rpcs3/rpcs3/Emu/Memory/Memory.cpp
2015-02-15 20:13:06 +03:00

570 lines
11 KiB
C++

#include "stdafx.h"
#include "Utilities/Log.h"
#include "Emu/System.h"
#include "Memory.h"
#include "Emu/Cell/RawSPUThread.h"
MemoryBase Memory;
u32 MemoryBase::InitRawSPU(MemoryBlock* raw_spu)
{
LV2_LOCK(0);
u32 index;
for (index = 0; index < sizeof(RawSPUMem) / sizeof(RawSPUMem[0]); index++)
{
if (!RawSPUMem[index])
{
RawSPUMem[index] = raw_spu;
break;
}
}
MemoryBlocks.push_back(raw_spu->SetRange(RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * index, RAW_SPU_PROB_OFFSET));
return index;
}
void MemoryBase::CloseRawSPU(MemoryBlock* raw_spu, const u32 num)
{
LV2_LOCK(0);
for (int i = 0; i < MemoryBlocks.size(); ++i)
{
if (MemoryBlocks[i] == raw_spu)
{
MemoryBlocks.erase(MemoryBlocks.begin() + i);
break;
}
}
if (num < sizeof(RawSPUMem) / sizeof(RawSPUMem[0])) RawSPUMem[num] = nullptr;
}
void MemoryBase::Init(MemoryType type)
{
LV2_LOCK(0);
if (m_inited) return;
m_inited = true;
memset(RawSPUMem, 0, sizeof(RawSPUMem));
LOG_NOTICE(MEMORY, "Initializing memory: g_base_addr = 0x%llx, g_priv_addr = 0x%llx", (u64)vm::g_base_addr, (u64)vm::g_priv_addr);
#ifdef _WIN32
if (!vm::g_base_addr || !vm::g_priv_addr)
#else
if ((s64)vm::g_base_addr == (s64)-1 || (s64)vm::g_priv_addr == (s64)-1)
#endif
{
LOG_ERROR(MEMORY, "Initializing memory failed");
return;
}
switch (type)
{
case Memory_PS3:
MemoryBlocks.push_back(MainMem.SetRange(0x00010000, 0x1FFF0000));
MemoryBlocks.push_back(UserMemory = Userspace.SetRange(0x20000000, 0x10000000));
MemoryBlocks.push_back(RSXFBMem.SetRange(0xC0000000, 0x10000000));
MemoryBlocks.push_back(StackMem.SetRange(0xD0000000, 0x10000000));
break;
case Memory_PSV:
MemoryBlocks.push_back(PSV.RAM.SetRange(0x81000000, 0x10000000));
MemoryBlocks.push_back(UserMemory = PSV.Userspace.SetRange(0x91000000, 0x2F000000));
break;
case Memory_PSP:
MemoryBlocks.push_back(PSP.Scratchpad.SetRange(0x00010000, 0x00004000));
MemoryBlocks.push_back(PSP.VRAM.SetRange(0x04000000, 0x00200000));
MemoryBlocks.push_back(PSP.RAM.SetRange(0x08000000, 0x02000000));
MemoryBlocks.push_back(PSP.Kernel.SetRange(0x88000000, 0x00800000));
MemoryBlocks.push_back(UserMemory = PSP.Userspace.SetRange(0x08800000, 0x01800000));
break;
}
LOG_NOTICE(MEMORY, "Memory initialized.");
}
void MemoryBase::Close()
{
LV2_LOCK(0);
if (!m_inited) return;
m_inited = false;
LOG_NOTICE(MEMORY, "Closing memory...");
for (auto block : MemoryBlocks)
{
block->Delete();
}
RSXIOMem.Delete();
MemoryBlocks.clear();
}
bool MemoryBase::WriteMMIO32(u32 addr, const u32 data)
{
LV2_LOCK(0);
if (RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET] && ((RawSPUThread*)RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET])->Write32(addr, data))
{
return true;
}
return false;
}
bool MemoryBase::ReadMMIO32(u32 addr, u32& result)
{
LV2_LOCK(0);
if (RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET] && ((RawSPUThread*)RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET])->Read32(addr, &result))
{
return true;
}
return false;
}
bool MemoryBase::Map(const u32 addr, const u32 size)
{
assert(size && (size | addr) % 4096 == 0);
LV2_LOCK(0);
for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++)
{
if (vm::check_addr(i * 4096, 4096))
{
return false;
}
}
MemoryBlocks.push_back((new MemoryBlock())->SetRange(addr, size));
LOG_WARNING(MEMORY, "Memory mapped at 0x%x: size=0x%x", addr, size);
return true;
}
bool MemoryBase::Unmap(const u32 addr)
{
LV2_LOCK(0);
for (u32 i = 0; i < MemoryBlocks.size(); i++)
{
if (MemoryBlocks[i]->GetStartAddr() == addr)
{
delete MemoryBlocks[i];
MemoryBlocks.erase(MemoryBlocks.begin() + i);
return true;
}
}
return false;
}
MemBlockInfo::MemBlockInfo(u32 addr, u32 size)
: MemInfo(addr, size)
{
vm::page_map(addr, size, vm::page_readable | vm::page_writable | vm::page_executable);
}
void MemBlockInfo::Free()
{
if (addr && size)
{
vm::page_unmap(addr, size);
addr = size = 0;
}
}
//MemoryBlock
MemoryBlock::MemoryBlock() : mem_inf(nullptr)
{
Init();
}
MemoryBlock::~MemoryBlock()
{
Delete();
}
void MemoryBlock::Init()
{
range_start = 0;
range_size = 0;
}
void MemoryBlock::InitMemory()
{
if (range_size)
{
Free();
mem_inf = new MemBlockInfo(range_start, range_size);
}
}
void MemoryBlock::Free()
{
if (mem_inf)
{
delete mem_inf;
mem_inf = nullptr;
}
}
void MemoryBlock::Delete()
{
Free();
Init();
}
MemoryBlock* MemoryBlock::SetRange(const u32 start, const u32 size)
{
range_start = start;
range_size = size;
InitMemory();
return this;
}
DynamicMemoryBlockBase::DynamicMemoryBlockBase()
: MemoryBlock()
, m_max_size(0)
{
}
const u32 DynamicMemoryBlockBase::GetUsedSize() const
{
LV2_LOCK(0);
u32 size = 0;
for (u32 i = 0; i<m_allocated.size(); ++i)
{
size += m_allocated[i].size;
}
return size;
}
bool DynamicMemoryBlockBase::IsInMyRange(const u32 addr, const u32 size)
{
return addr >= MemoryBlock::GetStartAddr() && addr + size - 1 <= MemoryBlock::GetEndAddr();
}
MemoryBlock* DynamicMemoryBlockBase::SetRange(const u32 start, const u32 size)
{
LV2_LOCK(0);
m_max_size = PAGE_4K(size);
if (!MemoryBlock::SetRange(start, 0))
{
assert(0);
return nullptr;
}
return this;
}
void DynamicMemoryBlockBase::Delete()
{
LV2_LOCK(0);
m_allocated.clear();
m_max_size = 0;
MemoryBlock::Delete();
}
bool DynamicMemoryBlockBase::AllocFixed(u32 addr, u32 size)
{
assert(size);
size = PAGE_4K(size + (addr & 4095)); // align size
addr &= ~4095; // align start address
if (!IsInMyRange(addr, size))
{
assert(0);
return false;
}
LV2_LOCK(0);
for (u32 i = 0; i<m_allocated.size(); ++i)
{
if (addr >= m_allocated[i].addr && addr < m_allocated[i].addr + m_allocated[i].size) return false;
}
AppendMem(addr, size);
return true;
}
void DynamicMemoryBlockBase::AppendMem(u32 addr, u32 size) /* private */
{
m_allocated.emplace_back(addr, size);
}
u32 DynamicMemoryBlockBase::AllocAlign(u32 size, u32 align)
{
assert(size && align);
if (!MemoryBlock::GetStartAddr())
{
LOG_ERROR(MEMORY, "DynamicMemoryBlockBase::AllocAlign(size=0x%x, align=0x%x): memory block not initialized", size, align);
return 0;
}
size = PAGE_4K(size);
u32 exsize;
if (align <= 4096)
{
align = 0;
exsize = size;
}
else
{
align &= ~4095;
exsize = size + align - 1;
}
LV2_LOCK(0);
for (u32 addr = MemoryBlock::GetStartAddr(); addr <= MemoryBlock::GetEndAddr() - exsize;)
{
bool is_good_addr = true;
for (u32 i = 0; i<m_allocated.size(); ++i)
{
if ((addr >= m_allocated[i].addr && addr < m_allocated[i].addr + m_allocated[i].size) ||
(m_allocated[i].addr >= addr && m_allocated[i].addr < addr + exsize))
{
is_good_addr = false;
addr = m_allocated[i].addr + m_allocated[i].size;
break;
}
}
if (!is_good_addr) continue;
if (align)
{
addr = (addr + (align - 1)) & ~(align - 1);
}
//LOG_NOTICE(MEMORY, "AllocAlign(size=0x%x) -> 0x%x", size, addr);
AppendMem(addr, size);
return addr;
}
return 0;
}
bool DynamicMemoryBlockBase::Alloc()
{
return AllocAlign(GetSize() - GetUsedSize()) != 0;
}
bool DynamicMemoryBlockBase::Free(u32 addr)
{
LV2_LOCK(0);
for (u32 num = 0; num < m_allocated.size(); num++)
{
if (addr == m_allocated[num].addr)
{
//LOG_NOTICE(MEMORY, "Free(0x%x)", addr);
m_allocated.erase(m_allocated.begin() + num);
return true;
}
}
LOG_ERROR(MEMORY, "DynamicMemoryBlock::Free(addr=0x%x): failed", addr);
for (u32 i = 0; i < m_allocated.size(); i++)
{
LOG_NOTICE(MEMORY, "*** Memory Block: addr = 0x%x, size = 0x%x", m_allocated[i].addr, m_allocated[i].size);
}
return false;
}
VirtualMemoryBlock::VirtualMemoryBlock() : MemoryBlock(), m_reserve_size(0)
{
}
MemoryBlock* VirtualMemoryBlock::SetRange(const u32 start, const u32 size)
{
range_start = start;
range_size = size;
return this;
}
bool VirtualMemoryBlock::IsInMyRange(const u32 addr, const u32 size)
{
return addr >= GetStartAddr() && addr + size - 1 <= GetEndAddr() - GetReservedAmount();
}
u32 VirtualMemoryBlock::Map(u32 realaddr, u32 size)
{
assert(size);
for (u32 addr = GetStartAddr(); addr <= GetEndAddr() - GetReservedAmount() - size;)
{
bool is_good_addr = true;
// check if address is already mapped
for (u32 i = 0; i<m_mapped_memory.size(); ++i)
{
if ((addr >= m_mapped_memory[i].addr && addr < m_mapped_memory[i].addr + m_mapped_memory[i].size) ||
(m_mapped_memory[i].addr >= addr && m_mapped_memory[i].addr < addr + size))
{
is_good_addr = false;
addr = m_mapped_memory[i].addr + m_mapped_memory[i].size;
break;
}
}
if (!is_good_addr) continue;
m_mapped_memory.emplace_back(addr, realaddr, size);
return addr;
}
return 0;
}
bool VirtualMemoryBlock::Map(u32 realaddr, u32 size, u32 addr)
{
assert(size);
if (!IsInMyRange(addr, size))
{
return false;
}
for (u32 i = 0; i<m_mapped_memory.size(); ++i)
{
if (addr >= m_mapped_memory[i].addr && addr + size - 1 <= m_mapped_memory[i].addr + m_mapped_memory[i].size - 1)
{
return false;
}
}
m_mapped_memory.emplace_back(addr, realaddr, size);
return true;
}
bool VirtualMemoryBlock::UnmapRealAddress(u32 realaddr, u32& size)
{
for (u32 i = 0; i<m_mapped_memory.size(); ++i)
{
if (m_mapped_memory[i].realAddress == realaddr && IsInMyRange(m_mapped_memory[i].addr, m_mapped_memory[i].size))
{
size = m_mapped_memory[i].size;
m_mapped_memory.erase(m_mapped_memory.begin() + i);
return true;
}
}
return false;
}
bool VirtualMemoryBlock::UnmapAddress(u32 addr, u32& size)
{
for (u32 i = 0; i<m_mapped_memory.size(); ++i)
{
if (m_mapped_memory[i].addr == addr && IsInMyRange(m_mapped_memory[i].addr, m_mapped_memory[i].size))
{
size = m_mapped_memory[i].size;
m_mapped_memory.erase(m_mapped_memory.begin() + i);
return true;
}
}
return false;
}
bool VirtualMemoryBlock::Read32(const u32 addr, u32* value)
{
u32 realAddr;
if (!getRealAddr(addr, realAddr))
return false;
*value = vm::read32(realAddr);
return true;
}
bool VirtualMemoryBlock::Write32(const u32 addr, const u32 value)
{
u32 realAddr;
if (!getRealAddr(addr, realAddr))
return false;
vm::write32(realAddr, value);
return true;
}
bool VirtualMemoryBlock::getRealAddr(u32 addr, u32& result)
{
for (u32 i = 0; i<m_mapped_memory.size(); ++i)
{
if (addr >= m_mapped_memory[i].addr && addr < m_mapped_memory[i].addr + m_mapped_memory[i].size)
{
result = m_mapped_memory[i].realAddress + (addr - m_mapped_memory[i].addr);
return true;
}
}
return false;
}
u32 VirtualMemoryBlock::getMappedAddress(u32 realAddress)
{
for (u32 i = 0; i<m_mapped_memory.size(); ++i)
{
if (realAddress >= m_mapped_memory[i].realAddress && realAddress < m_mapped_memory[i].realAddress + m_mapped_memory[i].size)
{
return m_mapped_memory[i].addr + (realAddress - m_mapped_memory[i].realAddress);
}
}
return 0;
}
void VirtualMemoryBlock::Delete()
{
m_mapped_memory.clear();
MemoryBlock::Delete();
}
bool VirtualMemoryBlock::Reserve(u32 size)
{
if (size + GetReservedAmount() > GetEndAddr() - GetStartAddr())
return false;
m_reserve_size += size;
return true;
}
bool VirtualMemoryBlock::Unreserve(u32 size)
{
if (size > GetReservedAmount())
return false;
m_reserve_size -= size;
return true;
}
u32 VirtualMemoryBlock::GetReservedAmount()
{
return m_reserve_size;
}