rpcs3/rpcs3/Input/ds4_pad_handler.cpp
Megamouse 06025cd19d gui/input: let pad handlers know whether they are part of emulation
Also fix unique_ptr vs shared_ptr nonsense in pad_threads
2024-02-22 19:31:00 +01:00

912 lines
30 KiB
C++

#include "stdafx.h"
#include "ds4_pad_handler.h"
#include "Emu/Io/pad_config.h"
LOG_CHANNEL(ds4_log, "DS4");
constexpr id_pair SONY_DS4_ID_0 = {0x054C, 0x0BA0}; // Dongle
constexpr id_pair SONY_DS4_ID_1 = {0x054C, 0x05C4}; // CUH-ZCT1x
constexpr id_pair SONY_DS4_ID_2 = {0x054C, 0x09CC}; // CUH-ZCT2x
constexpr id_pair ZEROPLUS_ID_0 = {0x0C12, 0x0E20};
namespace
{
constexpr u32 DS4_ACC_RES_PER_G = 8192;
constexpr u32 DS4_GYRO_RES_PER_DEG_S = 86; // technically this could be 1024, but keeping it at 86 keeps us within 16 bits of precision
constexpr u32 DS4_FEATURE_REPORT_0x02_SIZE = 37;
constexpr u32 DS4_FEATURE_REPORT_0x05_SIZE = 41;
//constexpr u32 DS4_FEATURE_REPORT_0x12_SIZE = 16;
//constexpr u32 DS4_FEATURE_REPORT_0x81_SIZE = 7;
constexpr u32 DS4_FEATURE_REPORT_0xA3_SIZE = 49;
constexpr u32 DS4_INPUT_REPORT_0x11_SIZE = 78;
constexpr u32 DS4_OUTPUT_REPORT_0x05_SIZE = 32;
constexpr u32 DS4_OUTPUT_REPORT_0x11_SIZE = 78;
constexpr u32 DS4_INPUT_REPORT_GYRO_X_OFFSET = 13;
constexpr u32 DS4_INPUT_REPORT_BATTERY_OFFSET = 30;
// This tries to convert axis to give us the max even in the corners,
// this actually might work 'too' well, we end up actually getting diagonals of actual max/min, we need the corners still a bit rounded to match ds3
// im leaving it here for now, and future reference as it probably can be used later
//taken from http://theinstructionlimit.com/squaring-the-thumbsticks
/*std::tuple<u16, u16> ConvertToSquarePoint(u16 inX, u16 inY, u32 innerRoundness = 0) {
// convert inX and Y to a (-1, 1) vector;
const f32 x = (inX - 127) / 127.f;
const f32 y = ((inY - 127) / 127.f) * -1;
f32 outX, outY;
const f32 piOver4 = M_PI / 4;
const f32 angle = std::atan2(y, x) + M_PI;
// x+ wall
if (angle <= piOver4 || angle > 7 * piOver4) {
outX = x * (f32)(1 / std::cos(angle));
outY = y * (f32)(1 / std::cos(angle));
}
// y+ wall
else if (angle > piOver4 && angle <= 3 * piOver4) {
outX = x * (f32)(1 / std::sin(angle));
outY = y * (f32)(1 / std::sin(angle));
}
// x- wall
else if (angle > 3 * piOver4 && angle <= 5 * piOver4) {
outX = x * (f32)(-1 / std::cos(angle));
outY = y * (f32)(-1 / std::cos(angle));
}
// y- wall
else if (angle > 5 * piOver4 && angle <= 7 * piOver4) {
outX = x * (f32)(-1 / std::sin(angle));
outY = y * (f32)(-1 / std::sin(angle));
}
else fmt::throw_exception("invalid angle in convertToSquarePoint");
if (innerRoundness == 0)
return std::tuple<u16, u16>(Clamp0To255((outX + 1) * 127.f), Clamp0To255(((outY * -1) + 1) * 127.f));
const f32 len = std::sqrt(std::pow(x, 2) + std::pow(y, 2));
const f32 factor = std::pow(len, innerRoundness);
outX = (1 - factor) * x + factor * outX;
outY = (1 - factor) * y + factor * outY;
return std::tuple<u16, u16>(Clamp0To255((outX + 1) * 127.f), Clamp0To255(((outY * -1) + 1) * 127.f));
}*/
}
ds4_pad_handler::ds4_pad_handler(bool emulation)
: hid_pad_handler<DS4Device>(pad_handler::ds4, emulation, {SONY_DS4_ID_0, SONY_DS4_ID_1, SONY_DS4_ID_2, ZEROPLUS_ID_0})
{
// Unique names for the config files and our pad settings dialog
button_list =
{
{ DS4KeyCodes::None, "" },
{ DS4KeyCodes::Triangle, "Triangle" },
{ DS4KeyCodes::Circle, "Circle" },
{ DS4KeyCodes::Cross, "Cross" },
{ DS4KeyCodes::Square, "Square" },
{ DS4KeyCodes::Left, "Left" },
{ DS4KeyCodes::Right, "Right" },
{ DS4KeyCodes::Up, "Up" },
{ DS4KeyCodes::Down, "Down" },
{ DS4KeyCodes::R1, "R1" },
{ DS4KeyCodes::R2, "R2" },
{ DS4KeyCodes::R3, "R3" },
{ DS4KeyCodes::Options, "Options" },
{ DS4KeyCodes::Share, "Share" },
{ DS4KeyCodes::PSButton, "PS Button" },
{ DS4KeyCodes::TouchPad, "Touch Pad" },
{ DS4KeyCodes::L1, "L1" },
{ DS4KeyCodes::L2, "L2" },
{ DS4KeyCodes::L3, "L3" },
{ DS4KeyCodes::LSXNeg, "LS X-" },
{ DS4KeyCodes::LSXPos, "LS X+" },
{ DS4KeyCodes::LSYPos, "LS Y+" },
{ DS4KeyCodes::LSYNeg, "LS Y-" },
{ DS4KeyCodes::RSXNeg, "RS X-" },
{ DS4KeyCodes::RSXPos, "RS X+" },
{ DS4KeyCodes::RSYPos, "RS Y+" },
{ DS4KeyCodes::RSYNeg, "RS Y-" }
};
init_configs();
// Define border values
thumb_max = 255;
trigger_min = 0;
trigger_max = 255;
// set capabilities
b_has_config = true;
b_has_rumble = true;
b_has_motion = true;
b_has_deadzones = true;
b_has_led = true;
b_has_rgb = true;
b_has_battery = true;
m_name_string = "DS4 Pad #";
m_max_devices = CELL_PAD_MAX_PORT_NUM;
m_trigger_threshold = trigger_max / 2;
m_thumb_threshold = thumb_max / 2;
}
void ds4_pad_handler::init_config(cfg_pad* cfg)
{
if (!cfg) return;
// Set default button mapping
cfg->ls_left.def = ::at32(button_list, DS4KeyCodes::LSXNeg);
cfg->ls_down.def = ::at32(button_list, DS4KeyCodes::LSYNeg);
cfg->ls_right.def = ::at32(button_list, DS4KeyCodes::LSXPos);
cfg->ls_up.def = ::at32(button_list, DS4KeyCodes::LSYPos);
cfg->rs_left.def = ::at32(button_list, DS4KeyCodes::RSXNeg);
cfg->rs_down.def = ::at32(button_list, DS4KeyCodes::RSYNeg);
cfg->rs_right.def = ::at32(button_list, DS4KeyCodes::RSXPos);
cfg->rs_up.def = ::at32(button_list, DS4KeyCodes::RSYPos);
cfg->start.def = ::at32(button_list, DS4KeyCodes::Options);
cfg->select.def = ::at32(button_list, DS4KeyCodes::Share);
cfg->ps.def = ::at32(button_list, DS4KeyCodes::PSButton);
cfg->square.def = ::at32(button_list, DS4KeyCodes::Square);
cfg->cross.def = ::at32(button_list, DS4KeyCodes::Cross);
cfg->circle.def = ::at32(button_list, DS4KeyCodes::Circle);
cfg->triangle.def = ::at32(button_list, DS4KeyCodes::Triangle);
cfg->left.def = ::at32(button_list, DS4KeyCodes::Left);
cfg->down.def = ::at32(button_list, DS4KeyCodes::Down);
cfg->right.def = ::at32(button_list, DS4KeyCodes::Right);
cfg->up.def = ::at32(button_list, DS4KeyCodes::Up);
cfg->r1.def = ::at32(button_list, DS4KeyCodes::R1);
cfg->r2.def = ::at32(button_list, DS4KeyCodes::R2);
cfg->r3.def = ::at32(button_list, DS4KeyCodes::R3);
cfg->l1.def = ::at32(button_list, DS4KeyCodes::L1);
cfg->l2.def = ::at32(button_list, DS4KeyCodes::L2);
cfg->l3.def = ::at32(button_list, DS4KeyCodes::L3);
cfg->pressure_intensity_button.def = ::at32(button_list, DS4KeyCodes::None);
// Set default misc variables
cfg->lstickdeadzone.def = 40; // between 0 and 255
cfg->rstickdeadzone.def = 40; // between 0 and 255
cfg->ltriggerthreshold.def = 0; // between 0 and 255
cfg->rtriggerthreshold.def = 0; // between 0 and 255
cfg->lpadsquircling.def = 8000;
cfg->rpadsquircling.def = 8000;
// Set default color value
cfg->colorR.def = 0;
cfg->colorG.def = 0;
cfg->colorB.def = 20;
// Set default LED options
cfg->led_battery_indicator.def = false;
cfg->led_battery_indicator_brightness.def = 10;
cfg->led_low_battery_blink.def = true;
// apply defaults
cfg->from_default();
}
u32 ds4_pad_handler::get_battery_level(const std::string& padId)
{
const std::shared_ptr<DS4Device> device = get_hid_device(padId);
if (device == nullptr || device->hidDevice == nullptr)
{
return 0;
}
return std::min<u32>(device->battery_level * 10, 100);
}
void ds4_pad_handler::SetPadData(const std::string& padId, u8 player_id, u8 large_motor, u8 small_motor, s32 r, s32 g, s32 b, bool /*player_led*/, bool battery_led, u32 battery_led_brightness)
{
std::shared_ptr<DS4Device> device = get_hid_device(padId);
if (!device || !device->hidDevice)
return;
// Set the device's motor speeds to our requested values 0-255
device->large_motor = large_motor;
device->small_motor = small_motor;
device->player_id = player_id;
device->config = get_config(padId);
ensure(device->config);
// Set new LED color
if (battery_led)
{
const u32 combined_color = get_battery_color(device->battery_level, battery_led_brightness);
device->config->colorR.set(combined_color >> 8);
device->config->colorG.set(combined_color & 0xff);
device->config->colorB.set(0);
}
else if (r >= 0 && g >= 0 && b >= 0 && r <= 255 && g <= 255 && b <= 255)
{
device->config->colorR.set(r);
device->config->colorG.set(g);
device->config->colorB.set(b);
}
// Start/Stop the engines :)
send_output_report(device.get());
}
std::unordered_map<u64, u16> ds4_pad_handler::get_button_values(const std::shared_ptr<PadDevice>& device)
{
std::unordered_map<u64, u16> keyBuffer;
DS4Device* ds4_dev = static_cast<DS4Device*>(device.get());
if (!ds4_dev)
return keyBuffer;
auto buf = ds4_dev->padData;
// Left Stick X Axis
keyBuffer[DS4KeyCodes::LSXNeg] = Clamp0To255((127.5f - buf[1]) * 2.0f);
keyBuffer[DS4KeyCodes::LSXPos] = Clamp0To255((buf[1] - 127.5f) * 2.0f);
// Left Stick Y Axis (Up is the negative for some reason)
keyBuffer[DS4KeyCodes::LSYNeg] = Clamp0To255((buf[2] - 127.5f) * 2.0f);
keyBuffer[DS4KeyCodes::LSYPos] = Clamp0To255((127.5f - buf[2]) * 2.0f);
// Right Stick X Axis
keyBuffer[DS4KeyCodes::RSXNeg] = Clamp0To255((127.5f - buf[3]) * 2.0f);
keyBuffer[DS4KeyCodes::RSXPos] = Clamp0To255((buf[3] - 127.5f) * 2.0f);
// Right Stick Y Axis (Up is the negative for some reason)
keyBuffer[DS4KeyCodes::RSYNeg] = Clamp0To255((buf[4] - 127.5f) * 2.0f);
keyBuffer[DS4KeyCodes::RSYPos] = Clamp0To255((127.5f - buf[4]) * 2.0f);
// bleh, dpad in buffer is stored in a different state
const u8 dpadState = buf[5] & 0xf;
switch (dpadState)
{
case 0x08: // none pressed
keyBuffer[DS4KeyCodes::Up] = 0;
keyBuffer[DS4KeyCodes::Down] = 0;
keyBuffer[DS4KeyCodes::Left] = 0;
keyBuffer[DS4KeyCodes::Right] = 0;
break;
case 0x07: // NW...left and up
keyBuffer[DS4KeyCodes::Up] = 255;
keyBuffer[DS4KeyCodes::Down] = 0;
keyBuffer[DS4KeyCodes::Left] = 255;
keyBuffer[DS4KeyCodes::Right] = 0;
break;
case 0x06: // W..left
keyBuffer[DS4KeyCodes::Up] = 0;
keyBuffer[DS4KeyCodes::Down] = 0;
keyBuffer[DS4KeyCodes::Left] = 255;
keyBuffer[DS4KeyCodes::Right] = 0;
break;
case 0x05: // SW..left down
keyBuffer[DS4KeyCodes::Up] = 0;
keyBuffer[DS4KeyCodes::Down] = 255;
keyBuffer[DS4KeyCodes::Left] = 255;
keyBuffer[DS4KeyCodes::Right] = 0;
break;
case 0x04: // S..down
keyBuffer[DS4KeyCodes::Up] = 0;
keyBuffer[DS4KeyCodes::Down] = 255;
keyBuffer[DS4KeyCodes::Left] = 0;
keyBuffer[DS4KeyCodes::Right] = 0;
break;
case 0x03: // SE..down and right
keyBuffer[DS4KeyCodes::Up] = 0;
keyBuffer[DS4KeyCodes::Down] = 255;
keyBuffer[DS4KeyCodes::Left] = 0;
keyBuffer[DS4KeyCodes::Right] = 255;
break;
case 0x02: // E... right
keyBuffer[DS4KeyCodes::Up] = 0;
keyBuffer[DS4KeyCodes::Down] = 0;
keyBuffer[DS4KeyCodes::Left] = 0;
keyBuffer[DS4KeyCodes::Right] = 255;
break;
case 0x01: // NE.. up right
keyBuffer[DS4KeyCodes::Up] = 255;
keyBuffer[DS4KeyCodes::Down] = 0;
keyBuffer[DS4KeyCodes::Left] = 0;
keyBuffer[DS4KeyCodes::Right] = 255;
break;
case 0x00: // n.. up
keyBuffer[DS4KeyCodes::Up] = 255;
keyBuffer[DS4KeyCodes::Down] = 0;
keyBuffer[DS4KeyCodes::Left] = 0;
keyBuffer[DS4KeyCodes::Right] = 0;
break;
default:
fmt::throw_exception("ds4 dpad state encountered unexpected input");
}
// square, cross, circle, triangle
keyBuffer[DS4KeyCodes::Square] = ((buf[5] & (1 << 4)) != 0) ? 255 : 0;
keyBuffer[DS4KeyCodes::Cross] = ((buf[5] & (1 << 5)) != 0) ? 255 : 0;
keyBuffer[DS4KeyCodes::Circle] = ((buf[5] & (1 << 6)) != 0) ? 255 : 0;
keyBuffer[DS4KeyCodes::Triangle] = ((buf[5] & (1 << 7)) != 0) ? 255 : 0;
// L1, R1, L2, L3, select, start, L3, L3
keyBuffer[DS4KeyCodes::L1] = ((buf[6] & (1 << 0)) != 0) ? 255 : 0;
keyBuffer[DS4KeyCodes::R1] = ((buf[6] & (1 << 1)) != 0) ? 255 : 0;
//keyBuffer[DS4KeyCodes::L2But] = ((buf[6] & (1 << 2)) != 0) ? 255 : 0;
//keyBuffer[DS4KeyCodes::R2But] = ((buf[6] & (1 << 3)) != 0) ? 255 : 0;
keyBuffer[DS4KeyCodes::Share] = ((buf[6] & (1 << 4)) != 0) ? 255 : 0;
keyBuffer[DS4KeyCodes::Options] = ((buf[6] & (1 << 5)) != 0) ? 255 : 0;
keyBuffer[DS4KeyCodes::L3] = ((buf[6] & (1 << 6)) != 0) ? 255 : 0;
keyBuffer[DS4KeyCodes::R3] = ((buf[6] & (1 << 7)) != 0) ? 255 : 0;
// PS Button, Touch Button
keyBuffer[DS4KeyCodes::PSButton] = ((buf[7] & (1 << 0)) != 0) ? 255 : 0;
keyBuffer[DS4KeyCodes::TouchPad] = ((buf[7] & (1 << 1)) != 0) ? 255 : 0;
// L2, R2
keyBuffer[DS4KeyCodes::L2] = buf[8];
keyBuffer[DS4KeyCodes::R2] = buf[9];
return keyBuffer;
}
pad_preview_values ds4_pad_handler::get_preview_values(const std::unordered_map<u64, u16>& data)
{
return {
::at32(data, L2),
::at32(data, R2),
::at32(data, LSXPos) - ::at32(data, LSXNeg),
::at32(data, LSYPos) - ::at32(data, LSYNeg),
::at32(data, RSXPos) - ::at32(data, RSXNeg),
::at32(data, RSYPos) - ::at32(data, RSYNeg)
};
}
bool ds4_pad_handler::GetCalibrationData(DS4Device* ds4Dev) const
{
if (!ds4Dev || !ds4Dev->hidDevice)
{
ds4_log.error("GetCalibrationData called with null device");
return false;
}
std::array<u8, 64> buf{};
if (ds4Dev->bt_controller)
{
for (int tries = 0; tries < 3; ++tries)
{
buf = {};
buf[0] = 0x05;
if (int res = hid_get_feature_report(ds4Dev->hidDevice, buf.data(), DS4_FEATURE_REPORT_0x05_SIZE); res != DS4_FEATURE_REPORT_0x05_SIZE || buf[0] != 0x05)
{
ds4_log.error("GetCalibrationData: hid_get_feature_report 0x05 for bluetooth controller failed! result=%d, error=%s", res, hid_error(ds4Dev->hidDevice));
return false;
}
const u8 btHdr = 0xA3;
const u32 crcHdr = CRCPP::CRC::Calculate(&btHdr, 1, crcTable);
const u32 crcCalc = CRCPP::CRC::Calculate(buf.data(), (DS4_FEATURE_REPORT_0x05_SIZE - 4), crcTable, crcHdr);
const u32 crcReported = read_u32(&buf[DS4_FEATURE_REPORT_0x05_SIZE - 4]);
if (crcCalc == crcReported)
break;
ds4_log.warning("Calibration CRC check failed! Will retry up to 3 times. Received 0x%x, Expected 0x%x", crcReported, crcCalc);
if (tries == 2)
{
ds4_log.error("Calibration CRC check failed too many times!");
return false;
}
}
}
else
{
buf[0] = 0x02;
if (int res = hid_get_feature_report(ds4Dev->hidDevice, buf.data(), DS4_FEATURE_REPORT_0x02_SIZE); res != DS4_FEATURE_REPORT_0x02_SIZE || buf[0] != 0x02)
{
ds4_log.error("GetCalibrationData: hid_get_feature_report 0x02 for wired controller failed! result=%d, error=%s", res, hid_error(ds4Dev->hidDevice));
return false;
}
}
ds4Dev->calib_data[CalibIndex::PITCH].bias = read_s16(&buf[1]);
ds4Dev->calib_data[CalibIndex::YAW].bias = read_s16(&buf[3]);
ds4Dev->calib_data[CalibIndex::ROLL].bias = read_s16(&buf[5]);
s16 pitchPlus, pitchNeg, rollPlus, rollNeg, yawPlus, yawNeg;
// Check for calibration data format
// It's going to be either alternating +/- or +++---
if (read_s16(&buf[9]) < 0 && read_s16(&buf[7]) > 0)
{
// Wired mode for OEM controllers
pitchPlus = read_s16(&buf[7]);
pitchNeg = read_s16(&buf[9]);
yawPlus = read_s16(&buf[11]);
yawNeg = read_s16(&buf[13]);
rollPlus = read_s16(&buf[15]);
rollNeg = read_s16(&buf[17]);
}
else
{
// Bluetooth mode and wired mode for some 3rd party controllers
pitchPlus = read_s16(&buf[7]);
yawPlus = read_s16(&buf[9]);
rollPlus = read_s16(&buf[11]);
pitchNeg = read_s16(&buf[13]);
yawNeg = read_s16(&buf[15]);
rollNeg = read_s16(&buf[17]);
}
// Confirm correctness. Need confirmation with dongle with no active controller
if (pitchPlus <= 0 || yawPlus <= 0 || rollPlus <= 0 ||
pitchNeg >= 0 || yawNeg >= 0 || rollNeg >= 0)
{
ds4_log.error("GetCalibrationData: calibration data check failed! pitchPlus=%d, pitchNeg=%d, rollPlus=%d, rollNeg=%d, yawPlus=%d, yawNeg=%d", pitchPlus, pitchNeg, rollPlus, rollNeg, yawPlus, yawNeg);
return false;
}
const s32 gyroSpeedScale = read_s16(&buf[19]) + read_s16(&buf[21]);
ds4Dev->calib_data[CalibIndex::PITCH].sens_numer = gyroSpeedScale * DS4_GYRO_RES_PER_DEG_S;
ds4Dev->calib_data[CalibIndex::PITCH].sens_denom = pitchPlus - pitchNeg;
ds4Dev->calib_data[CalibIndex::YAW].sens_numer = gyroSpeedScale * DS4_GYRO_RES_PER_DEG_S;
ds4Dev->calib_data[CalibIndex::YAW].sens_denom = yawPlus - yawNeg;
ds4Dev->calib_data[CalibIndex::ROLL].sens_numer = gyroSpeedScale * DS4_GYRO_RES_PER_DEG_S;
ds4Dev->calib_data[CalibIndex::ROLL].sens_denom = rollPlus - rollNeg;
const s16 accelXPlus = read_s16(&buf[23]);
const s16 accelXNeg = read_s16(&buf[25]);
const s16 accelYPlus = read_s16(&buf[27]);
const s16 accelYNeg = read_s16(&buf[29]);
const s16 accelZPlus = read_s16(&buf[31]);
const s16 accelZNeg = read_s16(&buf[33]);
const s32 accelXRange = accelXPlus - accelXNeg;
ds4Dev->calib_data[CalibIndex::X].bias = accelXPlus - accelXRange / 2;
ds4Dev->calib_data[CalibIndex::X].sens_numer = 2 * DS4_ACC_RES_PER_G;
ds4Dev->calib_data[CalibIndex::X].sens_denom = accelXRange;
const s32 accelYRange = accelYPlus - accelYNeg;
ds4Dev->calib_data[CalibIndex::Y].bias = accelYPlus - accelYRange / 2;
ds4Dev->calib_data[CalibIndex::Y].sens_numer = 2 * DS4_ACC_RES_PER_G;
ds4Dev->calib_data[CalibIndex::Y].sens_denom = accelYRange;
const s32 accelZRange = accelZPlus - accelZNeg;
ds4Dev->calib_data[CalibIndex::Z].bias = accelZPlus - accelZRange / 2;
ds4Dev->calib_data[CalibIndex::Z].sens_numer = 2 * DS4_ACC_RES_PER_G;
ds4Dev->calib_data[CalibIndex::Z].sens_denom = accelZRange;
// Make sure data 'looks' valid, dongle will report invalid calibration data with no controller connected
for (const auto& data : ds4Dev->calib_data)
{
if (data.sens_denom == 0)
{
ds4_log.error("GetCalibrationData: Failure: sens_denom == 0");
return false;
}
}
return true;
}
void ds4_pad_handler::check_add_device(hid_device* hidDevice, std::string_view path, std::wstring_view wide_serial)
{
if (!hidDevice)
{
return;
}
DS4Device* device = nullptr;
for (auto& controller : m_controllers)
{
ensure(controller.second);
if (!controller.second->hidDevice)
{
device = controller.second.get();
break;
}
}
if (!device)
{
return;
}
std::string serial;
for (wchar_t ch : wide_serial)
serial += static_cast<uchar>(ch);
const hid_device_info* devinfo = hid_get_device_info(hidDevice);
if (!devinfo)
{
ds4_log.error("check_add_device: hid_get_device_info failed! error=%s", hid_error(hidDevice));
hid_close(hidDevice);
return;
}
device->bt_controller = (devinfo->bus_type == HID_API_BUS_BLUETOOTH);
device->hidDevice = hidDevice;
if (!GetCalibrationData(device))
{
ds4_log.error("check_add_device: GetCalibrationData failed!");
hid_close(hidDevice);
device->hidDevice = nullptr;
return;
}
u32 hw_version{};
u32 fw_version{};
std::array<u8, 64> buf{};
buf[0] = 0xA3;
int res = hid_get_feature_report(hidDevice, buf.data(), DS4_FEATURE_REPORT_0xA3_SIZE);
if (res != DS4_FEATURE_REPORT_0xA3_SIZE || buf[0] != 0xA3)
{
ds4_log.error("check_add_device: hid_get_feature_report 0xA3 failed! Could not retrieve firmware version! result=%d, buf[0]=0x%x, error=%s", res, buf[0], hid_error(hidDevice));
}
else
{
hw_version = read_u32(&buf[35]);
fw_version = read_u32(&buf[41]);
ds4_log.notice("check_add_device: Got firmware version: hw_version: 0x%x, fw_version: 0x%x", hw_version, fw_version);
}
if (hid_set_nonblocking(hidDevice, 1) == -1)
{
ds4_log.error("check_add_device: hid_set_nonblocking failed! Reason: %s", hid_error(hidDevice));
hid_close(hidDevice);
device->hidDevice = nullptr;
return;
}
device->has_calib_data = true;
device->path = path;
if (send_output_report(device) == -1)
{
ds4_log.error("check_add_device: send_output_report failed! Reason: %s", hid_error(hidDevice));
}
ds4_log.notice("Added device: bluetooth=%d, serial='%s', hw_version: 0x%x, fw_version: 0x%x, path='%s'", device->bt_controller, serial, hw_version, fw_version, device->path);
}
ds4_pad_handler::~ds4_pad_handler()
{
for (auto& controller : m_controllers)
{
if (controller.second && controller.second->hidDevice)
{
// Disable blinking and vibration
controller.second->small_motor = 0;
controller.second->large_motor = 0;
controller.second->led_delay_on = 0;
controller.second->led_delay_off = 0;
send_output_report(controller.second.get());
}
}
}
int ds4_pad_handler::send_output_report(DS4Device* device)
{
if (!device || !device->hidDevice)
return -2;
const auto config = device->config;
if (config == nullptr)
return -2; // hid_write and hid_write_control return -1 on error
std::array<u8, 78> outputBuf{0};
// write rumble state
if (device->bt_controller)
{
outputBuf[0] = 0x11;
outputBuf[1] = 0xC4;
outputBuf[3] = 0x07;
outputBuf[6] = device->small_motor;
outputBuf[7] = device->large_motor;
outputBuf[8] = config->colorR; // red
outputBuf[9] = config->colorG; // green
outputBuf[10] = config->colorB; // blue
// alternating blink states with values 0-255: only setting both to zero disables blinking
// 255 is roughly 2 seconds, so setting both values to 255 results in a 4 second interval
// using something like (0,10) will heavily blink, while using (0, 255) will be slow. you catch the drift
outputBuf[11] = device->led_delay_on;
outputBuf[12] = device->led_delay_off;
const u8 btHdr = 0xA2;
const u32 crcHdr = CRCPP::CRC::Calculate(&btHdr, 1, crcTable);
const u32 crcCalc = CRCPP::CRC::Calculate(outputBuf.data(), (DS4_OUTPUT_REPORT_0x11_SIZE - 4), crcTable, crcHdr);
outputBuf[74] = (crcCalc >> 0) & 0xFF;
outputBuf[75] = (crcCalc >> 8) & 0xFF;
outputBuf[76] = (crcCalc >> 16) & 0xFF;
outputBuf[77] = (crcCalc >> 24) & 0xFF;
return hid_write_control(device->hidDevice, outputBuf.data(), DS4_OUTPUT_REPORT_0x11_SIZE);
}
else
{
outputBuf[0] = 0x05;
outputBuf[1] = 0x07;
outputBuf[4] = device->small_motor;
outputBuf[5] = device->large_motor;
outputBuf[6] = config->colorR; // red
outputBuf[7] = config->colorG; // green
outputBuf[8] = config->colorB; // blue
outputBuf[9] = device->led_delay_on;
outputBuf[10] = device->led_delay_off;
return hid_write(device->hidDevice, outputBuf.data(), DS4_OUTPUT_REPORT_0x05_SIZE);
}
}
ds4_pad_handler::DataStatus ds4_pad_handler::get_data(DS4Device* device)
{
if (!device || !device->hidDevice)
return DataStatus::ReadError;
std::array<u8, 78> buf{};
const int res = hid_read(device->hidDevice, buf.data(), device->bt_controller ? DS4_INPUT_REPORT_0x11_SIZE : 64);
if (res == -1)
{
// looks like controller disconnected or read error
return DataStatus::ReadError;
}
// no data? keep going
if (res == 0)
return DataStatus::NoNewData;
// bt controller sends this until 0x02 feature report is sent back (happens on controller init/restart)
if (device->bt_controller && buf[0] == 0x1)
{
// tells controller to send 0x11 reports
std::array<u8, 64> buf_error{};
buf_error[0] = 0x2;
if (int res = hid_get_feature_report(device->hidDevice, buf_error.data(), buf_error.size()); res != static_cast<int>(buf_error.size()) || buf_error[0] != 0x2)
{
ds4_log.error("GetRawData: hid_get_feature_report 0x2 failed! result=%d, buf[0]=0x%x, error=%s", res, buf[0], hid_error(device->hidDevice));
}
return DataStatus::NoNewData;
}
int offset;
// check report and set offset
if (device->bt_controller && buf[0] == 0x11 && res == DS4_INPUT_REPORT_0x11_SIZE)
{
offset = 2;
const u8 btHdr = 0xA1;
const u32 crcHdr = CRCPP::CRC::Calculate(&btHdr, 1, crcTable);
const u32 crcCalc = CRCPP::CRC::Calculate(buf.data(), (DS4_INPUT_REPORT_0x11_SIZE - 4), crcTable, crcHdr);
const u32 crcReported = read_u32(&buf[DS4_INPUT_REPORT_0x11_SIZE - 4]);
if (crcCalc != crcReported)
{
ds4_log.warning("Data packet CRC check failed, ignoring! Received 0x%x, Expected 0x%x", crcReported, crcCalc);
return DataStatus::NoNewData;
}
}
else if (!device->bt_controller && buf[0] == 0x01 && res == 64)
{
// Ds4 Dongle uses this bit to actually report whether a controller is connected
const bool connected = (buf[31] & 0x04) ? false : true;
if (connected && !device->has_calib_data)
device->has_calib_data = GetCalibrationData(device);
offset = 0;
}
else
return DataStatus::NoNewData;
const int battery_offset = offset + DS4_INPUT_REPORT_BATTERY_OFFSET;
device->cable_state = (buf[battery_offset] >> 4) & 0x01;
device->battery_level = buf[battery_offset] & 0x0F; // 0 - 9 while unplugged, 0 - 10 while plugged in, 11 charge complete
if (device->has_calib_data)
{
int calibOffset = offset + DS4_INPUT_REPORT_GYRO_X_OFFSET;
for (int i = 0; i < CalibIndex::COUNT; ++i)
{
const s16 rawValue = read_s16(&buf[calibOffset]);
const s16 calValue = apply_calibration(rawValue, device->calib_data[i]);
buf[calibOffset++] = (static_cast<u16>(calValue) >> 0) & 0xFF;
buf[calibOffset++] = (static_cast<u16>(calValue) >> 8) & 0xFF;
}
}
memcpy(device->padData.data(), &buf[offset], 64);
return DataStatus::NewData;
}
bool ds4_pad_handler::get_is_left_trigger(const std::shared_ptr<PadDevice>& /*device*/, u64 keyCode)
{
return keyCode == DS4KeyCodes::L2;
}
bool ds4_pad_handler::get_is_right_trigger(const std::shared_ptr<PadDevice>& /*device*/, u64 keyCode)
{
return keyCode == DS4KeyCodes::R2;
}
bool ds4_pad_handler::get_is_left_stick(const std::shared_ptr<PadDevice>& /*device*/, u64 keyCode)
{
switch (keyCode)
{
case DS4KeyCodes::LSXNeg:
case DS4KeyCodes::LSXPos:
case DS4KeyCodes::LSYPos:
case DS4KeyCodes::LSYNeg:
return true;
default:
return false;
}
}
bool ds4_pad_handler::get_is_right_stick(const std::shared_ptr<PadDevice>& /*device*/, u64 keyCode)
{
switch (keyCode)
{
case DS4KeyCodes::RSXNeg:
case DS4KeyCodes::RSXPos:
case DS4KeyCodes::RSYPos:
case DS4KeyCodes::RSYNeg:
return true;
default:
return false;
}
}
PadHandlerBase::connection ds4_pad_handler::update_connection(const std::shared_ptr<PadDevice>& device)
{
DS4Device* ds4_dev = static_cast<DS4Device*>(device.get());
if (!ds4_dev || ds4_dev->path.empty())
return connection::disconnected;
if (ds4_dev->hidDevice == nullptr)
{
// try to reconnect
hid_device* dev = hid_open_path(ds4_dev->path.c_str());
if (dev)
{
if (hid_set_nonblocking(dev, 1) == -1)
{
ds4_log.error("Reconnecting Device %s: hid_set_nonblocking failed with error %s", ds4_dev->path, hid_error(dev));
}
ds4_dev->hidDevice = dev;
if (!ds4_dev->has_calib_data)
ds4_dev->has_calib_data = GetCalibrationData(ds4_dev);
}
else
{
// nope, not there
return connection::disconnected;
}
}
if (get_data(ds4_dev) == DataStatus::ReadError)
{
// this also can mean disconnected, either way deal with it on next loop and reconnect
hid_close(ds4_dev->hidDevice);
ds4_dev->hidDevice = nullptr;
return connection::no_data;
}
return connection::connected;
}
void ds4_pad_handler::get_extended_info(const pad_ensemble& binding)
{
const auto& device = binding.device;
const auto& pad = binding.pad;
DS4Device* ds4_device = static_cast<DS4Device*>(device.get());
if (!ds4_device || !pad)
return;
auto buf = ds4_device->padData;
pad->m_battery_level = ds4_device->battery_level;
pad->m_cable_state = ds4_device->cable_state;
// these values come already calibrated, all we need to do is convert to ds3 range
// accel
f32 accelX = static_cast<s16>((buf[20] << 8) | buf[19]) / static_cast<f32>(DS4_ACC_RES_PER_G) * -1;
f32 accelY = static_cast<s16>((buf[22] << 8) | buf[21]) / static_cast<f32>(DS4_ACC_RES_PER_G) * -1;
f32 accelZ = static_cast<s16>((buf[24] << 8) | buf[23]) / static_cast<f32>(DS4_ACC_RES_PER_G) * -1;
// now just use formula from ds3
accelX = accelX * 113 + 512;
accelY = accelY * 113 + 512;
accelZ = accelZ * 113 + 512;
pad->m_sensors[0].m_value = Clamp0To1023(accelX);
pad->m_sensors[1].m_value = Clamp0To1023(accelY);
pad->m_sensors[2].m_value = Clamp0To1023(accelZ);
// gyroY is yaw, which is all that we need
//f32 gyroX = static_cast<s16>((u16)(buf[14] << 8) | buf[13]) / static_cast<f32>(DS4_GYRO_RES_PER_DEG_S) * -1;
f32 gyroY = static_cast<s16>((buf[16] << 8) | buf[15]) / static_cast<f32>(DS4_GYRO_RES_PER_DEG_S) * -1;
//f32 gyroZ = static_cast<s16>((u16)(buf[18] << 8) | buf[17]) / static_cast<f32>(DS4_GYRO_RES_PER_DEG_S) * -1;
// Convert to ds3. The ds3 resolution is 123/90°/sec.
gyroY = gyroY * (123.f / 90.f) + 512;
pad->m_sensors[3].m_value = Clamp0To1023(gyroY);
}
void ds4_pad_handler::apply_pad_data(const pad_ensemble& binding)
{
const auto& device = binding.device;
const auto& pad = binding.pad;
DS4Device* ds4_dev = static_cast<DS4Device*>(device.get());
if (!ds4_dev || !ds4_dev->hidDevice || !ds4_dev->config || !pad)
return;
cfg_pad* config = ds4_dev->config;
// Attempt to send rumble no matter what
const int idx_l = config->switch_vibration_motors ? 1 : 0;
const int idx_s = config->switch_vibration_motors ? 0 : 1;
const u8 speed_large = config->enable_vibration_motor_large ? pad->m_vibrateMotors[idx_l].m_value : 0;
const u8 speed_small = config->enable_vibration_motor_small ? pad->m_vibrateMotors[idx_s].m_value : 0;
const bool wireless = ds4_dev->cable_state == 0;
const bool low_battery = ds4_dev->battery_level < 2;
const bool is_blinking = ds4_dev->led_delay_on > 0 || ds4_dev->led_delay_off > 0;
// Blink LED when battery is low
if (config->led_low_battery_blink)
{
// we are now wired or have okay battery level -> stop blinking
if (is_blinking && !(wireless && low_battery))
{
ds4_dev->led_delay_on = 0;
ds4_dev->led_delay_off = 0;
ds4_dev->new_output_data = true;
}
// we are now wireless and low on battery -> blink
else if (!is_blinking && wireless && low_battery)
{
ds4_dev->led_delay_on = 100;
ds4_dev->led_delay_off = 100;
ds4_dev->new_output_data = true;
}
}
// Use LEDs to indicate battery level
if (config->led_battery_indicator)
{
// This makes sure that the LED color doesn't update every 1ms. DS4 only reports battery level in 10% increments
if (ds4_dev->last_battery_level != ds4_dev->battery_level)
{
const u32 combined_color = get_battery_color(ds4_dev->battery_level, config->led_battery_indicator_brightness);
config->colorR.set(combined_color >> 8);
config->colorG.set(combined_color & 0xff);
config->colorB.set(0);
ds4_dev->new_output_data = true;
ds4_dev->last_battery_level = ds4_dev->battery_level;
}
}
ds4_dev->new_output_data |= ds4_dev->large_motor != speed_large || ds4_dev->small_motor != speed_small;
ds4_dev->large_motor = speed_large;
ds4_dev->small_motor = speed_small;
if (ds4_dev->new_output_data)
{
if (send_output_report(ds4_dev) >= 0)
{
ds4_dev->new_output_data = false;
}
}
}