#include "stdafx.h" #include "Emu/Cell/PPUModule.h" #include "Utilities/bin_patch.h" #include "Utilities/StrUtil.h" #include "Utilities/address_range.h" #include "Crypto/sha1.h" #include "Crypto/unself.h" #include "Loader/ELF.h" #include "Emu/System.h" #include "Emu/VFS.h" #include "Emu/Cell/PPUOpcodes.h" #include "Emu/Cell/PPUAnalyser.h" #include "Emu/Cell/lv2/sys_process.h" #include "Emu/Cell/lv2/sys_prx.h" #include "Emu/Cell/lv2/sys_memory.h" #include "Emu/Cell/lv2/sys_overlay.h" #include "Emu/Cell/Modules/StaticHLE.h" #include #include #include #include "util/asm.hpp" LOG_CHANNEL(ppu_loader); extern std::string ppu_get_function_name(const std::string& _module, u32 fnid); extern std::string ppu_get_variable_name(const std::string& _module, u32 vnid); extern void ppu_register_range(u32 addr, u32 size); extern void ppu_register_function_at(u32 addr, u32 size, ppu_function_t ptr); extern void sys_initialize_tls(ppu_thread&, u64, u32, u32, u32); // HLE function name cache std::vector g_ppu_function_names; extern u32 ppu_generate_id(const char* name) { // Symbol name suffix const auto suffix = "\x67\x59\x65\x99\x04\x25\x04\x90\x56\x64\x27\x49\x94\x89\x74\x1A"; sha1_context ctx; u8 output[20]; // Compute SHA-1 hash sha1_starts(&ctx); sha1_update(&ctx, reinterpret_cast(name), std::strlen(name)); sha1_update(&ctx, reinterpret_cast(suffix), std::strlen(suffix)); sha1_finish(&ctx, output); return reinterpret_cast&>(output[0]); } ppu_static_module::ppu_static_module(const char* name) : name(name) { ppu_module_manager::register_module(this); } void ppu_module_manager::register_module(ppu_static_module* _module) { ppu_module_manager::s_module_map.emplace(_module->name, _module); } ppu_static_function& ppu_module_manager::access_static_function(const char* _module, u32 fnid) { auto& res = ppu_module_manager::s_module_map.at(_module)->functions[fnid]; if (res.name) { fmt::throw_exception("PPU FNID duplication in module %s (%s, 0x%x)", _module, res.name, fnid); } return res; } ppu_static_variable& ppu_module_manager::access_static_variable(const char* _module, u32 vnid) { auto& res = ppu_module_manager::s_module_map.at(_module)->variables[vnid]; if (res.name) { fmt::throw_exception("PPU VNID duplication in module %s (%s, 0x%x)", _module, res.name, vnid); } return res; } const ppu_static_module* ppu_module_manager::get_module(const std::string& name) { const auto& map = ppu_module_manager::s_module_map; const auto found = map.find(name); return found != map.end() ? found->second : nullptr; } // Global linkage information struct ppu_linkage_info { ppu_linkage_info() = default; ppu_linkage_info(const ppu_linkage_info&) = delete; ppu_linkage_info& operator=(const ppu_linkage_info&) = delete; struct module_data { struct info { ppu_static_function* static_func = nullptr; ppu_static_variable* static_var = nullptr; u32 export_addr = 0; std::set imports{}; std::set frefss{}; }; // FNID -> (export; [imports...]) std::unordered_map> functions{}; std::unordered_map> variables{}; // Obsolete bool imported = false; }; // Module map std::unordered_map modules{}; }; // Initialize static modules. static void ppu_initialize_modules(ppu_linkage_info* link) { if (!link->modules.empty()) { return; } const std::initializer_list registered { &ppu_module_manager::cellAdec, &ppu_module_manager::cellAtrac, &ppu_module_manager::cellAtracMulti, &ppu_module_manager::cellAudio, &ppu_module_manager::cellAvconfExt, &ppu_module_manager::cellAuthDialogUtility, &ppu_module_manager::cellBGDL, &ppu_module_manager::cellCamera, &ppu_module_manager::cellCelp8Enc, &ppu_module_manager::cellCelpEnc, &ppu_module_manager::cellCrossController, &ppu_module_manager::cellDaisy, &ppu_module_manager::cellDmux, &ppu_module_manager::cellDtcpIpUtility, &ppu_module_manager::cellFiber, &ppu_module_manager::cellFont, &ppu_module_manager::cellFontFT, &ppu_module_manager::cell_FreeType2, &ppu_module_manager::cellFs, &ppu_module_manager::cellGame, &ppu_module_manager::cellGameExec, &ppu_module_manager::cellGcmSys, &ppu_module_manager::cellGem, &ppu_module_manager::cellGifDec, &ppu_module_manager::cellHttp, &ppu_module_manager::cellHttps, &ppu_module_manager::cellHttpUtil, &ppu_module_manager::cellImeJp, &ppu_module_manager::cellJpgDec, &ppu_module_manager::cellJpgEnc, &ppu_module_manager::cellKey2char, &ppu_module_manager::cellL10n, &ppu_module_manager::cellLibprof, &ppu_module_manager::cellMic, &ppu_module_manager::cellMusic, &ppu_module_manager::cellMusicDecode, &ppu_module_manager::cellMusicExport, &ppu_module_manager::cellNetAoi, &ppu_module_manager::cellNetCtl, &ppu_module_manager::cellOskDialog, &ppu_module_manager::cellOvis, &ppu_module_manager::cellPamf, &ppu_module_manager::cellPesmUtility, &ppu_module_manager::cellPhotoDecode, &ppu_module_manager::cellPhotoExport, &ppu_module_manager::cellPhotoImportUtil, &ppu_module_manager::cellPngDec, &ppu_module_manager::cellPngEnc, &ppu_module_manager::cellPrint, &ppu_module_manager::cellRec, &ppu_module_manager::cellRemotePlay, &ppu_module_manager::cellResc, &ppu_module_manager::cellRtc, &ppu_module_manager::cellRtcAlarm, &ppu_module_manager::cellRudp, &ppu_module_manager::cellSail, &ppu_module_manager::cellSailRec, &ppu_module_manager::cellSaveData, &ppu_module_manager::cellMinisSaveData, &ppu_module_manager::cellScreenShot, &ppu_module_manager::cellSearch, &ppu_module_manager::cellSheap, &ppu_module_manager::cellSpudll, &ppu_module_manager::cellSpurs, &ppu_module_manager::cellSpursJq, &ppu_module_manager::cellSsl, &ppu_module_manager::cellSubDisplay, &ppu_module_manager::cellSync, &ppu_module_manager::cellSync2, &ppu_module_manager::cellSysconf, &ppu_module_manager::cellSysmodule, &ppu_module_manager::cellSysutil, &ppu_module_manager::cellSysutilAp, &ppu_module_manager::cellSysutilAvc2, &ppu_module_manager::cellSysutilAvcExt, &ppu_module_manager::cellSysutilNpEula, &ppu_module_manager::cellSysutilMisc, &ppu_module_manager::cellUsbd, &ppu_module_manager::cellUsbPspcm, &ppu_module_manager::cellUserInfo, &ppu_module_manager::cellVdec, &ppu_module_manager::cellVideoExport, &ppu_module_manager::cellVideoPlayerUtility, &ppu_module_manager::cellVideoUpload, &ppu_module_manager::cellVoice, &ppu_module_manager::cellVpost, &ppu_module_manager::libad_async, &ppu_module_manager::libad_core, &ppu_module_manager::libfs_utility_init, &ppu_module_manager::libmedi, &ppu_module_manager::libmixer, &ppu_module_manager::libsnd3, &ppu_module_manager::libsynth2, &ppu_module_manager::sceNp, &ppu_module_manager::sceNp2, &ppu_module_manager::sceNpClans, &ppu_module_manager::sceNpCommerce2, &ppu_module_manager::sceNpMatchingInt, &ppu_module_manager::sceNpSns, &ppu_module_manager::sceNpTrophy, &ppu_module_manager::sceNpTus, &ppu_module_manager::sceNpUtil, &ppu_module_manager::sys_crashdump, &ppu_module_manager::sys_io, &ppu_module_manager::sys_net, &ppu_module_manager::sysPrxForUser, &ppu_module_manager::sys_libc, &ppu_module_manager::sys_lv2dbg, &ppu_module_manager::static_hle, }; // Initialize double-purpose fake OPD array for HLE functions const auto& hle_funcs = ppu_function_manager::get(g_cfg.core.ppu_decoder == ppu_decoder_type::llvm); u32& hle_funcs_addr = g_fxo->get().addr; // Allocate memory for the array (must be called after fixed allocations) hle_funcs_addr = vm::alloc(::size32(hle_funcs) * 8, vm::main); // Initialize as PPU executable code ppu_register_range(hle_funcs_addr, ::size32(hle_funcs) * 8); // Fill the array (visible data: self address and function index) for (u32 addr = hle_funcs_addr, index = 0; index < hle_funcs.size(); addr += 8, index++) { // Function address = next CIA, RTOC = 0 (vm::null) vm::write32(addr + 0, addr + 4); vm::write32(addr + 4, 0); // Register the HLE function directly ppu_register_function_at(addr + 0, 4, nullptr); ppu_register_function_at(addr + 4, 4, hle_funcs[index]); } // Set memory protection to read-only vm::page_protect(hle_funcs_addr, utils::align(::size32(hle_funcs) * 8, 0x1000), 0, 0, vm::page_writable); // Initialize function names const bool is_first = g_ppu_function_names.empty(); if (is_first) { g_ppu_function_names.resize(hle_funcs.size()); g_ppu_function_names[0] = "INVALID"; g_ppu_function_names[1] = "HLE RETURN"; } // For HLE variable allocation u32 alloc_addr = 0; // "Use" all the modules for correct linkage for (auto& _module : registered) { ppu_loader.trace("Registered static module: %s", _module->name); } for (auto& pair : ppu_module_manager::get()) { const auto _module = pair.second; auto& linkage = link->modules[_module->name]; for (auto& function : _module->functions) { ppu_loader.trace("** 0x%08X: %s", function.first, function.second.name); if (is_first) { g_ppu_function_names[function.second.index] = fmt::format("%s:%s", function.second.name, _module->name); } if ((function.second.flags & MFF_HIDDEN) == 0) { auto& flink = linkage.functions[function.first]; flink.static_func = &function.second; flink.export_addr = g_fxo->get().func_addr(function.second.index); function.second.export_addr = &flink.export_addr; } } for (auto& variable : _module->variables) { ppu_loader.trace("** &0x%08X: %s (size=0x%x, align=0x%x)", variable.first, variable.second.name, variable.second.size, variable.second.align); // Allocate HLE variable if (variable.second.size >= 0x10000 || variable.second.align >= 0x10000) { variable.second.addr = vm::alloc(variable.second.size, vm::main, std::max(variable.second.align, 0x10000)); } else { const u32 next = utils::align(alloc_addr, variable.second.align); const u32 end = next + variable.second.size - 1; if (!next || (end >> 16 != alloc_addr >> 16)) { alloc_addr = vm::alloc(0x10000, vm::main); } else { alloc_addr = next; } variable.second.addr = alloc_addr; alloc_addr += variable.second.size; } *variable.second.var = variable.second.addr; ppu_loader.trace("Allocated HLE variable %s.%s at 0x%x", _module->name, variable.second.name, *variable.second.var); // Initialize HLE variable if (variable.second.init) { variable.second.init(); } if ((variable.second.flags & MFF_HIDDEN) == 0) { auto& vlink = linkage.variables[variable.first]; vlink.static_var = &variable.second; vlink.export_addr = variable.second.addr; variable.second.export_addr = &vlink.export_addr; } } } } // For the debugger (g_ppu_function_names shouldn't change, string_view should suffice) extern const std::unordered_map& get_exported_function_names_as_addr_indexed_map() { static std::unordered_map res; static u64 update_time = 0; const auto link = g_fxo->try_get(); const auto hle_funcs = g_fxo->try_get(); if (!link || !hle_funcs) { res.clear(); return res; } const u64 current_time = get_system_time(); // Update list every >=0.1 seconds if (current_time - update_time < 100'000) { return res; } update_time = current_time; res.clear(); res.reserve(ppu_module_manager::get().size()); for (auto& pair : ppu_module_manager::get()) { const auto _module = pair.second; auto& linkage = link->modules[_module->name]; for (auto& function : _module->functions) { auto& flink = linkage.functions[function.first]; u32 addr = flink.export_addr; if (vm::check_addr<4>(addr, vm::page_readable) && addr != hle_funcs->func_addr(function.second.index)) { addr = vm::read32(addr); if (!(addr % 4) && vm::check_addr<4>(addr, vm::page_executable)) { res.try_emplace(addr, g_ppu_function_names[function.second.index]); } } } } return res; } // Resolve relocations for variable/function linkage. static void ppu_patch_refs(std::vector* out_relocs, u32 fref, u32 faddr) { struct ref_t { be_t type; be_t addr; be_t addend; // Note: Treating it as addend seems to be correct for now, but still unknown if theres more in this variable }; for (auto ref = vm::ptr::make(fref); ref->type; ref++) { if (ref->addend) ppu_loader.warning("**** REF(%u): Addend value(0x%x, 0x%x)", ref->type, ref->addr, ref->addend); const u32 raddr = ref->addr; const u32 rtype = ref->type; const u32 rdata = faddr + ref->addend; if (out_relocs) { // Register relocation with unpredictable target (data=0) ppu_reloc _rel; _rel.addr = raddr; _rel.type = rtype; _rel.data = 0; out_relocs->emplace_back(_rel); } // OPs must be similar to relocations switch (rtype) { case 1: { const u32 value = vm::_ref(ref->addr) = rdata; ppu_loader.trace("**** REF(1): 0x%x <- 0x%x", ref->addr, value); break; } case 4: { const u16 value = vm::_ref(ref->addr) = static_cast(rdata); ppu_loader.trace("**** REF(4): 0x%x <- 0x%04x (0x%llx)", ref->addr, value, faddr); break; } case 6: { const u16 value = vm::_ref(ref->addr) = static_cast(rdata >> 16) + (rdata & 0x8000 ? 1 : 0); ppu_loader.trace("**** REF(6): 0x%x <- 0x%04x (0x%llx)", ref->addr, value, faddr); break; } case 57: { const u16 value = vm::_ref, 0, 14>>(ref->addr) = static_cast(rdata) >> 2; ppu_loader.trace("**** REF(57): 0x%x <- 0x%04x (0x%llx)", ref->addr, value, faddr); break; } default: ppu_loader.error("**** REF(%u): Unknown/Illegal type (0x%x, 0x%x)", rtype, raddr, ref->addend); } } } // Export or import module struct struct ppu_prx_module_info { u8 size; u8 unk0; be_t version; be_t attributes; be_t num_func; be_t num_var; be_t num_tlsvar; u8 info_hash; u8 info_tlshash; u8 unk1[2]; vm::bcptr name; vm::bcptr nids; // Imported FNIDs, Exported NIDs vm::bptr addrs; vm::bcptr vnids; // Imported VNIDs vm::bcptr vstubs; be_t unk4; be_t unk5; }; // Load and register exports; return special exports found (nameless module) static auto ppu_load_exports(ppu_linkage_info* link, u32 exports_start, u32 exports_end) { std::unordered_map result; for (u32 addr = exports_start; addr < exports_end;) { const auto& lib = vm::_ref(addr); if (!lib.name) { // Set special exports for (u32 i = 0, end = lib.num_func + lib.num_var; i < end; i++) { const u32 nid = lib.nids[i]; const u32 addr = lib.addrs[i]; if (i < lib.num_func) { ppu_loader.notice("** Special: [%s] at 0x%x [0x%x, 0x%x]", ppu_get_function_name({}, nid), addr, vm::_ref(addr), vm::_ref(addr + 4)); } else { ppu_loader.notice("** Special: &[%s] at 0x%x", ppu_get_variable_name({}, nid), addr); } result.emplace(nid, addr); } addr += lib.size ? lib.size : sizeof(ppu_prx_module_info); continue; } const std::string module_name(lib.name.get_ptr()); ppu_loader.notice("** Exported module '%s' (0x%x, 0x%x, 0x%x, 0x%x)", module_name, lib.vnids, lib.vstubs, lib.unk4, lib.unk5); if (lib.num_tlsvar) { ppu_loader.fatal("Unexpected num_tlsvar (%u)!", lib.num_tlsvar); } // Static module const auto _sm = ppu_module_manager::get_module(module_name); // Module linkage auto& mlink = link->modules[module_name]; const auto fnids = +lib.nids; const auto faddrs = +lib.addrs; // Get functions for (u32 i = 0, end = lib.num_func; i < end; i++) { const u32 fnid = fnids[i]; const u32 faddr = faddrs[i]; ppu_loader.notice("**** %s export: [%s] (0x%08x) at 0x%x", module_name, ppu_get_function_name(module_name, fnid), fnid, faddr); // Function linkage info auto& flink = mlink.functions[fnid]; if (flink.static_func && flink.export_addr == g_fxo->get().func_addr(flink.static_func->index)) { flink.export_addr = 0; } if (flink.export_addr) { ppu_loader.error("Already linked function '%s' in module '%s'", ppu_get_function_name(module_name, fnid), module_name); } //else { // Static function const auto _sf = _sm && _sm->functions.count(fnid) ? &_sm->functions.at(fnid) : nullptr; if (_sf && (_sf->flags & MFF_FORCED_HLE)) { // Inject a branch to the HLE implementation const u32 _entry = vm::read32(faddr); const u32 target = g_fxo->get().func_addr(_sf->index) + 4; // Set exported function flink.export_addr = target - 4; if ((target <= _entry && _entry - target <= 0x2000000) || (target > _entry && target - _entry < 0x2000000)) { // Use relative branch vm::write32(_entry, ppu_instructions::B(target - _entry)); } else if (target < 0x2000000) { // Use absolute branch if possible vm::write32(_entry, ppu_instructions::B(target, true)); } else { ppu_loader.fatal("Failed to patch function at 0x%x (0x%x)", _entry, target); } } else { // Set exported function flink.export_addr = faddr; // Fix imports for (const u32 addr : flink.imports) { vm::write32(addr, faddr); //ppu_loader.warning("Exported function '%s' in module '%s'", ppu_get_function_name(module_name, fnid), module_name); } for (const u32 fref : flink.frefss) { ppu_patch_refs(nullptr, fref, faddr); } } } } const auto vnids = lib.nids + lib.num_func; const auto vaddrs = lib.addrs + lib.num_func; // Get variables for (u32 i = 0, end = lib.num_var; i < end; i++) { const u32 vnid = vnids[i]; const u32 vaddr = vaddrs[i]; ppu_loader.notice("**** %s export: &[%s] at 0x%x", module_name, ppu_get_variable_name(module_name, vnid), vaddr); // Variable linkage info auto& vlink = mlink.variables[vnid]; if (vlink.static_var && vlink.export_addr == vlink.static_var->addr) { vlink.export_addr = 0; } if (vlink.export_addr) { ppu_loader.error("Already linked variable '%s' in module '%s'", ppu_get_variable_name(module_name, vnid), module_name); } //else { // Set exported variable vlink.export_addr = vaddr; // Fix imports for (const auto vref : vlink.imports) { ppu_patch_refs(nullptr, vref, vaddr); //ppu_loader.warning("Exported variable '%s' in module '%s'", ppu_get_variable_name(module_name, vnid), module_name); } } } addr += lib.size ? lib.size : sizeof(ppu_prx_module_info); } return result; } static auto ppu_load_imports(std::vector& relocs, ppu_linkage_info* link, u32 imports_start, u32 imports_end) { std::unordered_map result; for (u32 addr = imports_start; addr < imports_end;) { const auto& lib = vm::_ref(addr); const std::string module_name(lib.name.get_ptr()); ppu_loader.notice("** Imported module '%s' (ver=0x%x, attr=0x%x, 0x%x, 0x%x) [0x%x]", module_name, lib.version, lib.attributes, lib.unk4, lib.unk5, addr); if (lib.num_tlsvar) { ppu_loader.fatal("Unexpected num_tlsvar (%u)!", lib.num_tlsvar); } // Static module //const auto _sm = ppu_module_manager::get_module(module_name); // Module linkage auto& mlink = link->modules[module_name]; const auto fnids = +lib.nids; const auto faddrs = +lib.addrs; for (u32 i = 0, end = lib.num_func; i < end; i++) { const u32 fnid = fnids[i]; const u32 fstub = faddrs[i]; const u32 faddr = (faddrs + i).addr(); ppu_loader.notice("**** %s import: [%s] (0x%08x) -> 0x%x", module_name, ppu_get_function_name(module_name, fnid), fnid, fstub); // Function linkage info auto& flink = link->modules[module_name].functions[fnid]; // Add new import result.emplace(faddr, &flink); flink.imports.emplace(faddr); mlink.imported = true; // Link address (special HLE function by default) const u32 link_addr = flink.export_addr ? flink.export_addr : g_fxo->get().addr; // Write import table vm::write32(faddr, link_addr); // Patch refs if necessary (0x2000 seems to be correct flag indicating the presence of additional info) if (const u32 frefs = (lib.attributes & 0x2000) ? +fnids[i + lib.num_func] : 0) { result.emplace(frefs, &flink); flink.frefss.emplace(frefs); ppu_patch_refs(&relocs, frefs, link_addr); } //ppu_loader.warning("Imported function '%s' in module '%s' (0x%x)", ppu_get_function_name(module_name, fnid), module_name, faddr); } const auto vnids = +lib.vnids; const auto vstubs = +lib.vstubs; for (u32 i = 0, end = lib.num_var; i < end; i++) { const u32 vnid = vnids[i]; const u32 vref = vstubs[i]; ppu_loader.notice("**** %s import: &[%s] (ref=*0x%x)", module_name, ppu_get_variable_name(module_name, vnid), vref); // Variable linkage info auto& vlink = link->modules[module_name].variables[vnid]; // Add new import result.emplace(vref, &vlink); vlink.imports.emplace(vref); mlink.imported = true; // Link if available ppu_patch_refs(&relocs, vref, vlink.export_addr); //ppu_loader.warning("Imported variable '%s' in module '%s' (0x%x)", ppu_get_variable_name(module_name, vnid), module_name, vlink.first); } addr += lib.size ? lib.size : sizeof(ppu_prx_module_info); } return result; } // For _sys_prx_register_module void ppu_manual_load_imports_exports(u32 imports_start, u32 imports_size, u32 exports_start, u32 exports_size) { auto& _main = g_fxo->get(); auto& link = g_fxo->get(); ppu_load_exports(&link, exports_start, exports_start + exports_size); ppu_load_imports(_main.relocs, &link, imports_start, imports_start + imports_size); } static void ppu_check_patch_spu_images(const ppu_segment& seg) { const std::string_view seg_view{vm::get_super_ptr(seg.addr), seg.size}; for (usz i = seg_view.find("\177ELF"); i < seg.size; i = seg_view.find("\177ELF", i + 4)) { const auto elf_header = vm::get_super_ptr(seg.addr + i); // Try to load SPU image const spu_exec_object obj(fs::file(elf_header, seg.size - i)); if (obj != elf_error::ok) { // This address does not have an SPU elf continue; } // Segment info dump std::string name; std::string dump; std::basic_string applied; // Executable hash sha1_context sha2; sha1_starts(&sha2); u8 sha1_hash[20]; for (const auto& prog : obj.progs) { // Only hash the data, we are not loading it sha1_update(&sha2, reinterpret_cast(&prog.p_vaddr), sizeof(prog.p_vaddr)); sha1_update(&sha2, reinterpret_cast(&prog.p_memsz), sizeof(prog.p_memsz)); sha1_update(&sha2, reinterpret_cast(&prog.p_filesz), sizeof(prog.p_filesz)); fmt::append(dump, "\n\tSegment: p_type=0x%x, p_vaddr=0x%llx, p_filesz=0x%llx, p_memsz=0x%llx, p_offset=0x%llx", prog.p_type, prog.p_vaddr, prog.p_filesz, prog.p_memsz, prog.p_offset); if (prog.p_type == 0x1u /* LOAD */ && prog.p_filesz > 0u) { sha1_update(&sha2, (elf_header + prog.p_offset), prog.p_filesz); } else if (prog.p_type == 0x4u /* NOTE */ && prog.p_filesz > 0u) { sha1_update(&sha2, (elf_header + prog.p_offset), prog.p_filesz); // We assume that the string SPUNAME exists 0x14 bytes into the NOTE segment name = reinterpret_cast(elf_header + prog.p_offset + 0x14); if (!name.empty()) { fmt::append(dump, "\n\tSPUNAME: '%s'", name); } } } sha1_finish(&sha2, sha1_hash); // Format patch name std::string hash("SPU-0000000000000000000000000000000000000000"); for (u32 i = 0; i < sizeof(sha1_hash); i++) { constexpr auto pal = "0123456789abcdef"; hash[4 + i * 2] = pal[sha1_hash[i] >> 4]; hash[5 + i * 2] = pal[sha1_hash[i] & 15]; } if (g_cfg.core.spu_debug) { fs::pending_file temp(fs::get_cache_dir() + "/spu_progs/" + vfs::escape(name.substr(name.find_last_of('/') + 1)) + '_' + hash.substr(4) + ".elf"); if (!temp.file || !(temp.file.write(obj.save()), temp.commit())) { ppu_loader.error("Failed to dump SPU program from PPU executable: name='%s', hash=%s", name, hash); } } // Try to patch each segment, will only succeed if the address exists in SPU local storage for (const auto& prog : obj.progs) { // Apply the patch applied += g_fxo->get().apply(hash, (elf_header + prog.p_offset), prog.p_filesz, prog.p_vaddr); if (!Emu.GetTitleID().empty()) { // Alternative patch applied += g_fxo->get().apply(Emu.GetTitleID() + '-' + hash, (elf_header + prog.p_offset), prog.p_filesz, prog.p_vaddr); } } if (applied.empty()) { ppu_loader.warning("SPU executable hash: %s%s", hash, dump); } else { ppu_loader.success("SPU executable hash: %s (<- %u)%s", hash, applied.size(), dump); } } } void try_spawn_ppu_if_exclusive_program(const ppu_module& m) { // If only PRX/OVL has been loaded at Emu.BootGame(), launch a single PPU thread so its memory can be viewed if (Emu.IsReady() && g_fxo->get().segs.empty()) { ppu_thread_params p { .stack_addr = vm::cast(vm::alloc(SYS_PROCESS_PARAM_STACK_SIZE_MAX, vm::stack, 4096)), .stack_size = SYS_PROCESS_PARAM_STACK_SIZE_MAX, }; auto ppu = idm::make_ptr>(p, "test_thread", 0); ppu->cia = m.funcs[0].addr; // For kernel explorer g_fxo->init(4096); } } std::shared_ptr ppu_load_prx(const ppu_prx_object& elf, const std::string& path, s64 file_offset) { if (elf != elf_error::ok) { return nullptr; } // Create new PRX object const auto prx = idm::make_ptr(); // Access linkage information object auto& link = g_fxo->get(); // Initialize HLE modules ppu_initialize_modules(&link); // Library hash sha1_context sha; sha1_starts(&sha); u32 end = 0; u32 toc = 0; for (const auto& prog : elf.progs) { ppu_loader.notice("** Segment: p_type=0x%x, p_vaddr=0x%llx, p_filesz=0x%llx, p_memsz=0x%llx, flags=0x%x", prog.p_type, prog.p_vaddr, prog.p_filesz, prog.p_memsz, prog.p_flags); // Hash big-endian values sha1_update(&sha, reinterpret_cast(&prog.p_type), sizeof(prog.p_type)); sha1_update(&sha, reinterpret_cast(&prog.p_flags), sizeof(prog.p_flags)); switch (const u32 p_type = prog.p_type) { case 0x1: // LOAD { auto& _seg = prx->segs.emplace_back(); _seg.flags = prog.p_flags; _seg.type = p_type; if (prog.p_memsz) { const u32 mem_size = ::narrow(prog.p_memsz); const u32 file_size = ::narrow(prog.p_filesz); //const u32 init_addr = ::narrow(prog.p_vaddr); // Alloc segment memory const u32 addr = vm::alloc(mem_size, vm::main); if (!addr) { fmt::throw_exception("vm::alloc() failed (size=0x%x)", mem_size); } // Copy segment data std::memcpy(vm::base(addr), prog.bin.data(), file_size); ppu_loader.warning("**** Loaded to 0x%x...0x%x (size=0x%x)", addr, addr + mem_size - 1, mem_size); // Hash segment sha1_update(&sha, reinterpret_cast(&prog.p_vaddr), sizeof(prog.p_vaddr)); sha1_update(&sha, reinterpret_cast(&prog.p_memsz), sizeof(prog.p_memsz)); sha1_update(&sha, prog.bin.data(), prog.bin.size()); // Initialize executable code if necessary if (prog.p_flags & 0x1) { ppu_register_range(addr, mem_size); } _seg.addr = addr; _seg.size = mem_size; _seg.filesz = file_size; } break; } case 0x700000a4: break; // Relocations default: ppu_loader.error("Unknown segment type! 0x%08x", p_type); } } for (const auto& s : elf.shdrs) { ppu_loader.notice("** Section: sh_type=0x%x, addr=0x%llx, size=0x%llx, flags=0x%x", s.sh_type, s.sh_addr, s.sh_size, s.sh_flags); if (s.sh_type != 1u) continue; const u32 addr = vm::cast(s.sh_addr); const u32 size = vm::cast(s.sh_size); if (addr && size) // TODO: some sections with addr=0 are valid { for (usz i = 0; i < prx->segs.size(); i++) { const u32 saddr = static_cast(elf.progs[i].p_vaddr); if (addr >= saddr && addr < saddr + elf.progs[i].p_memsz) { // "Relocate" section ppu_segment _sec; _sec.addr = addr - saddr + prx->segs[i].addr; _sec.size = size; _sec.type = s.sh_type; _sec.flags = static_cast(s.sh_flags & 7); _sec.filesz = 0; prx->secs.emplace_back(_sec); if (_sec.flags & 0x4 && i == 0) { end = std::max(end, _sec.addr + _sec.size); } break; } } } } // Do relocations for (auto& prog : elf.progs) { switch (prog.p_type) { case 0x700000a4: { // Relocation information of the SCE_PPURELA segment struct ppu_prx_relocation_info { be_t offset; be_t unk0; u8 index_value; u8 index_addr; be_t type; vm::bptr ptr; }; for (uint i = 0; i < prog.p_filesz; i += sizeof(ppu_prx_relocation_info)) { const auto& rel = reinterpret_cast(prog.bin[i]); if (rel.offset >= prx->segs.at(rel.index_addr).size) { fmt::throw_exception("Relocation offset out of segment memory! (offset=0x%x, index_addr=%u)", rel.offset, rel.index_addr); } const u32 data_base = rel.index_value == 0xFF ? 0 : prx->segs.at(rel.index_value).addr; if (rel.index_value != 0xFF && !data_base) { fmt::throw_exception("Empty segment has been referenced for relocation data! (reloc_offset=0x%x, index_value=%u)", i, rel.index_value); } ppu_reloc _rel; const u32 raddr = _rel.addr = vm::cast(prx->segs.at(rel.index_addr).addr + rel.offset); const u32 rtype = _rel.type = rel.type; const u64 rdata = _rel.data = data_base + rel.ptr.addr(); prx->relocs.emplace_back(_rel); switch (rtype) { case 1: // R_PPC64_ADDR32 { const u32 value = vm::_ref(raddr) = static_cast(rdata); ppu_loader.trace("**** RELOCATION(1): 0x%x <- 0x%08x (0x%llx)", raddr, value, rdata); break; } case 4: //R_PPC64_ADDR16_LO { const u16 value = vm::_ref(raddr) = static_cast(rdata); ppu_loader.trace("**** RELOCATION(4): 0x%x <- 0x%04x (0x%llx)", raddr, value, rdata); break; } case 5: //R_PPC64_ADDR16_HI { const u16 value = vm::_ref(raddr) = static_cast(rdata >> 16); ppu_loader.trace("**** RELOCATION(5): 0x%x <- 0x%04x (0x%llx)", raddr, value, rdata); break; } case 6: //R_PPC64_ADDR16_HA { const u16 value = vm::_ref(raddr) = static_cast(rdata >> 16) + (rdata & 0x8000 ? 1 : 0); ppu_loader.trace("**** RELOCATION(6): 0x%x <- 0x%04x (0x%llx)", raddr, value, rdata); break; } case 10: //R_PPC64_REL24 { const u32 value = vm::_ref, 6, 24>>(raddr) = static_cast(rdata - raddr) >> 2; ppu_loader.warning("**** RELOCATION(10): 0x%x <- 0x%06x (0x%llx)", raddr, value, rdata); break; } case 11: //R_PPC64_REL14 { const u32 value = vm::_ref, 16, 14>>(raddr) = static_cast(rdata - raddr) >> 2; ppu_loader.warning("**** RELOCATION(11): 0x%x <- 0x%06x (0x%llx)", raddr, value, rdata); break; } case 38: //R_PPC64_ADDR64 { const u64 value = vm::_ref(raddr) = rdata; ppu_loader.trace("**** RELOCATION(38): 0x%x <- 0x%016llx (0x%llx)", raddr, value, rdata); break; } case 44: //R_PPC64_REL64 { const u64 value = vm::_ref(raddr) = rdata - raddr; ppu_loader.trace("**** RELOCATION(44): 0x%x <- 0x%016llx (0x%llx)", raddr, value, rdata); break; } case 57: //R_PPC64_ADDR16_LO_DS { const u16 value = vm::_ref, 0, 14>>(raddr) = static_cast(rdata) >> 2; ppu_loader.trace("**** RELOCATION(57): 0x%x <- 0x%04x (0x%llx)", raddr, value, rdata); break; } default: ppu_loader.error("**** RELOCATION(%u): Illegal/Unknown type! (addr=0x%x; 0x%llx)", rtype, raddr, rdata); } if (rdata == 0) { ppu_loader.todo("**** RELOCATION(%u): 0x%x <- (zero-based value)", rtype, raddr); } } break; } default : break; } } if (!elf.progs.empty() && elf.progs[0].p_paddr) { struct ppu_prx_library_info { be_t attributes; u8 version[2]; char name[28]; be_t toc; be_t exports_start; be_t exports_end; be_t imports_start; be_t imports_end; }; // Access library information (TODO) const vm::cptr lib_info = vm::cast(prx->segs[0].addr + elf.progs[0].p_paddr - elf.progs[0].p_offset); const std::string lib_name = lib_info->name; strcpy_trunc(prx->module_info_name, lib_name); prx->module_info_version[0] = lib_info->version[0]; prx->module_info_version[1] = lib_info->version[1]; prx->module_info_attributes = lib_info->attributes; ppu_loader.warning("Library %s (rtoc=0x%x):", lib_name, lib_info->toc); prx->specials = ppu_load_exports(&link, lib_info->exports_start, lib_info->exports_end); prx->imports = ppu_load_imports(prx->relocs, &link, lib_info->imports_start, lib_info->imports_end); std::stable_sort(prx->relocs.begin(), prx->relocs.end()); toc = lib_info->toc; } else { ppu_loader.fatal("Library %s: PRX library info not found"); } prx->start.set(prx->specials[0xbc9a0086]); prx->stop.set(prx->specials[0xab779874]); prx->exit.set(prx->specials[0x3ab9a95e]); prx->prologue.set(prx->specials[0x0d10fd3f]); prx->epilogue.set(prx->specials[0x330f7005]); prx->name = path.substr(path.find_last_of('/') + 1); prx->path = path; prx->offset = file_offset; sha1_finish(&sha, prx->sha1); // Format patch name std::string hash = fmt::format("PRX-%s", fmt::base57(prx->sha1)); std::basic_string applied; for (usz i = 0; i < prx->segs.size(); i++) { const auto& seg = prx->segs[i]; if (!seg.size) continue; const std::string hash_seg = fmt::format("%s-%u", hash, i); // Apply the patch auto _applied = g_fxo->get().apply(hash_seg, vm::get_super_ptr(seg.addr), seg.size); if (!Emu.GetTitleID().empty()) { // Alternative patch _applied += g_fxo->get().apply(Emu.GetTitleID() + '-' + hash_seg, vm::get_super_ptr(seg.addr), seg.size); } // Rebase patch offsets std::for_each(_applied.begin(), _applied.end(), [&](u32& res) { if (res != umax) res += seg.addr; }); applied += _applied; if (_applied.empty()) { ppu_loader.warning("PRX hash of %s[%u]: %s", prx->name, i, hash_seg); } else { ppu_loader.success("PRX hash of %s[%u]: %s (<- %u)", prx->name, i, hash_seg, _applied.size()); } } // Embedded SPU elf patching for (const auto& seg : prx->segs) { ppu_check_patch_spu_images(seg); } prx->analyse(toc, 0, end, applied); try_spawn_ppu_if_exclusive_program(*prx); return prx; } void ppu_unload_prx(const lv2_prx& prx) { // Clean linkage info for (auto& imp : prx.imports) { auto pinfo = static_cast(imp.second); pinfo->frefss.erase(imp.first); pinfo->imports.erase(imp.first); } //for (auto& exp : prx.exports) //{ // auto pinfo = static_cast(exp.second); // if (pinfo->static_func) // { // pinfo->export_addr = g_fxo->get().func_addr(pinfo->static_func->index); // } // else if (pinfo->static_var) // { // pinfo->export_addr = pinfo->static_var->addr; // } // else // { // pinfo->export_addr = 0; // } //} for (auto& seg : prx.segs) { vm::dealloc(seg.addr, vm::main); } } bool ppu_load_exec(const ppu_exec_object& elf) { if (elf != elf_error::ok) { return false; } // Check if it is a standalone executable first for (const auto& prog : elf.progs) { if (prog.p_type == 0x1u /* LOAD */ && prog.p_memsz) { using addr_range = utils::address_range; const addr_range r = addr_range::start_length(static_cast(prog.p_vaddr), static_cast(prog.p_memsz)); if ((prog.p_vaddr | prog.p_memsz) > u32{umax} || !r.valid() || !r.inside(addr_range::start_length(0x00000000, 0x30000000))) { return false; } } } g_fxo->need(); g_fxo->need(); // Set for delayed initialization in ppu_initialize() auto& _main = g_fxo->get(); // Access linkage information object auto& link = g_fxo->get(); // TLS information u32 tls_vaddr = 0; u32 tls_fsize = 0; u32 tls_vsize = 0; // Process information u32 sdk_version = SYS_PROCESS_PARAM_SDK_VERSION_UNKNOWN; s32 primary_prio = 1001; u32 primary_stacksize = SYS_PROCESS_PARAM_STACK_SIZE_MAX; u32 malloc_pagesize = SYS_PROCESS_PARAM_MALLOC_PAGE_SIZE_1M; u32 ppc_seg = 0; // Limit for analysis u32 end = 0; // Executable hash sha1_context sha; sha1_starts(&sha); struct on_fatal_error { ppu_module& _main; bool errored = true; ~on_fatal_error() { if (!errored) { return; } // Revert previous allocations on an error for (const auto& seg : _main.segs) { vm::dealloc(seg.addr); } } } error_handler{_main}; // Allocate memory at fixed positions for (const auto& prog : elf.progs) { ppu_loader.notice("** Segment: p_type=0x%x, p_vaddr=0x%llx, p_filesz=0x%llx, p_memsz=0x%llx, flags=0x%x", prog.p_type, prog.p_vaddr, prog.p_filesz, prog.p_memsz, prog.p_flags); ppu_segment _seg; const u32 addr = _seg.addr = vm::cast(prog.p_vaddr); const u32 size = _seg.size = ::narrow(prog.p_memsz); const u32 type = _seg.type = prog.p_type; _seg.flags = prog.p_flags; _seg.filesz = ::narrow(prog.p_filesz); // Hash big-endian values sha1_update(&sha, reinterpret_cast(&prog.p_type), sizeof(prog.p_type)); sha1_update(&sha, reinterpret_cast(&prog.p_flags), sizeof(prog.p_flags)); if (type == 0x1 /* LOAD */ && prog.p_memsz) { if (prog.bin.size() > size || prog.bin.size() != prog.p_filesz) { ppu_loader.fatal("ppu_load_exec(): Invalid binary size (0x%llx, memsz=0x%x)", prog.bin.size(), size); return false; } if (!vm::falloc(addr, size, vm::main)) { ppu_loader.error("vm::falloc(vm::main) failed (addr=0x%x, memsz=0x%x)", addr, size); // TODO if (!vm::falloc(addr, size)) { ppu_loader.fatal("ppu_load_exec(): vm::falloc() failed (addr=0x%x, memsz=0x%x)", addr, size); return false; } } // Copy segment data, hash it std::memcpy(vm::base(addr), prog.bin.data(), prog.bin.size()); sha1_update(&sha, reinterpret_cast(&prog.p_vaddr), sizeof(prog.p_vaddr)); sha1_update(&sha, reinterpret_cast(&prog.p_memsz), sizeof(prog.p_memsz)); sha1_update(&sha, prog.bin.data(), prog.bin.size()); // Initialize executable code if necessary if (prog.p_flags & 0x1) { ppu_register_range(addr, size); } // Store only LOAD segments (TODO) _main.segs.emplace_back(_seg); } } // Load section list, used by the analyser for (const auto& s : elf.shdrs) { ppu_loader.notice("** Section: sh_type=0x%x, addr=0x%llx, size=0x%llx, flags=0x%x", s.sh_type, s.sh_addr, s.sh_size, s.sh_flags); if (s.sh_type != 1u) continue; ppu_segment _sec; const u32 addr = _sec.addr = vm::cast(s.sh_addr); const u32 size = _sec.size = vm::cast(s.sh_size); _sec.type = s.sh_type; _sec.flags = static_cast(s.sh_flags & 7); _sec.filesz = 0; if (addr && size) { _main.secs.emplace_back(_sec); if (_sec.flags & 0x4 && addr >= _main.segs[0].addr && addr + size <= _main.segs[0].addr + _main.segs[0].size) { end = std::max(end, addr + size); } } } sha1_finish(&sha, _main.sha1); // Format patch name std::string hash("PPU-0000000000000000000000000000000000000000"); for (u32 i = 0; i < 20; i++) { constexpr auto pal = "0123456789abcdef"; hash[4 + i * 2] = pal[_main.sha1[i] >> 4]; hash[5 + i * 2] = pal[_main.sha1[i] & 15]; } // Apply the patch auto applied = g_fxo->get().apply(hash, vm::g_base_addr); if (!Emu.GetTitleID().empty()) { // Alternative patch applied += g_fxo->get().apply(Emu.GetTitleID() + '-' + hash, vm::g_base_addr); } if (applied.empty()) { ppu_loader.warning("PPU executable hash: %s", hash); } else { ppu_loader.success("PPU executable hash: %s (<- %u)", hash, applied.size()); } // Initialize HLE modules ppu_initialize_modules(&link); // Embedded SPU elf patching for (const auto& seg : _main.segs) { ppu_check_patch_spu_images(seg); } // Static HLE patching if (g_cfg.core.hook_functions) { auto shle = g_fxo->init(0); for (u32 i = _main.segs[0].addr; i < (_main.segs[0].addr + _main.segs[0].size); i += 4) { vm::cptr _ptr = vm::cast(i); shle->check_against_patterns(_ptr, (_main.segs[0].addr + _main.segs[0].size) - i, i); } } // Read control flags (0 if doesn't exist) g_ps3_process_info.ctrl_flags1 = 0; if (bool not_found = g_ps3_process_info.self_info.valid) { for (const auto& ctrl : g_ps3_process_info.self_info.ctrl_info) { if (ctrl.type == 1) { if (!std::exchange(not_found, false)) { ppu_loader.error("More than one control flags header found! (flags1=0x%x)", ctrl.control_flags.ctrl_flag1); break; } g_ps3_process_info.ctrl_flags1 |= ctrl.control_flags.ctrl_flag1; } } ppu_loader.notice("SELF header information found: ctrl_flags1=0x%x, authid=0x%llx", g_ps3_process_info.ctrl_flags1, g_ps3_process_info.self_info.app_info.authid); } // Load other programs for (auto& prog : elf.progs) { switch (const u32 p_type = prog.p_type) { case 0x00000001: break; // LOAD (already loaded) case 0x00000007: // TLS { ppu_loader.notice("TLS info segment found: tls-image=*0x%x, image-size=0x%x, tls-size=0x%x", prog.p_vaddr, prog.p_filesz, prog.p_memsz); if ((prog.p_vaddr | prog.p_filesz | prog.p_memsz) > u32{umax}) { ppu_loader.fatal("ppu_load_exec(): TLS segment is invalid!"); return false; } tls_vaddr = vm::cast(prog.p_vaddr); tls_fsize = ::narrow(prog.p_filesz); tls_vsize = ::narrow(prog.p_memsz); break; } case 0x60000001: // LOOS+1 { if (prog.p_filesz) { struct process_param_t { be_t size; be_t magic; be_t version; be_t sdk_version; be_t primary_prio; be_t primary_stacksize; be_t malloc_pagesize; be_t ppc_seg; //be_t crash_dump_param_addr; }; const auto& info = vm::_ref(vm::cast(prog.p_vaddr)); if (info.size < sizeof(process_param_t)) { ppu_loader.warning("Bad process_param size! [0x%x : 0x%x]", info.size, sizeof(process_param_t)); } if (info.magic != SYS_PROCESS_PARAM_MAGIC) { ppu_loader.error("Bad process_param magic! [0x%x]", info.magic); } else { sdk_version = info.sdk_version; if (s32 prio = info.primary_prio; prio < 3072 && (prio >= (g_ps3_process_info.debug_or_root() ? 0 : -512))) { primary_prio = prio; } primary_stacksize = info.primary_stacksize; malloc_pagesize = info.malloc_pagesize; ppc_seg = info.ppc_seg; ppu_loader.notice("*** sdk version: 0x%x", info.sdk_version); ppu_loader.notice("*** primary prio: %d", info.primary_prio); ppu_loader.notice("*** primary stacksize: 0x%x", info.primary_stacksize); ppu_loader.notice("*** malloc pagesize: 0x%x", info.malloc_pagesize); ppu_loader.notice("*** ppc seg: 0x%x", info.ppc_seg); //ppu_loader.notice("*** crash dump param addr: 0x%x", info.crash_dump_param_addr); } } break; } case 0x60000002: // LOOS+2 { if (prog.p_filesz) { struct ppu_proc_prx_param_t { be_t size; be_t magic; be_t version; be_t unk0; be_t libent_start; be_t libent_end; be_t libstub_start; be_t libstub_end; be_t ver; be_t unk1; be_t unk2; }; const auto& proc_prx_param = vm::_ref(vm::cast(prog.p_vaddr)); ppu_loader.notice("* libent_start = *0x%x", proc_prx_param.libent_start); ppu_loader.notice("* libstub_start = *0x%x", proc_prx_param.libstub_start); ppu_loader.notice("* unk0 = 0x%x", proc_prx_param.unk0); ppu_loader.notice("* unk2 = 0x%x", proc_prx_param.unk2); if (proc_prx_param.magic != 0x1b434cecu) { ppu_loader.fatal("ppu_load_exec(): Bad magic! (0x%x)", proc_prx_param.magic); return false; } ppu_load_exports(&link, proc_prx_param.libent_start, proc_prx_param.libent_end); ppu_load_imports(_main.relocs, &link, proc_prx_param.libstub_start, proc_prx_param.libstub_end); std::stable_sort(_main.relocs.begin(), _main.relocs.end()); } break; } default: { ppu_loader.error("Unknown phdr type (0x%08x)", p_type); } } } // Initialize process std::vector> loaded_modules; // Module list to load at startup std::set load_libs; if (g_cfg.core.libraries_control.get_set().count("liblv2.sprx:lle") || !g_cfg.core.libraries_control.get_set().count("liblv2.sprx:hle")) { // Will load libsysmodule.sprx internally load_libs.emplace("liblv2.sprx"); } else if (g_cfg.core.libraries_control.get_set().count("libsysmodule.sprx:lle") || !g_cfg.core.libraries_control.get_set().count("libsysmodule.sprx:hle")) { // Load only libsysmodule.sprx load_libs.emplace("libsysmodule.sprx"); } if (g_ps3_process_info.get_cellos_appname() == "vsh.self"sv) { // Cannot be used with vsh.self (it self-manages itself) load_libs.clear(); } const std::string lle_dir = vfs::get("/dev_flash/sys/external/"); if (!fs::is_file(lle_dir + "liblv2.sprx")) { ppu_loader.error("PS3 firmware is not installed or the installed firmware is invalid." "\nYou should install the PS3 Firmware (Menu: File -> Install Firmware)." "\nVisit https://rpcs3.net/ for Quickstart Guide and more information."); } // Program entry u32 entry = 0; if (!load_libs.empty()) { for (const auto& name : load_libs) { const ppu_prx_object obj = decrypt_self(fs::file(lle_dir + name)); if (obj == elf_error::ok) { ppu_loader.warning("Loading library: %s", name); auto prx = ppu_load_prx(obj, lle_dir + name, 0); if (prx->funcs.empty()) { ppu_loader.fatal("Module %s has no functions!", name); } else { // TODO: fix arguments prx->validate(prx->funcs[0].addr); } if (name == "liblv2.sprx") { // Run liblv2.sprx entry point (TODO) entry = prx->start.addr(); } else { loaded_modules.emplace_back(std::move(prx)); } } else { ppu_loader.error("Failed to load /dev_flash/sys/external/%s: %s (forcing HLE implementation)", name, obj.get_error()); } } } // Set path (TODO) _main.name.clear(); _main.path = vfs::get(Emu.argv[0]); // Analyse executable (TODO) _main.analyse(0, static_cast(elf.header.e_entry), end, applied); // Validate analyser results (not required) _main.validate(0); // Set SDK version g_ps3_process_info.sdk_ver = sdk_version; // Set ppc fixed allocations segment permission g_ps3_process_info.ppc_seg = ppc_seg; if (ppc_seg != 0x0) { if (ppc_seg != 0x1) { ppu_loader.todo("Unknown ppc_seg flag value = 0x%x", ppc_seg); } // Additional segment for fixed allocations if (!vm::map(0x30000000, 0x10000000, 0x200)) { fmt::throw_exception("Failed to map ppc_seg's segment!"); } } // Initialize process arguments auto args = vm::ptr::make(vm::alloc(u32{sizeof(u64)} * (::size32(Emu.argv) + ::size32(Emu.envp) + 2), vm::main)); auto argv = args; for (const auto& arg : Emu.argv) { const u32 arg_size = utils::align(::size32(arg) + 1, 0x10); const u32 arg_addr = vm::alloc(arg_size, vm::main); std::memcpy(vm::base(arg_addr), arg.data(), arg_size); *args++ = arg_addr; } *args++ = 0; auto envp = args; for (const auto& arg : Emu.envp) { const u32 arg_size = utils::align(::size32(arg) + 1, 0x10); const u32 arg_addr = vm::alloc(arg_size, vm::main); std::memcpy(vm::base(arg_addr), arg.data(), arg_size); *args++ = arg_addr; } // Fix primary stack size switch (u32 sz = primary_stacksize) { case SYS_PROCESS_PRIMARY_STACK_SIZE_32K: primary_stacksize = 32 * 1024; break; case SYS_PROCESS_PRIMARY_STACK_SIZE_64K: primary_stacksize = 64 * 1024; break; case SYS_PROCESS_PRIMARY_STACK_SIZE_96K: primary_stacksize = 96 * 1024; break; case SYS_PROCESS_PRIMARY_STACK_SIZE_128K: primary_stacksize = 128 * 1024; break; case SYS_PROCESS_PRIMARY_STACK_SIZE_256K: primary_stacksize = 256 * 1024; break; case SYS_PROCESS_PRIMARY_STACK_SIZE_512K: primary_stacksize = 512 * 1024; break; case SYS_PROCESS_PRIMARY_STACK_SIZE_1M: primary_stacksize = 1024 * 1024; break; default: { // According to elad335, the min value seems to be 64KB instead of the expected 4KB (SYS_PROCESS_PARAM_STACK_SIZE_MIN) primary_stacksize = utils::align(std::clamp(sz, 0x10000, SYS_PROCESS_PARAM_STACK_SIZE_MAX), 4096); break; } } // Initialize main thread ppu_thread_params p{}; p.stack_addr = vm::cast(vm::alloc(primary_stacksize, vm::stack, 4096)); p.stack_size = primary_stacksize; auto ppu = idm::make_ptr>(p, "main_thread", primary_prio, 1); // Write initial data (exitspawn) if (!Emu.data.empty()) { std::memcpy(vm::base(ppu->stack_addr + ppu->stack_size - ::size32(Emu.data)), Emu.data.data(), Emu.data.size()); ppu->gpr[1] -= Emu.data.size(); } // Initialize memory stats (according to sdk version) u32 mem_size; if (g_ps3_process_info.get_cellos_appname() == "vsh.self"sv) { // Because vsh.self comes before any generic application, more memory is available to it mem_size = 0xF000000; } else if (sdk_version > 0x0021FFFF) { mem_size = 0xD500000; } else if (sdk_version > 0x00192FFF) { mem_size = 0xD300000; } else if (sdk_version > 0x0018FFFF) { mem_size = 0xD100000; } else if (sdk_version > 0x0017FFFF) { mem_size = 0xD000000; } else if (sdk_version > 0x00154FFF) { mem_size = 0xCC00000; } else { mem_size = 0xC800000; } if (g_cfg.core.debug_console_mode) { // TODO: Check for all sdk versions mem_size += 0xC000000; } g_fxo->init(mem_size)->used += primary_stacksize; ppu->cmd_push({ppu_cmd::initialize, 0}); if (!entry && g_ps3_process_info.get_cellos_appname() != "vsh.self"sv) { // Set TLS args, call sys_initialize_tls ppu->cmd_list ({ { ppu_cmd::set_args, 4 }, u64{ppu->id}, u64{tls_vaddr}, u64{tls_fsize}, u64{tls_vsize}, { ppu_cmd::hle_call, FIND_FUNC(sys_initialize_tls) }, }); } if (!entry) { entry = static_cast(elf.header.e_entry); // Run entry from elf } // Run start functions for (const auto& prx : loaded_modules) { if (!prx->start) { continue; } // Reset arguments, run module entry point function ppu->cmd_list ({ { ppu_cmd::set_args, 2 }, u64{0}, u64{0}, { ppu_cmd::lle_call, prx->start.addr() }, }); } // Set command line arguments, run entry function ppu->cmd_list ({ { ppu_cmd::set_args, 8 }, u64{Emu.argv.size()}, u64{argv.addr()}, u64{envp.addr()}, u64{0}, u64{ppu->id}, u64{tls_vaddr}, u64{tls_fsize}, u64{tls_vsize}, { ppu_cmd::set_gpr, 11 }, u64{elf.header.e_entry}, { ppu_cmd::set_gpr, 12 }, u64{malloc_pagesize}, { ppu_cmd::lle_call, entry }, }); // Set actual memory protection (experimental) for (const auto& prog : elf.progs) { const u32 addr = static_cast(prog.p_vaddr); const u32 size = static_cast(prog.p_memsz); if (prog.p_type == 0x1u /* LOAD */ && prog.p_memsz && (prog.p_flags & 0x2) == 0u /* W */) { // Set memory protection to read-only when necessary ensure(vm::page_protect(addr, utils::align(size, 0x1000), 0, 0, vm::page_writable)); } } error_handler.errored = false; return true; } std::pair, CellError> ppu_load_overlay(const ppu_exec_object& elf, const std::string& path, s64 file_offset) { if (elf != elf_error::ok) { return {nullptr, CELL_ENOENT}; } // Access linkage information object auto& link = g_fxo->get(); // Executable hash sha1_context sha; sha1_starts(&sha); // Check if it is an overlay executable first for (const auto& prog : elf.progs) { if (prog.p_type == 0x1u /* LOAD */ && prog.p_memsz) { using addr_range = utils::address_range; const addr_range r = addr_range::start_length(::narrow(prog.p_vaddr), ::narrow(prog.p_memsz)); if (!r.valid() || !r.inside(addr_range::start_length(0x30000000, 0x10000000))) { // TODO: Check error and if there's a better way to error check return {nullptr, CELL_ENOEXEC}; } } } const auto ovlm = std::make_shared(); // Set path (TODO) ovlm->name = path.substr(path.find_last_of('/') + 1); ovlm->path = path; ovlm->offset = file_offset; u32 end = 0; // Allocate memory at fixed positions for (const auto& prog : elf.progs) { ppu_loader.notice("** Segment: p_type=0x%x, p_vaddr=0x%llx, p_filesz=0x%llx, p_memsz=0x%llx, flags=0x%x", prog.p_type, prog.p_vaddr, prog.p_filesz, prog.p_memsz, prog.p_flags); ppu_segment _seg; const u32 addr = _seg.addr = vm::cast(prog.p_vaddr); const u32 size = _seg.size = ::narrow(prog.p_memsz); const u32 type = _seg.type = prog.p_type; _seg.flags = prog.p_flags; _seg.filesz = ::narrow(prog.p_filesz); // Hash big-endian values sha1_update(&sha, reinterpret_cast(&prog.p_type), sizeof(prog.p_type)); sha1_update(&sha, reinterpret_cast(&prog.p_flags), sizeof(prog.p_flags)); if (type == 0x1 /* LOAD */ && prog.p_memsz) { if (prog.bin.size() > size || prog.bin.size() != prog.p_filesz) fmt::throw_exception("Invalid binary size (0x%llx, memsz=0x%x)", prog.bin.size(), size); if (!vm::get(vm::any, 0x30000000)->falloc(addr, size)) { ppu_loader.error("ppu_load_overlay(): vm::falloc() failed (addr=0x%x, memsz=0x%x)", addr, size); // Revert previous allocations for (const auto& seg : ovlm->segs) { ensure(vm::dealloc(seg.addr)); } // TODO: Check error code, maybe disallow more than one overlay instance completely return {nullptr, CELL_EBUSY}; } // Copy segment data, hash it std::memcpy(vm::base(addr), prog.bin.data(), prog.bin.size()); sha1_update(&sha, reinterpret_cast(&prog.p_vaddr), sizeof(prog.p_vaddr)); sha1_update(&sha, reinterpret_cast(&prog.p_memsz), sizeof(prog.p_memsz)); sha1_update(&sha, prog.bin.data(), prog.bin.size()); // Initialize executable code if necessary if (prog.p_flags & 0x1) { ppu_register_range(addr, size); } // Store only LOAD segments (TODO) ovlm->segs.emplace_back(_seg); } } // Load section list, used by the analyser for (const auto& s : elf.shdrs) { ppu_loader.notice("** Section: sh_type=0x%x, addr=0x%llx, size=0x%llx, flags=0x%x", s.sh_type, s.sh_addr, s.sh_size, s.sh_flags); if (s.sh_type != 1u) continue; ppu_segment _sec; const u32 addr = _sec.addr = vm::cast(s.sh_addr); const u32 size = _sec.size = vm::cast(s.sh_size); _sec.type = s.sh_type; _sec.flags = static_cast(s.sh_flags & 7); _sec.filesz = 0; if (addr && size) { ovlm->secs.emplace_back(_sec); if (_sec.flags & 0x4 && addr >= ovlm->segs[0].addr && addr + size <= ovlm->segs[0].addr + ovlm->segs[0].size) { end = std::max(end, addr + size); } } } sha1_finish(&sha, ovlm->sha1); // Format patch name std::string hash("OVL-0000000000000000000000000000000000000000"); for (u32 i = 0; i < 20; i++) { constexpr auto pal = "0123456789abcdef"; hash[4 + i * 2] = pal[ovlm->sha1[i] >> 4]; hash[5 + i * 2] = pal[ovlm->sha1[i] & 15]; } // Apply the patch auto applied = g_fxo->get().apply(hash, vm::g_base_addr); if (!Emu.GetTitleID().empty()) { // Alternative patch applied += g_fxo->get().apply(Emu.GetTitleID() + '-' + hash, vm::g_base_addr); } // Embedded SPU elf patching for (const auto& seg : ovlm->segs) { ppu_check_patch_spu_images(seg); } if (applied.empty()) { ppu_loader.warning("OVL hash of %s: %s", ovlm->name, hash); } else { ppu_loader.success("OVL hash of %s: %s (<- %u)", ovlm->name, hash, applied.size()); } // Load other programs for (auto& prog : elf.progs) { switch (const u32 p_type = prog.p_type) { case 0x00000001: break; // LOAD (already loaded) case 0x60000001: // LOOS+1 { if (prog.p_filesz) { struct process_param_t { be_t size; //0x60 be_t magic; //string OVLM be_t version; //0x17000 be_t sdk_version; //seems to be correct //string "stage_ovlm" //and a lot of zeros. }; const auto& info = vm::_ref(vm::cast(prog.p_vaddr)); if (info.size < sizeof(process_param_t)) { ppu_loader.warning("Bad process_param size! [0x%x : 0x%x]", info.size, u32{sizeof(process_param_t)}); } if (info.magic != 0x4f564c4du) //string "OVLM" { ppu_loader.error("Bad process_param magic! [0x%x]", info.magic); } else { ppu_loader.notice("*** sdk version: 0x%x", info.sdk_version); } } break; } case 0x60000002: // LOOS+2 seems to be 0x0 in size for overlay elfs, at least in known cases { if (prog.p_filesz) { struct ppu_proc_prx_param_t { be_t size; be_t magic; be_t version; be_t unk0; be_t libent_start; be_t libent_end; be_t libstub_start; be_t libstub_end; be_t ver; be_t unk1; be_t unk2; }; const auto& proc_prx_param = vm::_ref(vm::cast(prog.p_vaddr)); ppu_loader.notice("* libent_start = *0x%x", proc_prx_param.libent_start); ppu_loader.notice("* libstub_start = *0x%x", proc_prx_param.libstub_start); ppu_loader.notice("* unk0 = 0x%x", proc_prx_param.unk0); ppu_loader.notice("* unk2 = 0x%x", proc_prx_param.unk2); if (proc_prx_param.magic != 0x1b434cecu) { fmt::throw_exception("Bad magic! (0x%x)", proc_prx_param.magic); } ppu_load_exports(&link, proc_prx_param.libent_start, proc_prx_param.libent_end); ppu_load_imports(ovlm->relocs, &link, proc_prx_param.libstub_start, proc_prx_param.libstub_end); } break; } default: { ppu_loader.error("Unknown phdr type (0x%08x)", p_type); } } } ovlm->entry = static_cast(elf.header.e_entry); // Analyse executable (TODO) ovlm->analyse(0, ovlm->entry, end, applied); // Validate analyser results (not required) ovlm->validate(0); idm::import_existing(ovlm); try_spawn_ppu_if_exclusive_program(*ovlm); return {std::move(ovlm), {}}; }