#else
res = syncLFQueueGetPopPointer2(queue, position, isBlocking, 0);
#endif
}
if (!isBlocking || res != CELL_SYNC_ERROR_AGAIN)
{
if (res)
{
return res;
}
break;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (Emu.IsStopped())
{
cellSync->Warning("_cellSyncLFQueuePopBody(queue_addr=0x%x) aborted", queue.addr());
return CELL_OK;
}
}
s32 depth = (u32)queue->m_depth;
s32 size = (u32)queue->m_size;
memcpy(buffer.get_ptr(), vm::get_ptr<void>((u64)(queue->m_buffer.addr() & ~1ull) + size * (position >= depth ? position - depth : position)), size);
s32 res;
if (queue->m_direction.ToBE() != se32(CELL_SYNC_QUEUE_ANY2ANY))
{
#ifdef PRX_DEBUG_XXX
res = cb_caller<s32, vm::ptr<CellSyncLFQueue>, s32, u64, u64>::call(GetCurrentPPUThread(), libsre + 0x2CA8, libsre_rtoc,
queue, position, 0, 0);
#else
res = syncLFQueueCompletePopPointer(queue, position, nullptr, 0);
#endif
}
else
{
#ifdef PRX_DEBUG
res = cb_call<s32, vm::ptr<CellSyncLFQueue>, s32, u64, u64>(GetCurrentPPUThread(), libsre + 0x3EB8, libsre_rtoc,
queue, position, 0, 0);
#else
res = syncLFQueueCompletePopPointer2(queue, position, nullptr, 0);
#endif
}
return res;
}
s32 cellSyncLFQueueClear(vm::ptr<CellSyncLFQueue> queue)
{
cellSync->Warning("cellSyncLFQueueClear(queue_addr=0x%x)", queue.addr());
if (!queue)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 128)
{
return CELL_SYNC_ERROR_ALIGN;
}
while (true)
{
const auto old = queue->pop1.read_sync();
auto pop = old;
const auto push = queue->push1.read_relaxed();
s32 var1, var2;
if (queue->m_direction.ToBE() != se32(CELL_SYNC_QUEUE_ANY2ANY))
{
var1 = var2 = (u16)queue->pop2.read_relaxed().pack;
}
else
{
var1 = (u16)push.m_h7;
var2 = (u16)pop.m_h3;
}
if ((s32)(s16)pop.m_h4 != (s32)(u16)pop.m_h1 ||
(s32)(s16)push.m_h8 != (s32)(u16)push.m_h5 ||
((var2 >> 10) & 0x1f) != (var2 & 0x1f) ||
((var1 >> 10) & 0x1f) != (var1 & 0x1f))
{
return CELL_SYNC_ERROR_BUSY;
}
pop.m_h1 = push.m_h5;
pop.m_h2 = push.m_h6;
pop.m_h3 = push.m_h7;
pop.m_h4 = push.m_h8;
if (queue->pop1.compare_and_swap_test(old, pop)) break;
}
return CELL_OK;
}
s32 cellSyncLFQueueSize(vm::ptr<CellSyncLFQueue> queue, vm::ptr<be_t<u32>> size)
{
cellSync->Warning("cellSyncLFQueueSize(queue_addr=0x%x, size_addr=0x%x)", queue.addr(), size.addr());
if (!queue || !size)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 128)
{
return CELL_SYNC_ERROR_ALIGN;
}
while (true)
{
const auto old = queue->pop3.read_sync();
u32 var1 = (u16)queue->pop1.read_relaxed().m_h1;
u32 var2 = (u16)queue->push1.read_relaxed().m_h5;
if (queue->pop3.compare_and_swap_test(old, old))
{
if (var1 <= var2)
{
*size = var2 - var1;
}
else
{
*size = var2 - var1 + (u32)queue->m_depth * 2;
}
return CELL_OK;
}
}
}
s32 cellSyncLFQueueDepth(vm::ptr<CellSyncLFQueue> queue, vm::ptr<be_t<u32>> depth)
{
cellSync->Log("cellSyncLFQueueDepth(queue_addr=0x%x, depth_addr=0x%x)", queue.addr(), depth.addr());
if (!queue || !depth)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 128)
{
return CELL_SYNC_ERROR_ALIGN;
}
*depth = queue->m_depth;
return CELL_OK;
}
s32 _cellSyncLFQueueGetSignalAddress(vm::ptr<const CellSyncLFQueue> queue, vm::ptr<be_t<u32>> ppSignal)
{
cellSync->Log("_cellSyncLFQueueGetSignalAddress(queue_addr=0x%x, ppSignal_addr=0x%x)", queue.addr(), ppSignal.addr());
if (!queue || !ppSignal)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 128)
{
return CELL_SYNC_ERROR_ALIGN;
}
*ppSignal = (u32)queue->m_eaSignal.addr();
return CELL_OK;
}
s32 cellSyncLFQueueGetDirection(vm::ptr<const CellSyncLFQueue> queue, vm::ptr<be_t<CellSyncQueueDirection>> direction)
{
cellSync->Log("cellSyncLFQueueGetDirection(queue_addr=0x%x, direction_addr=0x%x)", queue.addr(), direction.addr());
if (!queue || !direction)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 128)
{
return CELL_SYNC_ERROR_ALIGN;
}
*direction = queue->m_direction;
return CELL_OK;
}
s32 cellSyncLFQueueGetEntrySize(vm::ptr<const CellSyncLFQueue> queue, vm::ptr<be_t<u32>> entry_size)
{
cellSync->Log("cellSyncLFQueueGetEntrySize(queue_addr=0x%x, entry_size_addr=0x%x)", queue.addr(), entry_size.addr());
if (!queue || !entry_size)
{
return CELL_SYNC_ERROR_NULL_POINTER;
}
if (queue.addr() % 128)
{
return CELL_SYNC_ERROR_ALIGN;
}
*entry_size = queue->m_size;
return CELL_OK;
}
s32 syncLFQueueAttachLv2EventQueue(vm::ptr<u32> spus, u32 num, vm::ptr<CellSyncLFQueue> queue)
{
#ifdef PRX_DEBUG
return cb_call<s32, vm::ptr<u32>, u32, vm::ptr<CellSyncLFQueue>>(GetCurrentPPUThread(), libsre + 0x19A8, libsre_rtoc,
spus, num, queue);
#endif
assert(!"syncLFQueueAttachLv2EventQueue");
return CELL_OK;
}
s32 _cellSyncLFQueueAttachLv2EventQueue(vm::ptr<u32> spus, u32 num, vm::ptr<CellSyncLFQueue> queue)
{
cellSync->Todo("_cellSyncLFQueueAttachLv2EventQueue(spus_addr=0x%x, num=%d, queue_addr=0x%x)", spus.addr(), num, queue.addr());
return syncLFQueueAttachLv2EventQueue(spus, num, queue);
}
s32 syncLFQueueDetachLv2EventQueue(vm::ptr<u32> spus, u32 num, vm::ptr<CellSyncLFQueue> queue)
{
#ifdef PRX_DEBUG
return cb_call<s32, vm::ptr<u32>, u32, vm::ptr<CellSyncLFQueue>>(GetCurrentPPUThread(), libsre + 0x1DA0, libsre_rtoc,
spus, num, queue);
#endif
assert(!"syncLFQueueDetachLv2EventQueue");
return CELL_OK;
}
s32 _cellSyncLFQueueDetachLv2EventQueue(vm::ptr<u32> spus, u32 num, vm::ptr<CellSyncLFQueue> queue)
{
cellSync->Todo("_cellSyncLFQueueDetachLv2EventQueue(spus_addr=0x%x, num=%d, queue_addr=0x%x)", spus.addr(), num, queue.addr());
return syncLFQueueDetachLv2EventQueue(spus, num, queue);
}
void cellSync_init(Module *pxThis)
{
cellSync = pxThis;
cellSync->AddFunc(0xa9072dee, cellSyncMutexInitialize);
cellSync->AddFunc(0x1bb675c2, cellSyncMutexLock);
cellSync->AddFunc(0xd06918c4, cellSyncMutexTryLock);
cellSync->AddFunc(0x91f2b7b0, cellSyncMutexUnlock);
cellSync->AddFunc(0x07254fda, cellSyncBarrierInitialize);
cellSync->AddFunc(0xf06a6415, cellSyncBarrierNotify);
cellSync->AddFunc(0x268edd6d, cellSyncBarrierTryNotify);
cellSync->AddFunc(0x35f21355, cellSyncBarrierWait);
cellSync->AddFunc(0x6c272124, cellSyncBarrierTryWait);
cellSync->AddFunc(0xfc48b03f, cellSyncRwmInitialize);
cellSync->AddFunc(0xcece771f, cellSyncRwmRead);
cellSync->AddFunc(0xa6669751, cellSyncRwmTryRead);
cellSync->AddFunc(0xed773f5f, cellSyncRwmWrite);
cellSync->AddFunc(0xba5bee48, cellSyncRwmTryWrite);
cellSync->AddFunc(0x3929948d, cellSyncQueueInitialize);
cellSync->AddFunc(0x5ae841e5, cellSyncQueuePush);
cellSync->AddFunc(0x705985cd, cellSyncQueueTryPush);
cellSync->AddFunc(0x4da6d7e0, cellSyncQueuePop);
cellSync->AddFunc(0xa58df87f, cellSyncQueueTryPop);
cellSync->AddFunc(0x48154c9b, cellSyncQueuePeek);
cellSync->AddFunc(0x68af923c, cellSyncQueueTryPeek);
cellSync->AddFunc(0x4da349b2, cellSyncQueueSize);
cellSync->AddFunc(0xa5362e73, cellSyncQueueClear);
cellSync->AddFunc(0x0c7cb9f7, cellSyncLFQueueGetEntrySize);
cellSync->AddFunc(0x167ea63e, cellSyncLFQueueSize);
cellSync->AddFunc(0x2af0c515, cellSyncLFQueueClear);
cellSync->AddFunc(0x35bbdad2, _cellSyncLFQueueCompletePushPointer2);
cellSync->AddFunc(0x46356fe0, _cellSyncLFQueueGetPopPointer2);
cellSync->AddFunc(0x4e88c68d, _cellSyncLFQueueCompletePushPointer);
cellSync->AddFunc(0x54fc2032, _cellSyncLFQueueAttachLv2EventQueue);
cellSync->AddFunc(0x6bb4ef9d, _cellSyncLFQueueGetPushPointer2);
cellSync->AddFunc(0x74c37666, _cellSyncLFQueueGetPopPointer);
cellSync->AddFunc(0x7a51deee, _cellSyncLFQueueCompletePopPointer2);
cellSync->AddFunc(0x811d148e, _cellSyncLFQueueDetachLv2EventQueue);
cellSync->AddFunc(0xaa355278, cellSyncLFQueueInitialize);
cellSync->AddFunc(0xaff7627a, _cellSyncLFQueueGetSignalAddress);
cellSync->AddFunc(0xba5961ca, _cellSyncLFQueuePushBody);
cellSync->AddFunc(0xd59aa307, cellSyncLFQueueGetDirection);
cellSync->AddFunc(0xe18c273c, cellSyncLFQueueDepth);
cellSync->AddFunc(0xe1bc7add, _cellSyncLFQueuePopBody);
cellSync->AddFunc(0xe9bf2110, _cellSyncLFQueueGetPushPointer);
cellSync->AddFunc(0xfe74e8e7, _cellSyncLFQueueCompletePopPointer);
#ifdef PRX_DEBUG
CallAfter([]()
{
libsre = (u32)Memory.MainMem.AllocAlign(sizeof(libsre_data), 0x100000);
memcpy(vm::get_ptr<void>(libsre), libsre_data, sizeof(libsre_data));
libsre_rtoc = libsre + 0x399B0;
extern Module* sysPrxForUser;
FIX_IMPORT(sysPrxForUser, cellUserTraceRegister , libsre + 0x1D5BC); // ???
FIX_IMPORT(sysPrxForUser, cellUserTraceUnregister , libsre + 0x1D5DC); // ???
FIX_IMPORT(sysPrxForUser, _sys_strncmp , libsre + 0x1D5FC);
FIX_IMPORT(sysPrxForUser, _sys_strcat , libsre + 0x1D61C);
FIX_IMPORT(sysPrxForUser, _sys_vsnprintf , libsre + 0x1D63C);
FIX_IMPORT(sysPrxForUser, _sys_snprintf , libsre + 0x1D65C);
FIX_IMPORT(sysPrxForUser, sys_lwmutex_lock , libsre + 0x1D67C);
FIX_IMPORT(sysPrxForUser, sys_lwmutex_unlock , libsre + 0x1D69C);
FIX_IMPORT(sysPrxForUser, sys_lwcond_destroy , libsre + 0x1D6BC);
FIX_IMPORT(sysPrxForUser, sys_ppu_thread_create , libsre + 0x1D6DC);
FIX_IMPORT(sysPrxForUser, sys_lwcond_wait , libsre + 0x1D6FC);
FIX_IMPORT(sysPrxForUser, _sys_strlen , libsre + 0x1D71C);
FIX_IMPORT(sysPrxForUser, sys_lwmutex_create , libsre + 0x1D73C);
FIX_IMPORT(sysPrxForUser, _sys_spu_printf_detach_group , libsre + 0x1D75C);
FIX_IMPORT(sysPrxForUser, _sys_memset , libsre + 0x1D77C);
FIX_IMPORT(sysPrxForUser, _sys_memcpy , libsre + 0x1D79C);
FIX_IMPORT(sysPrxForUser, _sys_strncat , libsre + 0x1D7BC);
FIX_IMPORT(sysPrxForUser, _sys_strcpy , libsre + 0x1D7DC);
FIX_IMPORT(sysPrxForUser, _sys_printf , libsre + 0x1D7FC);
fix_import(sysPrxForUser, 0x9FB6228E , libsre + 0x1D81C);
FIX_IMPORT(sysPrxForUser, sys_ppu_thread_exit , libsre + 0x1D83C);
FIX_IMPORT(sysPrxForUser, sys_lwmutex_destroy , libsre + 0x1D85C);
FIX_IMPORT(sysPrxForUser, _sys_strncpy , libsre + 0x1D87C);
FIX_IMPORT(sysPrxForUser, sys_lwcond_create , libsre + 0x1D89C);
FIX_IMPORT(sysPrxForUser, _sys_spu_printf_attach_group , libsre + 0x1D8BC);
FIX_IMPORT(sysPrxForUser, sys_prx_get_module_id_by_name , libsre + 0x1D8DC);
FIX_IMPORT(sysPrxForUser, sys_spu_image_close , libsre + 0x1D8FC);
fix_import(sysPrxForUser, 0xE75C40F2 , libsre + 0x1D91C);
FIX_IMPORT(sysPrxForUser, sys_spu_image_import , libsre + 0x1D93C);
FIX_IMPORT(sysPrxForUser, sys_lwcond_signal , libsre + 0x1D95C);
FIX_IMPORT(sysPrxForUser, _sys_vprintf , libsre + 0x1D97C);
FIX_IMPORT(sysPrxForUser, _sys_memcmp , libsre + 0x1D99C);
fix_relocs(cellSync, libsre, 0x31EE0, 0x3A4F0, 0x2DF00);
});
#endif
}