rpcs3/rpcs3/Emu/SysCalls/lv2/sys_event_flag.cpp
Nekotekina 0b5ef1d8f9 mem64_t replaced
Added conversion from vm::var to vm::ptr of the same type.
2014-09-01 02:58:08 +04:00

356 lines
No EOL
7.6 KiB
C++

#include "stdafx.h"
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Emu/Cell/PPUThread.h"
#include "sys_lwmutex.h"
#include "sys_event_flag.h"
SysCallBase sys_event_flag("sys_event_flag");
u32 EventFlag::check()
{
SleepQueue sq; // TODO: implement without SleepQueue
u32 target = 0;
for (u32 i = 0; i < waiters.size(); i++)
{
if (((waiters[i].mode & SYS_EVENT_FLAG_WAIT_AND) && (flags & waiters[i].bitptn) == waiters[i].bitptn) ||
((waiters[i].mode & SYS_EVENT_FLAG_WAIT_OR) && (flags & waiters[i].bitptn)))
{
if (m_protocol == SYS_SYNC_FIFO)
{
target = waiters[i].tid;
break;
}
sq.list.push_back(waiters[i].tid);
}
}
if (m_protocol == SYS_SYNC_PRIORITY)
{
target = sq.pop_prio();
}
return target;
}
s32 sys_event_flag_create(mem32_t eflag_id, mem_ptr_t<sys_event_flag_attr> attr, u64 init)
{
sys_event_flag.Warning("sys_event_flag_create(eflag_id_addr=0x%x, attr_addr=0x%x, init=0x%llx)",
eflag_id.GetAddr(), attr.GetAddr(), init);
switch (attr->protocol.ToBE())
{
case se32(SYS_SYNC_PRIORITY): break;
case se32(SYS_SYNC_RETRY): sys_event_flag.Todo("sys_event_flag_create(): SYS_SYNC_RETRY"); break;
case se32(SYS_SYNC_PRIORITY_INHERIT): sys_event_flag.Todo("sys_event_flag_create(): SYS_SYNC_PRIORITY_INHERIT"); break;
case se32(SYS_SYNC_FIFO): break;
default: return CELL_EINVAL;
}
if (attr->pshared.ToBE() != se32(0x200))
{
return CELL_EINVAL;
}
switch (attr->type.ToBE())
{
case se32(SYS_SYNC_WAITER_SINGLE): break;
case se32(SYS_SYNC_WAITER_MULTIPLE): break;
default: return CELL_EINVAL;
}
eflag_id = sys_event_flag.GetNewId(new EventFlag(init, (u32)attr->protocol, (int)attr->type), TYPE_EVENT_FLAG);
sys_event_flag.Warning("*** event_flag created [%s] (protocol=0x%x, type=0x%x): id = %d",
std::string(attr->name, 8).c_str(), (u32)attr->protocol, (int)attr->type, eflag_id.GetValue());
return CELL_OK;
}
s32 sys_event_flag_destroy(u32 eflag_id)
{
sys_event_flag.Warning("sys_event_flag_destroy(eflag_id=%d)", eflag_id);
EventFlag* ef;
if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH;
if (ef->waiters.size()) // ???
{
return CELL_EBUSY;
}
Emu.GetIdManager().RemoveID(eflag_id);
return CELL_OK;
}
s32 sys_event_flag_wait(u32 eflag_id, u64 bitptn, u32 mode, vm::ptr<be_t<u64>> result, u64 timeout)
{
sys_event_flag.Log("sys_event_flag_wait(eflag_id=%d, bitptn=0x%llx, mode=0x%x, result_addr=0x%x, timeout=%lld)",
eflag_id, bitptn, mode, result.addr(), timeout);
if (result) *result = 0;
switch (mode & 0xf)
{
case SYS_EVENT_FLAG_WAIT_AND: break;
case SYS_EVENT_FLAG_WAIT_OR: break;
default: return CELL_EINVAL;
}
switch (mode & ~0xf)
{
case 0: break; // ???
case SYS_EVENT_FLAG_WAIT_CLEAR: break;
case SYS_EVENT_FLAG_WAIT_CLEAR_ALL: break;
default: return CELL_EINVAL;
}
EventFlag* ef;
if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH;
u32 tid = GetCurrentPPUThread().GetId();
{
SMutexLocker lock(ef->m_mutex);
if (ef->m_type == SYS_SYNC_WAITER_SINGLE && ef->waiters.size() > 0)
{
return CELL_EPERM;
}
EventFlagWaiter rec;
rec.bitptn = bitptn;
rec.mode = mode;
rec.tid = tid;
ef->waiters.push_back(rec);
if (ef->check() == tid)
{
u64 flags = ef->flags;
ef->waiters.erase(ef->waiters.end() - 1);
if (mode & SYS_EVENT_FLAG_WAIT_CLEAR)
{
ef->flags &= ~bitptn;
}
else if (mode & SYS_EVENT_FLAG_WAIT_CLEAR_ALL)
{
ef->flags = 0;
}
if (result) *result = flags;
return CELL_OK;
}
}
u64 counter = 0;
const u64 max_counter = timeout ? (timeout / 1000) : ~0;
while (true)
{
if (ef->signal.unlock(tid, tid) == SMR_OK)
{
SMutexLocker lock(ef->m_mutex);
u64 flags = ef->flags;
for (u32 i = 0; i < ef->waiters.size(); i++)
{
if (ef->waiters[i].tid == tid)
{
ef->waiters.erase(ef->waiters.begin() + i);
if (mode & SYS_EVENT_FLAG_WAIT_CLEAR)
{
ef->flags &= ~bitptn;
}
else if (mode & SYS_EVENT_FLAG_WAIT_CLEAR_ALL)
{
ef->flags = 0;
}
if (u32 target = ef->check())
{
// if signal, leave both mutexes locked...
ef->signal.unlock(tid, target);
ef->m_mutex.unlock(tid, target);
}
else
{
ef->signal.unlock(tid);
}
if (result) *result = flags;
return CELL_OK;
}
}
ef->signal.unlock(tid);
return CELL_ECANCELED;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
if (counter++ > max_counter)
{
SMutexLocker lock(ef->m_mutex);
for (u32 i = 0; i < ef->waiters.size(); i++)
{
if (ef->waiters[i].tid == tid)
{
ef->waiters.erase(ef->waiters.begin() + i);
break;
}
}
return CELL_ETIMEDOUT;
}
if (Emu.IsStopped())
{
sys_event_flag.Warning("sys_event_flag_wait(id=%d) aborted", eflag_id);
return CELL_OK;
}
}
}
s32 sys_event_flag_trywait(u32 eflag_id, u64 bitptn, u32 mode, vm::ptr<be_t<u64>> result)
{
sys_event_flag.Log("sys_event_flag_trywait(eflag_id=%d, bitptn=0x%llx, mode=0x%x, result_addr=0x%x)",
eflag_id, bitptn, mode, result.addr());
if (result) *result = 0;
switch (mode & 0xf)
{
case SYS_EVENT_FLAG_WAIT_AND: break;
case SYS_EVENT_FLAG_WAIT_OR: break;
default: return CELL_EINVAL;
}
switch (mode & ~0xf)
{
case 0: break; // ???
case SYS_EVENT_FLAG_WAIT_CLEAR: break;
case SYS_EVENT_FLAG_WAIT_CLEAR_ALL: break;
default: return CELL_EINVAL;
}
EventFlag* ef;
if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH;
SMutexLocker lock(ef->m_mutex);
u64 flags = ef->flags;
if (((mode & SYS_EVENT_FLAG_WAIT_AND) && (flags & bitptn) == bitptn) ||
((mode & SYS_EVENT_FLAG_WAIT_OR) && (flags & bitptn)))
{
if (mode & SYS_EVENT_FLAG_WAIT_CLEAR)
{
ef->flags &= ~bitptn;
}
else if (mode & SYS_EVENT_FLAG_WAIT_CLEAR_ALL)
{
ef->flags = 0;
}
if (result) *result = flags;
return CELL_OK;
}
return CELL_EBUSY;
}
s32 sys_event_flag_set(u32 eflag_id, u64 bitptn)
{
sys_event_flag.Log("sys_event_flag_set(eflag_id=%d, bitptn=0x%llx)", eflag_id, bitptn);
EventFlag* ef;
if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH;
u32 tid = GetCurrentPPUThread().GetId();
ef->m_mutex.lock(tid);
ef->flags |= bitptn;
if (u32 target = ef->check())
{
// if signal, leave both mutexes locked...
ef->signal.lock(target);
ef->m_mutex.unlock(tid, target);
}
else
{
ef->m_mutex.unlock(tid);
}
return CELL_OK;
}
s32 sys_event_flag_clear(u32 eflag_id, u64 bitptn)
{
sys_event_flag.Log("sys_event_flag_clear(eflag_id=%d, bitptn=0x%llx)", eflag_id, bitptn);
EventFlag* ef;
if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH;
SMutexLocker lock(ef->m_mutex);
ef->flags &= bitptn;
return CELL_OK;
}
s32 sys_event_flag_cancel(u32 eflag_id, mem32_t num)
{
sys_event_flag.Log("sys_event_flag_cancel(eflag_id=%d, num_addr=0x%x)", eflag_id, num.GetAddr());
EventFlag* ef;
if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH;
std::vector<u32> tids;
{
SMutexLocker lock(ef->m_mutex);
tids.resize(ef->waiters.size());
for (u32 i = 0; i < ef->waiters.size(); i++)
{
tids[i] = ef->waiters[i].tid;
}
ef->waiters.clear();
}
for (u32 i = 0; i < tids.size(); i++)
{
ef->signal.lock(tids[i]);
}
if (Emu.IsStopped())
{
sys_event_flag.Warning("sys_event_flag_cancel(id=%d) aborted", eflag_id);
return CELL_OK;
}
if (num.GetAddr()) num = (u32)tids.size();
return CELL_OK;
}
s32 sys_event_flag_get(u32 eflag_id, vm::ptr<be_t<u64>> flags)
{
sys_event_flag.Log("sys_event_flag_get(eflag_id=%d, flags_addr=0x%x)", eflag_id, flags.addr());
EventFlag* ef;
if (!sys_event_flag.CheckId(eflag_id, ef)) return CELL_ESRCH;
SMutexLocker lock(ef->m_mutex);
*flags = ef->flags;
return CELL_OK;
}