rpcs3/rpcs3/Emu/RSX/GL/GLVertexProgram.cpp
kd-11 00b0311c86 rsx/gl/vulkan: Refactoring and partial vulkan rewrite
- Updates vulkan to use GPU vertex processing
- Rewrites vulkan to buffer entire frames and present when first available to avoid stalls
- Move more state into dynamic descriptors to reduce progam cache misses; Fix render pass conflicts before texture access
- Discards incomplete cb at destruction to avoid refs to destroyed objects
- Move set_viewport to the uninterruptible block before drawing in case cb is switched before we're ready
- Manage frame contexts separately for easier async frame management
- Avoid wasteful create-destroy cycles when sampling rtts
2017-08-16 23:58:30 +03:00

395 lines
13 KiB
C++

#include "stdafx.h"
#include "Emu/System.h"
#include "GLVertexProgram.h"
#include "GLCommonDecompiler.h"
#include "../GCM.h"
#include <algorithm>
std::string GLVertexDecompilerThread::getFloatTypeName(size_t elementCount)
{
return glsl::getFloatTypeNameImpl(elementCount);
}
std::string GLVertexDecompilerThread::getIntTypeName(size_t elementCount)
{
return "ivec4";
}
std::string GLVertexDecompilerThread::getFunction(FUNCTION f)
{
return getFunctionImpl(f);
}
std::string GLVertexDecompilerThread::compareFunction(COMPARE f, const std::string &Op0, const std::string &Op1)
{
return glsl::compareFunctionImpl(f, Op0, Op1);
}
void GLVertexDecompilerThread::insertHeader(std::stringstream &OS)
{
OS << "#version 430\n\n";
OS << "layout(std140, binding = 0) uniform VertexContextBuffer\n";
OS << "{\n";
OS << " mat4 scale_offset_mat;\n";
OS << " ivec4 user_clip_enabled[2];\n";
OS << " vec4 user_clip_factor[2];\n";
OS << " uint transform_branch_bits;\n";
OS << " uint vertex_base_index;\n";
OS << " ivec4 input_attributes[16];\n";
OS << "};\n\n";
}
void GLVertexDecompilerThread::insertInputs(std::stringstream & OS, const std::vector<ParamType>& inputs)
{
OS << "layout(location=0) uniform usamplerBuffer persistent_input_stream;\n"; //Data stream with persistent vertex data (cacheable)
OS << "layout(location=1) uniform usamplerBuffer volatile_input_stream;\n"; //Data stream with per-draw data (registers and immediate draw data)
}
void GLVertexDecompilerThread::insertConstants(std::stringstream & OS, const std::vector<ParamType> & constants)
{
OS << "layout(std140, binding = 1) uniform VertexConstantsBuffer\n";
OS << "{\n";
OS << " vec4 vc[468];\n";
OS << "};\n\n";
for (const ParamType &PT: constants)
{
for (const ParamItem &PI : PT.items)
{
if (PI.name == "vc[468]")
continue;
OS << "uniform " << PT.type << " " << PI.name << ";\n";
}
}
}
static const vertex_reg_info reg_table[] =
{
{ "gl_Position", false, "dst_reg0", "", false },
{ "diff_color", true, "dst_reg1", "", false, "", "", "", false, CELL_GCM_ATTRIB_OUTPUT_MASK_FRONTDIFFUSE },
{ "spec_color", true, "dst_reg2", "", false, "", "", "", false, CELL_GCM_ATTRIB_OUTPUT_MASK_FRONTSPECULAR },
//These are only present when back variants are specified, otherwise the default diff/spec color vars are for both front and back
{ "front_diff_color", true, "dst_reg3", "", false },
{ "front_spec_color", true, "dst_reg4", "", false },
//Fog output shares a data source register with clip planes 0-2 so only declare when specified
{ "fog_c", true, "dst_reg5", ".xxxx", true, "", "", "", true, CELL_GCM_ATTRIB_OUTPUT_MASK_FOG },
//Warning: Always define all 3 clip plane groups together to avoid flickering with openGL
{ "gl_ClipDistance[0]", false, "dst_reg5", ".y * user_clip_factor[0].x", false, "user_clip_enabled[0].x > 0", "0.5", "", true, CELL_GCM_ATTRIB_OUTPUT_MASK_UC0 | CELL_GCM_ATTRIB_OUTPUT_MASK_UC1 | CELL_GCM_ATTRIB_OUTPUT_MASK_UC2 },
{ "gl_ClipDistance[1]", false, "dst_reg5", ".z * user_clip_factor[0].y", false, "user_clip_enabled[0].y > 0", "0.5", "", true, CELL_GCM_ATTRIB_OUTPUT_MASK_UC0 | CELL_GCM_ATTRIB_OUTPUT_MASK_UC1 | CELL_GCM_ATTRIB_OUTPUT_MASK_UC2 },
{ "gl_ClipDistance[2]", false, "dst_reg5", ".w * user_clip_factor[0].z", false, "user_clip_enabled[0].z > 0", "0.5", "", true, CELL_GCM_ATTRIB_OUTPUT_MASK_UC0 | CELL_GCM_ATTRIB_OUTPUT_MASK_UC1 | CELL_GCM_ATTRIB_OUTPUT_MASK_UC2 },
{ "gl_PointSize", false, "dst_reg6", ".x", false },
{ "gl_ClipDistance[3]", false, "dst_reg6", ".y * user_clip_factor[0].w", false, "user_clip_enabled[0].w > 0", "0.5", "", true, CELL_GCM_ATTRIB_OUTPUT_MASK_UC3 | CELL_GCM_ATTRIB_OUTPUT_MASK_UC4 | CELL_GCM_ATTRIB_OUTPUT_MASK_UC5 },
{ "gl_ClipDistance[4]", false, "dst_reg6", ".z * user_clip_factor[1].x", false, "user_clip_enabled[1].x > 0", "0.5", "", true, CELL_GCM_ATTRIB_OUTPUT_MASK_UC3 | CELL_GCM_ATTRIB_OUTPUT_MASK_UC4 | CELL_GCM_ATTRIB_OUTPUT_MASK_UC5 },
{ "gl_ClipDistance[5]", false, "dst_reg6", ".w * user_clip_factor[1].y", false, "user_clip_enabled[1].y > 0", "0.5", "", true, CELL_GCM_ATTRIB_OUTPUT_MASK_UC3 | CELL_GCM_ATTRIB_OUTPUT_MASK_UC4 | CELL_GCM_ATTRIB_OUTPUT_MASK_UC5 },
{ "tc0", true, "dst_reg7", "", false, "", "", "", false, CELL_GCM_ATTRIB_OUTPUT_MASK_TEX0 },
{ "tc1", true, "dst_reg8", "", false, "", "", "", false, CELL_GCM_ATTRIB_OUTPUT_MASK_TEX1 },
{ "tc2", true, "dst_reg9", "", false, "", "", "", false, CELL_GCM_ATTRIB_OUTPUT_MASK_TEX2 },
{ "tc3", true, "dst_reg10", "", false, "", "", "", false, CELL_GCM_ATTRIB_OUTPUT_MASK_TEX3 },
{ "tc4", true, "dst_reg11", "", false, "", "", "", false, CELL_GCM_ATTRIB_OUTPUT_MASK_TEX4 },
{ "tc5", true, "dst_reg12", "", false, "", "", "", false, CELL_GCM_ATTRIB_OUTPUT_MASK_TEX5 },
{ "tc6", true, "dst_reg13", "", false, "", "", "", false, CELL_GCM_ATTRIB_OUTPUT_MASK_TEX6 },
{ "tc7", true, "dst_reg14", "", false, "", "", "", false, CELL_GCM_ATTRIB_OUTPUT_MASK_TEX7 },
{ "tc8", true, "dst_reg15", "", false, "", "", "", false, CELL_GCM_ATTRIB_OUTPUT_MASK_TEX8 },
{ "tc9", true, "dst_reg6", "", false, "", "", "", true, CELL_GCM_ATTRIB_OUTPUT_MASK_TEX9 } // In this line, dst_reg6 is correct since dst_reg goes from 0 to 15.
};
void GLVertexDecompilerThread::insertOutputs(std::stringstream & OS, const std::vector<ParamType> & outputs)
{
bool insert_front_diffuse = (rsx_vertex_program.output_mask & CELL_GCM_ATTRIB_OUTPUT_MASK_FRONTDIFFUSE) != 0;
bool insert_back_diffuse = (rsx_vertex_program.output_mask & CELL_GCM_ATTRIB_OUTPUT_MASK_BACKDIFFUSE) != 0;
bool insert_front_specular = (rsx_vertex_program.output_mask & CELL_GCM_ATTRIB_OUTPUT_MASK_FRONTSPECULAR) != 0;
bool insert_back_specular = (rsx_vertex_program.output_mask & CELL_GCM_ATTRIB_OUTPUT_MASK_BACKSPECULAR) != 0;
bool front_back_diffuse = (insert_back_diffuse && insert_front_diffuse);
bool front_back_specular = (insert_back_specular && insert_front_specular);
for (auto &i : reg_table)
{
if (m_parr.HasParam(PF_PARAM_NONE, "vec4", i.src_reg) && i.need_declare)
{
if (i.check_mask && (rsx_vertex_program.output_mask & i.check_mask_value) == 0)
continue;
if (i.name == "front_diff_color")
insert_front_diffuse = false;
if (i.name == "front_spec_color")
insert_front_specular = false;
std::string name = i.name;
if (front_back_diffuse && name == "diff_color")
name = "back_diff_color";
if (front_back_specular && name == "spec_color")
name = "back_spec_color";
OS << "out vec4 " << name << ";\n";
}
else
{
//Mesa drivers are very strict on shader-stage matching
//Force some outputs to be declared even if unused
if (i.need_declare && (rsx_vertex_program.output_mask & i.check_mask_value) > 0)
{
OS << "out vec4 " << i.name << ";\n";
}
}
}
if (insert_back_diffuse && insert_front_diffuse)
OS << "out vec4 front_diff_color;\n";
if (insert_back_specular && insert_front_specular)
OS << "out vec4 front_spec_color;\n";
}
void GLVertexDecompilerThread::insertMainStart(std::stringstream & OS)
{
insert_glsl_legacy_function(OS, glsl::glsl_vertex_program);
glsl::insert_vertex_input_fetch(OS, glsl::glsl_rules_opengl4);
std::string parameters = "";
for (int i = 0; i < 16; ++i)
{
std::string reg_name = "dst_reg" + std::to_string(i);
if (m_parr.HasParam(PF_PARAM_NONE, "vec4", reg_name))
{
if (parameters.length())
parameters += ", ";
parameters += "inout vec4 " + reg_name;
}
}
OS << "void vs_main(" << parameters << ")\n";
OS << "{\n";
//Declare temporary registers, ignoring those mapped to outputs
for (const ParamType PT : m_parr.params[PF_PARAM_NONE])
{
for (const ParamItem &PI : PT.items)
{
if (PI.name.substr(0, 7) == "dst_reg")
continue;
OS << " " << PT.type << " " << PI.name;
if (!PI.value.empty())
OS << " = " << PI.value;
OS << ";\n";
}
}
for (const ParamType &PT : m_parr.params[PF_PARAM_IN])
{
for (const ParamItem &PI : PT.items)
{
OS << " vec4 " << PI.name << "= read_location(" << std::to_string(PI.location) << ");\n";
}
}
for (const ParamType &PT : m_parr.params[PF_PARAM_UNIFORM])
{
if (PT.type == "sampler2D")
{
for (const ParamItem &PI : PT.items)
{
OS << " vec2 " << PI.name << "_coord_scale = vec2(1.);\n";
}
}
}
}
void GLVertexDecompilerThread::insertMainEnd(std::stringstream & OS)
{
OS << "}\n\n";
OS << "void main ()\n";
OS << "{\n";
std::string parameters = "";
if (ParamType *vec4Types = m_parr.SearchParam(PF_PARAM_NONE, "vec4"))
{
for (int i = 0; i < 16; ++i)
{
std::string reg_name = "dst_reg" + std::to_string(i);
for (auto &PI : vec4Types->items)
{
if (reg_name == PI.name)
{
if (parameters.length())
parameters += ", ";
parameters += reg_name;
OS << " vec4 " << reg_name;
if (!PI.value.empty())
OS << "= " << PI.value;
OS << ";\n";
}
}
}
}
OS << "\n" << " vs_main(" << parameters << ");\n\n";
bool insert_front_diffuse = (rsx_vertex_program.output_mask & CELL_GCM_ATTRIB_OUTPUT_MASK_FRONTDIFFUSE) != 0;
bool insert_front_specular = (rsx_vertex_program.output_mask & CELL_GCM_ATTRIB_OUTPUT_MASK_FRONTSPECULAR) != 0;
bool insert_back_diffuse = (rsx_vertex_program.output_mask & CELL_GCM_ATTRIB_OUTPUT_MASK_BACKDIFFUSE) != 0;
bool insert_back_specular = (rsx_vertex_program.output_mask & CELL_GCM_ATTRIB_OUTPUT_MASK_BACKSPECULAR) != 0;
bool front_back_diffuse = (insert_back_diffuse && insert_front_diffuse);
bool front_back_specular = (insert_back_specular && insert_front_specular);
for (auto &i : reg_table)
{
if (m_parr.HasParam(PF_PARAM_NONE, "vec4", i.src_reg))
{
if (i.check_mask && (rsx_vertex_program.output_mask & i.check_mask_value) == 0)
continue;
if (i.name == "front_diff_color")
insert_front_diffuse = false;
if (i.name == "front_spec_color")
insert_front_specular = false;
std::string name = i.name;
std::string condition = (!i.cond.empty()) ? "(" + i.cond + ") " : "";
if (front_back_diffuse && name == "diff_color")
name = "back_diff_color";
if (front_back_specular && name == "spec_color")
name = "back_spec_color";
if (condition.empty() || i.default_val.empty())
{
if (!condition.empty()) condition = "if " + condition;
OS << " " << condition << name << " = " << i.src_reg << i.src_reg_mask << ";\n";
}
else
{
//Insert if-else condition
OS << " " << name << " = " << condition << "? " << i.src_reg << i.src_reg_mask << ": " << i.default_val << ";\n";
}
}
else if (i.need_declare && (rsx_vertex_program.output_mask & i.check_mask_value) > 0)
{
//An output was declared but nothing was written to it
//Set it to all ones (Atelier Escha)
OS << " " << i.name << " = vec4(1.);\n";
}
}
if (insert_back_diffuse && insert_front_diffuse)
if (m_parr.HasParam(PF_PARAM_NONE, "vec4", "dst_reg1"))
OS << " front_diff_color = dst_reg1;\n";
if (insert_back_specular && insert_front_specular)
if (m_parr.HasParam(PF_PARAM_NONE, "vec4", "dst_reg2"))
OS << " front_spec_color = dst_reg2;\n";
OS << " gl_Position = gl_Position * scale_offset_mat;\n";
//Since our clip_space is symetrical [-1, 1] we map it to linear space using the eqn:
//ln = (clip * 2) - 1 to fully utilize the 0-1 range of the depth buffer
//RSX matrices passed already map to the [0, 1] range but mapping to classic OGL requires that we undo this step
//This can be made unnecessary using the call glClipControl(GL_LOWER_LEFT, GL_ZERO_TO_ONE).
//However, ClipControl only made it to opengl core in ver 4.5 though, so this is a workaround.
//NOTE: It is completely valid for games to use very large w values, causing the post-multiplied z to be in the hundreds
//It is therefore critical that this step is done post-transform and the result re-scaled by w
//SEE Naruto: UNS
OS << " float ndc_z = gl_Position.z / gl_Position.w;\n";
OS << " ndc_z = (ndc_z * 2.) - 1.;\n";
OS << " gl_Position.z = ndc_z * gl_Position.w;\n";
OS << "}\n";
}
void GLVertexDecompilerThread::Task()
{
m_shader = Decompile();
}
GLVertexProgram::GLVertexProgram()
{
}
GLVertexProgram::~GLVertexProgram()
{
Delete();
}
void GLVertexProgram::Decompile(const RSXVertexProgram& prog)
{
GLVertexDecompilerThread decompiler(prog, shader, parr);
decompiler.Task();
}
void GLVertexProgram::Compile()
{
if (id)
{
glDeleteShader(id);
}
id = glCreateShader(GL_VERTEX_SHADER);
const char* str = shader.c_str();
const int strlen = ::narrow<int>(shader.length());
fs::create_path(fs::get_config_dir() + "/shaderlog");
fs::file(fs::get_config_dir() + "shaderlog/VertexProgram" + std::to_string(id) + ".glsl", fs::rewrite).write(str);
glShaderSource(id, 1, &str, &strlen);
glCompileShader(id);
GLint r = GL_FALSE;
glGetShaderiv(id, GL_COMPILE_STATUS, &r);
if (r != GL_TRUE)
{
glGetShaderiv(id, GL_INFO_LOG_LENGTH, &r);
if (r)
{
char* buf = new char[r + 1]();
GLsizei len;
glGetShaderInfoLog(id, r, &len, buf);
LOG_ERROR(RSX, "Failed to compile vertex shader: %s", buf);
delete[] buf;
}
LOG_NOTICE(RSX, "%s", shader.c_str());
Emu.Pause();
}
}
void GLVertexProgram::Delete()
{
shader.clear();
if (id)
{
if (Emu.IsStopped())
{
LOG_WARNING(RSX, "GLVertexProgram::Delete(): glDeleteShader(%d) avoided", id);
}
else
{
glDeleteShader(id);
}
id = 0;
}
}