rpcs3/rpcs3/Emu/RSX/rsx_cache.h
2020-02-01 11:52:22 +03:00

867 lines
24 KiB
C++

#pragma once
#include "Utilities/VirtualMemory.h"
#include "Utilities/hash.h"
#include "Utilities/File.h"
#include "Utilities/lockless.h"
#include "Emu/Memory/vm.h"
#include "gcm_enums.h"
#include "Common/ProgramStateCache.h"
#include "Emu/System.h"
#include "Common/texture_cache_checker.h"
#include "Overlays/Shaders/shader_loading_dialog.h"
#include "rsx_utils.h"
#include <thread>
#include <chrono>
namespace rsx
{
enum protection_policy
{
protect_policy_one_page, //Only guard one page, preferrably one where this section 'wholly' fits
protect_policy_conservative, //Guards as much memory as possible that is guaranteed to only be covered by the defined range without sharing
protect_policy_full_range //Guard the full memory range. Shared pages may be invalidated by access outside the object we're guarding
};
enum section_bounds
{
full_range,
locked_range,
confirmed_range
};
static inline void memory_protect(const address_range& range, utils::protection prot)
{
verify(HERE), range.is_page_range();
//rsx_log.error("memory_protect(0x%x, 0x%x, %x)", static_cast<u32>(range.start), static_cast<u32>(range.length()), static_cast<u32>(prot));
utils::memory_protect(vm::base(range.start), range.length(), prot);
#ifdef TEXTURE_CACHE_DEBUG
tex_cache_checker.set_protection(range, prot);
#endif
}
class buffered_section
{
public:
static const protection_policy guard_policy = protect_policy_full_range;
private:
address_range locked_range;
address_range cpu_range = {};
address_range confirmed_range;
utils::protection protection = utils::protection::rw;
bool locked = false;
inline void init_lockable_range(const address_range &range)
{
locked_range = range.to_page_range();
if ((guard_policy != protect_policy_full_range) && (range.length() >= 4096))
{
const u32 block_start = (locked_range.start < range.start) ? (locked_range.start + 4096u) : locked_range.start;
const u32 block_end = locked_range.end;
if (block_start < block_end)
{
// protect unique page range
locked_range.start = block_start;
locked_range.end = block_end;
}
if (guard_policy == protect_policy_one_page)
{
// protect exactly one page
locked_range.set_length(4096u);
}
}
AUDIT( (locked_range.start == page_start(range.start)) || (locked_range.start == next_page(range.start)) );
AUDIT( locked_range.end <= page_end(range.end) );
verify(HERE), locked_range.is_page_range();
}
public:
buffered_section() = default;
~buffered_section() = default;
void reset(const address_range &memory_range)
{
verify(HERE), memory_range.valid() && locked == false;
cpu_range = address_range(memory_range);
confirmed_range.invalidate();
locked_range.invalidate();
protection = utils::protection::rw;
locked = false;
init_lockable_range(cpu_range);
}
protected:
void invalidate_range()
{
ASSERT(!locked);
cpu_range.invalidate();
confirmed_range.invalidate();
locked_range.invalidate();
}
public:
void protect(utils::protection new_prot, bool force = false)
{
if (new_prot == protection && !force) return;
verify(HERE), locked_range.is_page_range();
AUDIT( !confirmed_range.valid() || confirmed_range.inside(cpu_range) );
#ifdef TEXTURE_CACHE_DEBUG
if (new_prot != protection || force)
{
if (locked && !force) // When force=true, it is the responsibility of the caller to remove this section from the checker refcounting
tex_cache_checker.remove(locked_range, protection);
if (new_prot != utils::protection::rw)
tex_cache_checker.add(locked_range, new_prot);
}
#endif // TEXTURE_CACHE_DEBUG
rsx::memory_protect(locked_range, new_prot);
protection = new_prot;
locked = (protection != utils::protection::rw);
if (protection == utils::protection::no)
{
tag_memory();
}
else
{
if (!locked)
{
//Unprotect range also invalidates secured range
confirmed_range.invalidate();
}
}
}
void protect(utils::protection prot, const std::pair<u32, u32>& new_confirm)
{
// new_confirm.first is an offset after cpu_range.start
// new_confirm.second is the length (after cpu_range.start + new_confirm.first)
#ifdef TEXTURE_CACHE_DEBUG
// We need to remove the lockable range from page_info as we will be re-protecting with force==true
if (locked)
tex_cache_checker.remove(locked_range, protection);
#endif
if (prot != utils::protection::rw)
{
if (confirmed_range.valid())
{
confirmed_range.start = std::min(confirmed_range.start, cpu_range.start + new_confirm.first);
confirmed_range.end = std::max(confirmed_range.end, cpu_range.start + new_confirm.first + new_confirm.second - 1);
}
else
{
confirmed_range = address_range::start_length(cpu_range.start + new_confirm.first, new_confirm.second);
ASSERT(!locked || locked_range.inside(confirmed_range.to_page_range()));
}
verify(HERE), confirmed_range.inside(cpu_range);
init_lockable_range(confirmed_range);
}
protect(prot, true);
}
inline void unprotect()
{
AUDIT(protection != utils::protection::rw);
protect(utils::protection::rw);
}
inline void discard()
{
#ifdef TEXTURE_CACHE_DEBUG
if (locked)
tex_cache_checker.remove(locked_range, protection);
#endif
protection = utils::protection::rw;
confirmed_range.invalidate();
locked = false;
}
inline const address_range& get_bounds(section_bounds bounds) const
{
switch (bounds)
{
case section_bounds::full_range:
return cpu_range;
case section_bounds::locked_range:
return locked_range;
case section_bounds::confirmed_range:
return confirmed_range.valid() ? confirmed_range : cpu_range;
default:
ASSUME(0);
}
}
/**
* Overlapping checks
*/
inline bool overlaps(const u32 address, section_bounds bounds) const
{
return get_bounds(bounds).overlaps(address);
}
inline bool overlaps(const address_range &other, section_bounds bounds) const
{
return get_bounds(bounds).overlaps(other);
}
inline bool overlaps(const address_range_vector &other, section_bounds bounds) const
{
return get_bounds(bounds).overlaps(other);
}
inline bool overlaps(const buffered_section &other, section_bounds bounds) const
{
return get_bounds(bounds).overlaps(other.get_bounds(bounds));
}
inline bool inside(const address_range &other, section_bounds bounds) const
{
return get_bounds(bounds).inside(other);
}
inline bool inside(const address_range_vector &other, section_bounds bounds) const
{
return get_bounds(bounds).inside(other);
}
inline bool inside(const buffered_section &other, section_bounds bounds) const
{
return get_bounds(bounds).inside(other.get_bounds(bounds));
}
inline s32 signed_distance(const address_range &other, section_bounds bounds) const
{
return get_bounds(bounds).signed_distance(other);
}
inline u32 distance(const address_range &other, section_bounds bounds) const
{
return get_bounds(bounds).distance(other);
}
/**
* Utilities
*/
inline bool valid_range() const
{
return cpu_range.valid();
}
inline bool is_locked() const
{
return locked;
}
inline u32 get_section_base() const
{
return cpu_range.start;
}
inline u32 get_section_size() const
{
return cpu_range.valid() ? cpu_range.length() : 0;
}
inline const address_range& get_locked_range() const
{
AUDIT( locked );
return locked_range;
}
inline const address_range& get_section_range() const
{
return cpu_range;
}
const address_range& get_confirmed_range() const
{
return confirmed_range.valid() ? confirmed_range : cpu_range;
}
const std::pair<u32, u32> get_confirmed_range_delta() const
{
if (!confirmed_range.valid())
return { 0, cpu_range.length() };
return { confirmed_range.start - cpu_range.start, confirmed_range.length() };
}
inline bool matches(const address_range &range) const
{
return cpu_range.valid() && cpu_range == range;
}
inline utils::protection get_protection() const
{
return protection;
}
inline address_range get_min_max(const address_range& current_min_max, section_bounds bounds) const
{
return get_bounds(bounds).get_min_max(current_min_max);
}
/**
* Super Pointer
*/
template <typename T = void>
inline T* get_ptr(u32 address) const
{
return reinterpret_cast<T*>(vm::g_sudo_addr + address);
}
/**
* Memory tagging
*/
private:
inline void tag_memory()
{
// We only need to tag memory if we are in full-range mode
if (guard_policy == protect_policy_full_range)
return;
AUDIT(locked);
const address_range& range = get_confirmed_range();
volatile u32* first = get_ptr<volatile u32>(range.start);
volatile u32* last = get_ptr<volatile u32>(range.end - 3);
*first = range.start;
*last = range.end;
}
public:
bool test_memory_head()
{
if (guard_policy == protect_policy_full_range)
return true;
AUDIT(locked);
const auto& range = get_confirmed_range();
volatile const u32* first = get_ptr<volatile const u32>(range.start);
return (*first == range.start);
}
bool test_memory_tail()
{
if (guard_policy == protect_policy_full_range)
return true;
AUDIT(locked);
const auto& range = get_confirmed_range();
volatile const u32* last = get_ptr<volatile const u32>(range.end-3);
return (*last == range.end);
}
};
template <typename pipeline_storage_type, typename backend_storage>
class shaders_cache
{
using unpacked_type = lf_fifo<std::tuple<pipeline_storage_type, RSXVertexProgram, RSXFragmentProgram>, 1000>; // TODO: Determine best size
struct pipeline_data
{
u64 vertex_program_hash;
u64 fragment_program_hash;
u64 pipeline_storage_hash;
u32 vp_ctrl;
u32 vp_texture_dimensions;
u64 vp_instruction_mask[8];
u32 vp_base_address;
u32 vp_entry;
u16 vp_jump_table[32];
u32 fp_ctrl;
u32 fp_texture_dimensions;
u32 fp_texcoord_control;
u16 fp_unnormalized_coords;
u16 fp_height;
u16 fp_pixel_layout;
u16 fp_lighting_flags;
u16 fp_shadow_textures;
u16 fp_redirected_textures;
u16 fp_alphakill_mask;
u64 fp_zfunc_mask;
pipeline_storage_type pipeline_properties;
};
std::string version_prefix;
std::string root_path;
std::string pipeline_class_name;
std::mutex fpd_mutex;
std::unordered_map<u64, std::vector<u8>> fragment_program_data;
backend_storage& m_storage;
std::string get_message(u32 index, u32 processed, u32 entry_count)
{
const char* text = index == 0 ? "Loading pipeline object %u of %u" : "Compiling pipeline object %u of %u";
return fmt::format(text, processed, entry_count);
};
void load_shaders(uint nb_workers, unpacked_type& unpacked, std::string& directory_path, std::vector<fs::dir_entry>& entries, u32 entry_count,
shader_loading_dialog* dlg)
{
atomic_t<u32> processed(0);
std::function<void(u32)> shader_load_worker = [&](u32 stop_at)
{
u32 pos;
while (((pos = processed++) < stop_at) && !Emu.IsStopped())
{
fs::dir_entry tmp = entries[pos];
const auto filename = directory_path + "/" + tmp.name;
std::vector<u8> bytes;
fs::file f(filename);
if (f.size() != sizeof(pipeline_data))
{
rsx_log.error("Removing cached pipeline object %s since it's not binary compatible with the current shader cache", tmp.name.c_str());
fs::remove_file(filename);
continue;
}
f.read<u8>(bytes, f.size());
auto entry = unpack(*reinterpret_cast<pipeline_data*>(bytes.data()));
m_storage.preload_programs(std::get<1>(entry), std::get<2>(entry));
unpacked[unpacked.push_begin()] = entry;
}
};
await_workers(nb_workers, 0, shader_load_worker, processed, entry_count, dlg);
}
template <typename... Args>
void compile_shaders(uint nb_workers, unpacked_type& unpacked, u32 entry_count, shader_loading_dialog* dlg, Args&&... args)
{
atomic_t<u32> processed(0);
std::function<void(u32)> shader_comp_worker = [&](u32 stop_at)
{
u32 pos;
while (((pos = processed++) < stop_at) && !Emu.IsStopped())
{
auto& entry = unpacked[pos];
m_storage.add_pipeline_entry(std::get<1>(entry), std::get<2>(entry), std::get<0>(entry), std::forward<Args>(args)...);
}
};
await_workers(nb_workers, 1, shader_comp_worker, processed, entry_count, dlg);
}
void await_workers(uint nb_workers, u8 step, std::function<void(u32)>& worker, atomic_t<u32>& processed, u32 entry_count, shader_loading_dialog* dlg)
{
u32 processed_since_last_update = 0;
if (nb_workers == 1)
{
std::chrono::time_point<steady_clock> last_update;
// Call the worker function directly, stoping it prematurely to be able update the screen
u8 inc = 10;
u32 stop_at = 0;
do
{
stop_at = std::min(stop_at + inc, entry_count);
worker(stop_at);
// Only update the screen at about 10fps since updating it everytime slows down the process
std::chrono::time_point<steady_clock> now = std::chrono::steady_clock::now();
processed_since_last_update += inc;
if ((std::chrono::duration_cast<std::chrono::milliseconds>(now - last_update) > 100ms) || (stop_at == entry_count))
{
dlg->update_msg(step, get_message(step, stop_at, entry_count));
dlg->inc_value(step, processed_since_last_update);
last_update = now;
processed_since_last_update = 0;
}
} while (stop_at < entry_count && !Emu.IsStopped());
}
else
{
std::vector<std::thread> worker_threads(nb_workers);
// Start workers
for (u32 i = 0; i < nb_workers; i++)
{
worker_threads[i] = std::thread(worker, entry_count);
}
u32 current_progress = 0;
u32 last_update_progress = 0;
while ((current_progress < entry_count) && !Emu.IsStopped())
{
std::this_thread::sleep_for(100ms); // Around 10fps should be good enough
current_progress = std::min(processed.load(), entry_count);
processed_since_last_update = current_progress - last_update_progress;
last_update_progress = current_progress;
if (processed_since_last_update > 0)
{
dlg->update_msg(step, get_message(step, current_progress, entry_count));
dlg->inc_value(step, processed_since_last_update);
}
}
for (std::thread& worker_thread : worker_threads)
{
worker_thread.join();
}
}
}
public:
shaders_cache(backend_storage& storage, std::string pipeline_class, std::string version_prefix_str = "v1")
: version_prefix(std::move(version_prefix_str))
, pipeline_class_name(std::move(pipeline_class))
, m_storage(storage)
{
if (!g_cfg.video.disable_on_disk_shader_cache)
{
root_path = Emu.PPUCache() + "shaders_cache";
}
}
template <typename... Args>
void load(shader_loading_dialog* dlg, Args&& ...args)
{
if (g_cfg.video.disable_on_disk_shader_cache)
{
return;
}
std::string directory_path = root_path + "/pipelines/" + pipeline_class_name + "/" + version_prefix;
if (!fs::is_dir(directory_path))
{
fs::create_path(directory_path);
fs::create_path(root_path + "/raw");
return;
}
fs::dir root = fs::dir(directory_path);
u32 entry_count = 0;
std::vector<fs::dir_entry> entries;
for (auto It = root.begin(); It != root.end(); ++It, entry_count++)
{
fs::dir_entry tmp = *It;
if (tmp.name == "." || tmp.name == "..")
continue;
entries.push_back(tmp);
}
if ((entry_count = ::size32(entries)) <= 2)
return;
root.rewind();
// Progress dialog
std::unique_ptr<shader_loading_dialog> fallback_dlg;
if (!dlg)
{
fallback_dlg = std::make_unique<shader_loading_dialog>();
dlg = fallback_dlg.get();
}
dlg->create("Preloading cached shaders from disk.\nPlease wait...", "Shader Compilation");
dlg->set_limit(0, entry_count);
dlg->set_limit(1, entry_count);
dlg->update_msg(0, get_message(0, 0, entry_count));
dlg->update_msg(1, get_message(1, 0, entry_count));
// Preload everything needed to compile the shaders
unpacked_type unpacked;
uint nb_workers = g_cfg.video.renderer == video_renderer::vulkan ? std::thread::hardware_concurrency() : 1;
load_shaders(nb_workers, unpacked, directory_path, entries, entry_count, dlg);
// Account for any invalid entries
entry_count = unpacked.size();
compile_shaders(nb_workers, unpacked, entry_count, dlg, std::forward<Args>(args)...);
dlg->refresh();
dlg->close();
}
void store(pipeline_storage_type &pipeline, RSXVertexProgram &vp, RSXFragmentProgram &fp)
{
if (g_cfg.video.disable_on_disk_shader_cache)
{
return;
}
if (vp.jump_table.size() > 32)
{
rsx_log.error("shaders_cache: vertex program has more than 32 jump addresses. Entry not saved to cache");
return;
}
pipeline_data data = pack(pipeline, vp, fp);
std::string fp_name = root_path + "/raw/" + fmt::format("%llX.fp", data.fragment_program_hash);
std::string vp_name = root_path + "/raw/" + fmt::format("%llX.vp", data.vertex_program_hash);
if (!fs::is_file(fp_name))
{
fs::file(fp_name, fs::rewrite).write(fp.addr, fp.ucode_length);
}
if (!fs::is_file(vp_name))
{
fs::file(vp_name, fs::rewrite).write<u32>(vp.data);
}
u64 state_hash = 0;
state_hash ^= rpcs3::hash_base<u32>(data.vp_ctrl);
state_hash ^= rpcs3::hash_base<u32>(data.fp_ctrl);
state_hash ^= rpcs3::hash_base<u32>(data.vp_texture_dimensions);
state_hash ^= rpcs3::hash_base<u32>(data.fp_texture_dimensions);
state_hash ^= rpcs3::hash_base<u32>(data.fp_texcoord_control);
state_hash ^= rpcs3::hash_base<u16>(data.fp_unnormalized_coords);
state_hash ^= rpcs3::hash_base<u16>(data.fp_height);
state_hash ^= rpcs3::hash_base<u16>(data.fp_pixel_layout);
state_hash ^= rpcs3::hash_base<u16>(data.fp_lighting_flags);
state_hash ^= rpcs3::hash_base<u16>(data.fp_shadow_textures);
state_hash ^= rpcs3::hash_base<u16>(data.fp_redirected_textures);
state_hash ^= rpcs3::hash_base<u16>(data.fp_alphakill_mask);
state_hash ^= rpcs3::hash_base<u64>(data.fp_zfunc_mask);
std::string pipeline_file_name = fmt::format("%llX+%llX+%llX+%llX.bin", data.vertex_program_hash, data.fragment_program_hash, data.pipeline_storage_hash, state_hash);
std::string pipeline_path = root_path + "/pipelines/" + pipeline_class_name + "/" + version_prefix + "/" + pipeline_file_name;
fs::file(pipeline_path, fs::rewrite).write(&data, sizeof(pipeline_data));
}
RSXVertexProgram load_vp_raw(u64 program_hash)
{
std::vector<u32> data;
std::string filename = fmt::format("%llX.vp", program_hash);
fs::file f(root_path + "/raw/" + filename);
f.read<u32>(data, f.size() / sizeof(u32));
RSXVertexProgram vp = {};
vp.data = data;
vp.skip_vertex_input_check = true;
return vp;
}
RSXFragmentProgram load_fp_raw(u64 program_hash)
{
std::vector<u8> data;
std::string filename = fmt::format("%llX.fp", program_hash);
fs::file f(root_path + "/raw/" + filename);
f.read<u8>(data, f.size());
RSXFragmentProgram fp = {};
{
std::lock_guard<std::mutex> lock(fpd_mutex);
fragment_program_data[program_hash] = data;
fp.addr = fragment_program_data[program_hash].data();
}
fp.ucode_length = ::size32(data);
return fp;
}
std::tuple<pipeline_storage_type, RSXVertexProgram, RSXFragmentProgram> unpack(pipeline_data &data)
{
RSXVertexProgram vp = load_vp_raw(data.vertex_program_hash);
RSXFragmentProgram fp = load_fp_raw(data.fragment_program_hash);
pipeline_storage_type pipeline = data.pipeline_properties;
vp.output_mask = data.vp_ctrl;
vp.texture_dimensions = data.vp_texture_dimensions;
vp.base_address = data.vp_base_address;
vp.entry = data.vp_entry;
pack_bitset<512>(vp.instruction_mask, data.vp_instruction_mask);
for (u8 index = 0; index < 32; ++index)
{
const auto address = data.vp_jump_table[index];
if (address == UINT16_MAX)
{
// End of list marker
break;
}
vp.jump_table.emplace(address);
}
fp.ctrl = data.fp_ctrl;
fp.texture_dimensions = data.fp_texture_dimensions;
fp.texcoord_control_mask = data.fp_texcoord_control;
fp.unnormalized_coords = data.fp_unnormalized_coords;
fp.two_sided_lighting = !!(data.fp_lighting_flags & 0x1);
fp.shadow_textures = data.fp_shadow_textures;
fp.redirected_textures = data.fp_redirected_textures;
for (u8 index = 0; index < 16; ++index)
{
fp.textures_alpha_kill[index] = (data.fp_alphakill_mask & (1 << index))? 1: 0;
fp.textures_zfunc[index] = (data.fp_zfunc_mask >> (index << 2)) & 0xF;
}
return std::make_tuple(pipeline, vp, fp);
}
pipeline_data pack(pipeline_storage_type &pipeline, RSXVertexProgram &vp, RSXFragmentProgram &fp)
{
pipeline_data data_block = {};
data_block.pipeline_properties = pipeline;
data_block.vertex_program_hash = m_storage.get_hash(vp);
data_block.fragment_program_hash = m_storage.get_hash(fp);
data_block.pipeline_storage_hash = m_storage.get_hash(pipeline);
data_block.vp_ctrl = vp.output_mask;
data_block.vp_texture_dimensions = vp.texture_dimensions;
data_block.vp_base_address = vp.base_address;
data_block.vp_entry = vp.entry;
unpack_bitset<512>(vp.instruction_mask, data_block.vp_instruction_mask);
u8 index = 0;
while (index < 32)
{
if (!index && !vp.jump_table.empty())
{
for (auto &address : vp.jump_table)
{
data_block.vp_jump_table[index++] = static_cast<u16>(address);
}
}
else
{
// End of list marker
data_block.vp_jump_table[index] = UINT16_MAX;
break;
}
}
data_block.fp_ctrl = fp.ctrl;
data_block.fp_texture_dimensions = fp.texture_dimensions;
data_block.fp_texcoord_control = fp.texcoord_control_mask;
data_block.fp_unnormalized_coords = fp.unnormalized_coords;
data_block.fp_lighting_flags = u16(fp.two_sided_lighting);
data_block.fp_shadow_textures = fp.shadow_textures;
data_block.fp_redirected_textures = fp.redirected_textures;
for (u8 index = 0; index < 16; ++index)
{
data_block.fp_alphakill_mask |= u32(fp.textures_alpha_kill[index] & 0x1) << index;
data_block.fp_zfunc_mask |= u64(fp.textures_zfunc[index] & 0xF) << (index << 2);
}
return data_block;
}
};
namespace vertex_cache
{
// A null vertex cache
template <typename storage_type, typename upload_format>
class default_vertex_cache
{
public:
virtual ~default_vertex_cache() = default;
virtual storage_type* find_vertex_range(uintptr_t /*local_addr*/, upload_format, u32 /*data_length*/) { return nullptr; }
virtual void store_range(uintptr_t /*local_addr*/, upload_format, u32 /*data_length*/, u32 /*offset_in_heap*/) {}
virtual void purge() {}
};
// A weak vertex cache with no data checks or memory range locks
// Of limited use since contents are only guaranteed to be valid once per frame
// TODO: Strict vertex cache with range locks
template <typename upload_format>
struct uploaded_range
{
uintptr_t local_address;
upload_format buffer_format;
u32 offset_in_heap;
u32 data_length;
};
template <typename upload_format>
class weak_vertex_cache : public default_vertex_cache<uploaded_range<upload_format>, upload_format>
{
using storage_type = uploaded_range<upload_format>;
private:
std::unordered_map<uintptr_t, std::vector<storage_type>> vertex_ranges;
public:
storage_type* find_vertex_range(uintptr_t local_addr, upload_format fmt, u32 data_length) override
{
const auto data_end = local_addr + data_length;
for (auto &v : vertex_ranges[local_addr])
{
// NOTE: This has to match exactly. Using sized shortcuts such as >= comparison causes artifacting in some applications (UC1)
if (v.buffer_format == fmt && v.data_length == data_length)
return &v;
}
return nullptr;
}
void store_range(uintptr_t local_addr, upload_format fmt, u32 data_length, u32 offset_in_heap) override
{
storage_type v = {};
v.buffer_format = fmt;
v.data_length = data_length;
v.local_address = local_addr;
v.offset_in_heap = offset_in_heap;
vertex_ranges[local_addr].push_back(v);
}
void purge() override
{
vertex_ranges.clear();
}
};
}
}