rpcs3/rpcs3/Emu/IdManager.h
2025-02-26 11:04:02 +02:00

908 lines
24 KiB
C++

#pragma once
#include "util/types.hpp"
#include "Utilities/mutex.h"
#include <memory>
#include <vector>
#include <span>
#include "util/serialization.hpp"
#include "util/shared_ptr.hpp"
#include "util/fixed_typemap.hpp"
extern stx::manual_typemap<void, 0x20'00000, 128> g_fixed_typemap;
constexpr auto* g_fxo = &g_fixed_typemap;
enum class thread_state : u32;
extern u16 serial_breathe_and_tag(utils::serial& ar, std::string_view name, bool tag_bit);
template <typename T>
concept IdmCompatible = requires () { u32{T::id_base}, u32{T::id_step}, u32{T::id_count}; };
template <typename T>
concept IdmBaseCompatible = (std::is_final_v<T> ? IdmCompatible<T> : !!(requires () { u32{T::id_step}, u32{T::id_count}; }));
template <typename T>
concept IdmSavable = IdmBaseCompatible<T> && T::savestate_init_pos != 0 && (requires(T& t, utils::serial& ar) { t.save(stx::exact_t<utils::serial&>(ar)); });
// If id_base is declared in base type, than storage type must declare id_type
template <typename Base, typename Type>
concept IdmTypesCompatible = PtrSame<Base, Type> && IdmCompatible<Type> && IdmBaseCompatible<Base> && (std::is_same_v<Base, Type> || !IdmCompatible<Base> || !!(requires () { u32{Type::id_type}; }));
// Helper namespace
namespace id_manager
{
using pointer_keeper = std::function<void(void*)>;
// Common global mutex
extern shared_mutex g_mutex;
template <typename T>
constexpr std::pair<u32, u32> get_invl_range()
{
return {0, 0};
}
template <typename T> requires requires () { T::id_invl_range.first + T::id_invl_range.second; }
constexpr std::pair<u32, u32> get_invl_range()
{
return T::id_invl_range;
}
template <typename T>
consteval bool get_force_lowest_id()
{
return false;
}
template <typename T> requires requires () { bool{T::id_lowest}; }
consteval bool get_force_lowest_id()
{
return T::id_lowest;
}
// Last allocated ID for constructors
extern thread_local u32 g_id;
// ID traits
template <typename T>
struct id_traits
{
static_assert(IdmCompatible<T>, "ID object must specify: id_base, id_step, id_count");
static constexpr u32 base = T::id_base; // First ID (N = 0)
static constexpr u32 step = T::id_step; // Any ID: N * id_setp + id_base
static constexpr u32 count = T::id_count; // Limit: N < id_count
static constexpr u32 invalid = -+!base; // Invalid ID sample
static constexpr std::pair<u32, u32> invl_range = get_invl_range<T>();
static constexpr bool uses_lowest_id = get_force_lowest_id<T>();
static_assert(u32{count} && u32{step} && u64{step} * (count - 1) + base < u32{umax} + u64{base != 0 ? 1 : 0}, "ID traits: invalid object range");
// TODO: Add more conditions
static_assert(!invl_range.second || (u64{invl_range.second} + invl_range.first <= 32 /*....*/ ));
};
static constexpr u32 get_index(u32 id, u32 base, u32 step, u32 count, std::pair<u32, u32> invl_range)
{
u32 mask_out = ((1u << invl_range.second) - 1) << invl_range.first;
// Note: if id is lower than base, diff / step will be higher than count
u32 diff = (id & ~mask_out) - base;
if (diff % step)
{
// id is invalid, return invalid index
return count;
}
// Get actual index
return diff / step;
}
// ID traits
template <typename T>
struct id_traits_load_func
{
static constexpr pointer_keeper(*load)(utils::serial&) = [](utils::serial& ar) -> pointer_keeper
{
stx::shared_ptr<T> ptr;
if constexpr (std::is_constructible_v<T, stx::exact_t<const stx::launch_retainer&>, stx::exact_t<utils::serial&>>)
{
ptr = stx::make_shared<T>(stx::launch_retainer{}, stx::exact_t<utils::serial&>(ar));
}
else
{
ptr = stx::make_shared<T>(stx::exact_t<utils::serial&>(ar));
}
return [ptr](void* storage) { *static_cast<stx::atomic_ptr<T>*>(storage) = ptr; };
};
};
template <typename T>
requires requires() { &T::load; }
struct id_traits_load_func<T>
{
static constexpr pointer_keeper(*load)(utils::serial&) = [](utils::serial& ar) -> pointer_keeper
{
return T::load(stx::exact_t<utils::serial&>(ar));
};
};
template <typename T>
struct id_traits_savable_func
{
static constexpr bool(*savable)(void*) = [](void*) -> bool { return true; };
};
template <typename T>
requires requires { &T::savable; }
struct id_traits_savable_func<T>
{
static constexpr bool(*savable)(void* ptr) = [](void* ptr) -> bool { return static_cast<const T*>(ptr)->savable(); };
};
struct dummy_construct
{
dummy_construct() = default;
dummy_construct(utils::serial&) noexcept {}
void save(utils::serial&) {}
static constexpr u32 id_base = 1, id_step = 1, id_count = 1;
static constexpr double savestate_init_pos = 0;
};
struct typeinfo;
// Use a vector instead of map to reduce header dependencies in this commonly used header
std::vector<std::pair<u128, typeinfo>>& get_typeinfo_map();
struct typeinfo
{
public:
std::function<void(void*)>(*load)(utils::serial&);
void(*save)(utils::serial&, void*);
bool(*savable)(void* ptr);
u32 base;
u32 step;
u32 count;
bool uses_lowest_id;
std::pair<u32, u32> invl_range;
// Unique type ID within the same container: we use id_base if nothing else was specified
template <typename T>
static consteval u32 get_type()
{
return T::id_base;
}
// Specified type ID for containers which their types may be sharing an overlapping IDs range
template <typename T> requires requires () { u32{T::id_type}; }
static consteval u32 get_type()
{
return T::id_type;
}
template <typename T>
static typeinfo make_typeinfo()
{
typeinfo info{};
using C = std::conditional_t<IdmCompatible<T> && IdmSavable<T>, T, dummy_construct>;
using Type = std::conditional_t<IdmCompatible<T>, T, dummy_construct>;
if constexpr (std::is_same_v<C, T>)
{
info =
{
+id_traits_load_func<C>::load,
+[](utils::serial& ar, void* obj) { static_cast<C*>(obj)->save(ar); },
+id_traits_savable_func<C>::savable,
id_traits<C>::base, id_traits<C>::step, id_traits<C>::count, id_traits<C>::uses_lowest_id, id_traits<C>::invl_range,
};
const u128 key = u128{get_type<C>()} << 64 | std::bit_cast<u64>(C::savestate_init_pos);
for (const auto& [tkey, tinfo] : get_typeinfo_map())
{
if (!(tkey ^ key))
{
ensure(tinfo == info);
return info;
}
}
// id_base must be unique within all the objects with the same initialization posistion by definition of id_map with multiple types
get_typeinfo_map().emplace_back(key, info);
}
else
{
info =
{
nullptr,
nullptr,
nullptr,
id_traits<Type>::base, id_traits<Type>::step, id_traits<Type>::count, id_traits<Type>::uses_lowest_id, id_traits<Type>::invl_range,
};
}
return info;
}
bool operator==(const typeinfo& rhs) const noexcept
{
return base == rhs.base && invl_range == rhs.invl_range && save == rhs.save;
}
};
// ID value with additional type stored
class id_key
{
u32 m_value = 0; // ID value
u32 m_base = umax; // ID base (must be unique for each type in the same container)
public:
id_key() noexcept = default;
id_key(u32 value, u32 type) noexcept
: m_value(value)
, m_base(type)
{
}
u32 value() const
{
return m_value;
}
u32 type() const
{
return m_base;
}
void clear()
{
m_base = umax;
}
operator u32() const noexcept
{
return m_value;
}
};
template <typename T>
struct id_map
{
static_assert(IdmBaseCompatible<T>, "Please specify IDM compatible type.");
std::array<stx::atomic_ptr<T>, T::id_count> vec_data{};
std::array<stx::shared_ptr<T>, T::id_count> private_copy{};
std::array<id_key, T::id_count> vec_keys{};
u32 highest_index = 0;
shared_mutex mutex{}; // TODO: Use this instead of global mutex
id_map() noexcept = default;
// Order it directly before the source type's position
static constexpr double savestate_init_pos_original = T::savestate_init_pos;
static constexpr double savestate_init_pos = std::bit_cast<double>(std::bit_cast<u64>(savestate_init_pos_original) - 1);
id_map(utils::serial& ar) noexcept requires IdmSavable<T>
{
while (true)
{
const u16 tag = serial_breathe_and_tag(ar, g_fxo->get_name<id_map<T>>(), false);
if (tag >> 15)
{
// End
break;
}
// ID, type hash
const u32 id = ar.pop<u32>();
const u128 type_init_pos = u128{ar.pop<u32>()} << 64 | std::bit_cast<u64>(T::savestate_init_pos);
const typeinfo* info = nullptr;
// Search load functions for the one of this type (see make_typeinfo() for explenation about key composition reasoning)
for (const auto& typeinfo : get_typeinfo_map())
{
if (!(typeinfo.first ^ type_init_pos))
{
info = std::addressof(typeinfo.second);
}
}
ensure(info);
// Construct each object from information collected
// Simulate construction semantics (idm::last_id() value)
g_id = id;
const u32 object_index = get_index(id, info->base, info->step, info->count, info->invl_range);
auto& obj = ::at32(vec_data, object_index);
ensure(!obj);
highest_index = std::max(highest_index, object_index + 1);
vec_keys[object_index] = id_key(id, static_cast<u32>(static_cast<u64>(type_init_pos >> 64)));
info->load(ar)(&obj);
}
}
void save(utils::serial& ar) requires IdmSavable<T>
{
for (const auto& p : vec_data)
{
if (!p) continue;
auto& key = vec_keys[&p - vec_data.data()];
const u128 type_init_pos = u128{key.type()} << 64 | std::bit_cast<u64>(T::savestate_init_pos);
const typeinfo* info = nullptr;
// Search load functions for the one of this type (see make_typeinfo() for explenation about key composition reasoning)
for (const auto& typeinfo : get_typeinfo_map())
{
if (!(typeinfo.first ^ type_init_pos))
{
ensure(!std::exchange(info, std::addressof(typeinfo.second)));
}
}
// Save each object with needed information
if (info && info->savable(p.observe()))
{
// Create a tag for each object
serial_breathe_and_tag(ar, g_fxo->get_name<id_map<T>>(), false);
ar(key.value(), key.type());
info->save(ar, p.observe());
}
}
// End sequence with tag bit set
serial_breathe_and_tag(ar, g_fxo->get_name<id_map<T>>(), true);
}
id_map& operator=(thread_state state) noexcept requires (std::is_assignable_v<T&, thread_state>)
{
if (highest_index)
{
reader_lock lock(g_mutex);
// Save all entries
for (u32 i = 0; i < highest_index; i++)
{
private_copy[i] = vec_data[i].load();
}
}
// Signal or join threads
for (const auto& ptr : private_copy)
{
if (ptr)
{
*ptr = state;
}
}
return *this;
}
};
}
// Object manager for emulated process. Multiple objects of specified arbitrary type are given unique IDs.
class idm
{
template <typename T>
static constexpr u32 get_index(u32 id)
{
using traits = id_manager::id_traits<T>;
return id_manager::get_index(id, traits::base, traits::step, traits::count, traits::invl_range);
}
// Helper
template <typename F>
struct function_traits;
template <typename F, typename R, typename A1, typename A2>
struct function_traits<R (F::*)(A1, A2&) const>
{
using object_type = A2;
using result_type = R;
};
template <typename F, typename R, typename A1, typename A2>
struct function_traits<R (F::*)(A1, A2&)>
{
using object_type = A2;
using result_type = R;
};
// Helper type: pointer + return value propagated
template <typename T, typename RT>
struct return_pair;
template <typename T, typename RT>
struct return_pair<stx::shared_ptr<T>, RT>
{
stx::shared_ptr<T> ptr;
RT ret;
explicit operator bool() const noexcept
{
return ptr.operator bool();
}
T& operator*() const noexcept
{
return *ptr;
}
T* operator->() const noexcept
{
return ptr.operator->();
}
};
// Unsafe specialization (not refcounted)
template <typename T, typename RT>
struct return_pair<T*, RT>
{
T* ptr;
RT ret;
explicit operator bool() const noexcept
{
return ptr != nullptr;
}
T& operator*() const noexcept
{
return *ptr;
}
T* operator->() const noexcept
{
return ptr;
}
};
// Get type ID that is meant to be unique within the same container
template <typename T>
static consteval u32 get_type()
{
return id_manager::typeinfo::get_type<T>();
}
// Prepare new ID (returns nullptr if out of resources)
static id_manager::id_key* allocate_id(std::span<id_manager::id_key> keys, u32& highest_index, u32 type_id, u32 dst_id, u32 base, u32 step, u32 count, bool uses_lowest_id, std::pair<u32, u32> invl_range);
// Get object by internal index if exists (additionally check type if types are not equal)
template <typename T, typename Type>
static std::pair<atomic_ptr<T>*, id_manager::id_key*> find_index(u32 index, u32 id)
{
static_assert(IdmTypesCompatible<T, Type>, "Invalid ID type combination");
auto& map = g_fxo->get<id_manager::id_map<T>>();
if (index >= map.highest_index)
{
return {};
}
auto& data = map.vec_data[index];
auto& key = map.vec_keys[index];
if (data)
{
if (std::is_same_v<T, Type> || key.type() == get_type<Type>())
{
if (!id_manager::id_traits<Type>::invl_range.second || key.value() == id)
{
return { &data, &key };
}
}
}
return {};
}
// Find ID
template <typename T, typename Type>
static std::pair<atomic_ptr<T>*, id_manager::id_key*> find_id(u32 id)
{
static_assert(IdmTypesCompatible<T, Type>, "Invalid ID type combination");
const u32 index = get_index<Type>(id);
return find_index<T, Type>(index, id);
}
// Allocate new ID (or use fixed ID) and assign the object from the provider()
template <typename T, typename Type, typename F>
static stx::shared_ptr<Type> create_id(F&& provider, u32 id = id_manager::id_traits<Type>::invalid)
{
static_assert(IdmTypesCompatible<T, Type>, "Invalid ID type combination");
// ID traits
using traits = id_manager::id_traits<Type>;
// Ensure make_typeinfo() is used for this type
[[maybe_unused]] auto& td = stx::typedata<id_manager::typeinfo, Type>();
// Allocate new id
std::lock_guard lock(id_manager::g_mutex);
auto& map = g_fxo->get<id_manager::id_map<T>>();
if (auto* key_ptr = allocate_id({map.vec_keys.data(), map.vec_keys.size()}, map.highest_index, get_type<Type>(), id, traits::base, traits::step, traits::count, traits::uses_lowest_id, traits::invl_range))
{
auto& place = map.vec_data[key_ptr - map.vec_keys.data()];
// Get object, store it
if (auto object = provider())
{
place = object;
return object;
}
*key_ptr = {};
}
return {};
}
public:
// Remove all objects of a type
template <typename T>
static inline void clear()
{
std::lock_guard lock(id_manager::g_mutex);
for (auto& ptr : g_fxo->get<id_manager::id_map<T>>().vec_data)
{
ptr.reset();
}
for (auto& key : g_fxo->get<id_manager::id_map<T>>().vec_keys)
{
key.clear();
}
}
// Get last ID (updated in create_id/allocate_id)
static inline u32 last_id()
{
return id_manager::g_id;
}
// Add a new ID of specified type with specified constructor arguments (returns object or null_ptr)
template <typename T, typename Make = T, typename... Args> requires (std::is_constructible_v<Make, Args&&...>)
static inline stx::shared_ptr<Make> make_ptr(Args&&... args)
{
if (auto pair = create_id<T, Make>([&] { return stx::make_shared<Make>(std::forward<Args>(args)...); }))
{
return pair;
}
return null_ptr;
}
// Add a new ID of specified type with specified constructor arguments (returns id)
template <typename T, typename Make = T, typename... Args> requires (std::is_constructible_v<Make, Args&&...>)
static inline u32 make(Args&&... args)
{
if (create_id<T, Make>([&] { return stx::make_shared<Make>(std::forward<Args>(args)...); }))
{
return last_id();
}
return id_manager::id_traits<Make>::invalid;
}
// Add a new ID for an object returned by provider()
template <typename T, typename Made = T, typename F>
requires IdmTypesCompatible<T, Made> && std::is_convertible_v<std::invoke_result_t<F&&>, stx::shared_ptr<Made>>
static inline u32 import(F&& provider, u32 id = id_manager::id_traits<Made>::invalid)
{
if (create_id<T, Made>(std::forward<F>(provider), id))
{
return last_id();
}
return id_manager::id_traits<Made>::invalid;
}
// Add a new ID for an existing object provided (returns new id)
template <typename T, typename Made = T>
requires IdmTypesCompatible<T, Made>
static inline u32 import_existing(stx::shared_ptr<Made> ptr, u32 id = id_manager::id_traits<Made>::invalid)
{
return import<T, Made>([&]() -> stx::shared_ptr<Made> { return std::move(ptr); }, id);
}
// Check the ID without locking (can be called from other method)
template <typename T, typename Get = T>
requires IdmTypesCompatible<T, Get>
static inline Get* check_unlocked(u32 id)
{
if (const auto found = find_id<T, Get>(id); found.first)
{
return static_cast<Get*>(found.first->observe());
}
return nullptr;
}
// Check the ID, access object under shared lock
template <typename T, typename Get = T, typename F, typename FRT = std::invoke_result_t<F, Get&>>
requires IdmTypesCompatible<T, Get>
static inline std::conditional_t<std::is_void_v<FRT>, Get*, return_pair<Get*, FRT>> check(u32 id, F&& func)
{
const u32 index = get_index<Get>(id);
if (index >= id_manager::id_traits<Get>::count)
{
return {};
}
reader_lock lock(id_manager::g_mutex);
if (const auto found = find_index<T, Get>(index, id); found.first)
{
const auto ptr = static_cast<Get*>(found.first->observe());
if constexpr (!std::is_void_v<FRT>)
{
return return_pair<Get*, FRT>{ptr, func(*ptr)};
}
else
{
func(*ptr);
return ptr;
}
}
return {};
}
// Get the object without locking (can be called from other method)
template <typename T, typename Get = T>
requires IdmTypesCompatible<T, Get>
static inline stx::shared_ptr<Get> get_unlocked(u32 id)
{
const auto found = find_id<T, Get>(id);
if (!found.first) [[unlikely]]
{
return null_ptr;
}
return static_cast<stx::shared_ptr<Get>>(found.first->load());
}
// Get the object, access object under reader lock
template <typename T, typename Get = T, typename F, typename FRT = std::invoke_result_t<F, Get&>>
requires IdmTypesCompatible<T, Get>
static inline std::conditional_t<std::is_void_v<FRT>, stx::shared_ptr<Get>, return_pair<stx::shared_ptr<Get>, FRT>> get(u32 id, F&& func)
{
const u32 index = get_index<Get>(id);
if (index >= id_manager::id_traits<Get>::count)
{
return {};
}
reader_lock lock(id_manager::g_mutex);
const auto found = find_index<T, Get>(index, id);
if (!found.first) [[unlikely]]
{
return {};
}
auto ptr = static_cast<stx::shared_ptr<Get>>(found.first->load());
Get* obj_ptr = ptr.get();
if constexpr (std::is_void_v<FRT>)
{
func(*obj_ptr);
return ptr;
}
else
{
return {std::move(ptr), func(*obj_ptr)};
}
}
static constexpr std::false_type unlocked{};
// Access all objects of specified type. Returns the number of objects processed.
// If function result evaluates to true, stop and return the object and the value.
template <typename T, typename... Get, typename F, typename Lock = std::true_type>
requires IdmBaseCompatible<T> && (IdmCompatible<Get> && ...) && (std::is_invocable_v<F, u32, Get&> && ...)
static inline auto select(F&& func, Lock = std::true_type{})
{
static_assert((IdmTypesCompatible<T, Get> && ...), "Invalid ID type combination");
[[maybe_unused]] std::conditional_t<!!Lock(), reader_lock, const shared_mutex&> lock(id_manager::g_mutex);
using func_traits = function_traits<decltype(&decltype(std::function(std::declval<F>()))::operator())>;
using object_type = typename func_traits::object_type;
using result_type = typename func_traits::result_type;
static_assert(PtrSame<object_type, T>, "Invalid function argument type combination");
std::conditional_t<std::is_void_v<result_type>, u32, return_pair<stx::shared_ptr<object_type>, result_type>> result{};
auto& map = g_fxo->get<id_manager::id_map<T>>();
for (auto& id : map.vec_data)
{
if (auto ptr = static_cast<object_type*>(id.observe()))
{
auto& key = map.vec_keys[&id - map.vec_data.data()];
if (sizeof...(Get) == 0 || ((key.type() == get_type<Get>()) || ...))
{
if constexpr (std::is_void_v<result_type>)
{
func(key, *ptr);
result++;
}
else
{
if ((result.ret = func(key, *ptr)))
{
result.ptr = static_cast<stx::shared_ptr<object_type>>(id.load());
break;
}
}
}
}
}
return result;
}
// Remove the ID
template <typename T, typename Get = T>
requires IdmTypesCompatible<T, Get>
static inline bool remove(u32 id)
{
stx::shared_ptr<T> ptr;
{
std::lock_guard lock(id_manager::g_mutex);
if (const auto found = find_id<T, Get>(id); found.first)
{
ptr = found.first->exchange(null_ptr);
found.second->clear();
}
else
{
return false;
}
}
if constexpr (std::is_assignable_v<Get&, thread_state>)
{
if (ptr)
{
constexpr thread_state destroying_context{7};
*static_cast<Get*>(ptr.get()) = destroying_context;
}
}
return true;
}
// Remove the ID if matches the weak/shared ptr
template <typename T, typename Get = T, typename Ptr, typename Lock = std::true_type>
requires IdmTypesCompatible<T, Get> && std::is_convertible_v<Lock, bool>
static inline bool remove_verify(u32 id, Ptr&& sptr, Lock = std::true_type{})
{
stx::shared_ptr<T> ptr;
{
[[maybe_unused]] std::conditional_t<!!Lock(), std::lock_guard<shared_mutex>, const shared_mutex&> lock(id_manager::g_mutex);
if (const auto found = find_id<T, Get>(id); found.first && found.first->is_equal(sptr))
{
ptr = found.first->exchange(null_ptr);
found.second->clear();
}
else
{
return false;
}
}
if constexpr (std::is_assignable_v<Get&, thread_state>)
{
if (ptr)
{
constexpr thread_state destroying_context{7};
*static_cast<Get*>(ptr.get()) = destroying_context;
}
}
return true;
}
// Remove the ID and return the object
template <typename T, typename Get = T, typename Lock = std::true_type>
requires IdmTypesCompatible<T, Get>
static inline stx::shared_ptr<Get> withdraw(u32 id, int = 0, Lock = std::true_type{})
{
stx::shared_ptr<Get> ptr;
{
[[maybe_unused]] std::conditional_t<!!Lock(), std::lock_guard<shared_mutex>, const shared_mutex&> lock(id_manager::g_mutex);
if (const auto found = find_id<T, Get>(id); found.first)
{
ptr = static_cast<stx::shared_ptr<Get>>(found.first->exchange(null_ptr));
found.second->clear();
}
}
return ptr;
}
// Remove the ID after accessing the object under writer lock, return the object and propagate return value
template <typename T, typename Get = T, typename F, typename FRT = std::invoke_result_t<F, Get&>>
requires IdmTypesCompatible<T, Get> && std::is_invocable_v<F, Get&>
static inline std::conditional_t<std::is_void_v<FRT>, stx::shared_ptr<Get>, return_pair<stx::shared_ptr<Get>, FRT>> withdraw(u32 id, F&& func)
{
const u32 index = get_index<Get>(id);
if (index >= id_manager::id_traits<Get>::count)
{
return {};
}
std::unique_lock lock(id_manager::g_mutex);
if (const auto found = find_index<T, Get>(index, id); found.first)
{
const auto _ptr = static_cast<Get*>(found.first->observe());
if constexpr (std::is_void_v<FRT>)
{
func(*_ptr);
found.second->clear();
return static_cast<stx::shared_ptr<Get>>(found.first->exchange(null_ptr));
}
else
{
FRT ret = func(*_ptr);
if (ret)
{
// If return value evaluates to true, don't delete the object (error code)
return {static_cast<stx::shared_ptr<Get>>(found.first->load()), std::move(ret)};
}
found.second->clear();
return {static_cast<stx::shared_ptr<Get>>(found.first->exchange(null_ptr)), std::move(ret)};
}
}
return {};
}
};