#include "stdafx.h" #include "key_vault.h" #include "unedat.h" #include "sha1.h" #include "lz.h" #include "ec.h" #include "Utilities/mutex.h" #include "Emu/system_utils.hpp" #include #include "util/asm.hpp" LOG_CHANNEL(edat_log, "EDAT"); void generate_key(int crypto_mode, int version, unsigned char *key_final, unsigned char *iv_final, unsigned char *key, unsigned char *iv) { int mode = crypto_mode & 0xF0000000; uchar temp_iv[16]{}; switch (mode) { case 0x10000000: // Encrypted ERK. // Decrypt the key with EDAT_KEY + EDAT_IV and copy the original IV. memcpy(temp_iv, EDAT_IV, 0x10); aescbc128_decrypt(const_cast(version ? EDAT_KEY_1 : EDAT_KEY_0), temp_iv, key, key_final, 0x10); memcpy(iv_final, iv, 0x10); break; case 0x20000000: // Default ERK. // Use EDAT_KEY and EDAT_IV. memcpy(key_final, version ? EDAT_KEY_1 : EDAT_KEY_0, 0x10); memcpy(iv_final, EDAT_IV, 0x10); break; case 0x00000000: // Unencrypted ERK. // Use the original key and iv. memcpy(key_final, key, 0x10); memcpy(iv_final, iv, 0x10); break; } } void generate_hash(int hash_mode, int version, unsigned char *hash_final, unsigned char *hash) { int mode = hash_mode & 0xF0000000; uchar temp_iv[16]{}; switch (mode) { case 0x10000000: // Encrypted HASH. // Decrypt the hash with EDAT_KEY + EDAT_IV. memcpy(temp_iv, EDAT_IV, 0x10); aescbc128_decrypt(const_cast(version ? EDAT_KEY_1 : EDAT_KEY_0), temp_iv, hash, hash_final, 0x10); break; case 0x20000000: // Default HASH. // Use EDAT_HASH. memcpy(hash_final, version ? EDAT_HASH_1 : EDAT_HASH_0, 0x10); break; case 0x00000000: // Unencrypted ERK. // Use the original hash. memcpy(hash_final, hash, 0x10); break; }; } bool decrypt(int hash_mode, int crypto_mode, int version, unsigned char *in, unsigned char *out, usz length, unsigned char *key, unsigned char *iv, unsigned char *hash, unsigned char *test_hash) { // Setup buffers for key, iv and hash. unsigned char key_final[0x10] = {}; unsigned char iv_final[0x10] = {}; unsigned char hash_final_10[0x10] = {}; unsigned char hash_final_14[0x14] = {}; // Generate crypto key and hash. generate_key(crypto_mode, version, key_final, iv_final, key, iv); if ((hash_mode & 0xFF) == 0x01) generate_hash(hash_mode, version, hash_final_14, hash); else generate_hash(hash_mode, version, hash_final_10, hash); if ((crypto_mode & 0xFF) == 0x01) // No algorithm. { memcpy(out, in, length); } else if ((crypto_mode & 0xFF) == 0x02) // AES128-CBC { aescbc128_decrypt(key_final, iv_final, in, out, length); } else { edat_log.error("Unknown crypto algorithm!"); return false; } if ((hash_mode & 0xFF) == 0x01) // 0x14 SHA1-HMAC { return hmac_hash_compare(hash_final_14, 0x14, in, length, test_hash, 0x14); } else if ((hash_mode & 0xFF) == 0x02) // 0x10 AES-CMAC { return cmac_hash_compare(hash_final_10, 0x10, in, length, test_hash, 0x10); } else if ((hash_mode & 0xFF) == 0x04) //0x10 SHA1-HMAC { return hmac_hash_compare(hash_final_10, 0x10, in, length, test_hash, 0x10); } else { edat_log.error("Unknown hashing algorithm!"); return false; } } // EDAT/SDAT functions. std::tuple dec_section(unsigned char* metadata) { std::array dec; dec[0x00] = (metadata[0xC] ^ metadata[0x8] ^ metadata[0x10]); dec[0x01] = (metadata[0xD] ^ metadata[0x9] ^ metadata[0x11]); dec[0x02] = (metadata[0xE] ^ metadata[0xA] ^ metadata[0x12]); dec[0x03] = (metadata[0xF] ^ metadata[0xB] ^ metadata[0x13]); dec[0x04] = (metadata[0x4] ^ metadata[0x8] ^ metadata[0x14]); dec[0x05] = (metadata[0x5] ^ metadata[0x9] ^ metadata[0x15]); dec[0x06] = (metadata[0x6] ^ metadata[0xA] ^ metadata[0x16]); dec[0x07] = (metadata[0x7] ^ metadata[0xB] ^ metadata[0x17]); dec[0x08] = (metadata[0xC] ^ metadata[0x0] ^ metadata[0x18]); dec[0x09] = (metadata[0xD] ^ metadata[0x1] ^ metadata[0x19]); dec[0x0A] = (metadata[0xE] ^ metadata[0x2] ^ metadata[0x1A]); dec[0x0B] = (metadata[0xF] ^ metadata[0x3] ^ metadata[0x1B]); dec[0x0C] = (metadata[0x4] ^ metadata[0x0] ^ metadata[0x1C]); dec[0x0D] = (metadata[0x5] ^ metadata[0x1] ^ metadata[0x1D]); dec[0x0E] = (metadata[0x6] ^ metadata[0x2] ^ metadata[0x1E]); dec[0x0F] = (metadata[0x7] ^ metadata[0x3] ^ metadata[0x1F]); u64 offset = read_from_ptr>(dec, 0); s32 length = read_from_ptr>(dec, 8); s32 compression_end = read_from_ptr>(dec, 12); return std::make_tuple(offset, length, compression_end); } u128 get_block_key(int block, NPD_HEADER *npd) { unsigned char empty_key[0x10] = {}; unsigned char *src_key = (npd->version <= 1) ? empty_key : npd->dev_hash; u128 dest_key{}; std::memcpy(&dest_key, src_key, 0xC); s32 swappedBlock = std::bit_cast>(block); std::memcpy(reinterpret_cast(&dest_key) + 0xC, &swappedBlock, sizeof(swappedBlock)); return dest_key; } // for out data, allocate a buffer the size of 'edat->block_size' // Also, set 'in file' to the beginning of the encrypted data, which may be offset if inside another file, but normally just reset to beginning of file // returns number of bytes written, -1 for error s64 decrypt_block(const fs::file* in, u8* out, EDAT_HEADER *edat, NPD_HEADER *npd, u8* crypt_key, u32 block_num, u32 total_blocks, u64 size_left) { // Get metadata info and setup buffers. const int metadata_section_size = ((edat->flags & EDAT_COMPRESSED_FLAG) != 0 || (edat->flags & EDAT_FLAG_0x20) != 0) ? 0x20 : 0x10; const int metadata_offset = 0x100; u8 hash[0x10] = { 0 }; u8 key_result[0x10] = { 0 }; u8 hash_result[0x14] = { 0 }; u64 offset = 0; u64 metadata_sec_offset = 0; u64 length = 0; s32 compression_end = 0; unsigned char empty_iv[0x10] = {}; // Decrypt the metadata. if ((edat->flags & EDAT_COMPRESSED_FLAG) != 0) { metadata_sec_offset = metadata_offset + u64{block_num} * metadata_section_size; u8 metadata[0x20]{}; in->read_at(metadata_sec_offset, metadata, 0x20); // If the data is compressed, decrypt the metadata. // NOTE: For NPD version 1 the metadata is not encrypted. if (npd->version <= 1) { offset = read_from_ptr>(metadata, 0x10); length = read_from_ptr>(metadata, 0x18); compression_end = read_from_ptr>(metadata, 0x1C); } else { std::tie(offset, length, compression_end) = dec_section(metadata); } std::memcpy(hash_result, metadata, 0x10); } else if ((edat->flags & EDAT_FLAG_0x20) != 0) { // If FLAG 0x20, the metadata precedes each data block. metadata_sec_offset = metadata_offset + u64{block_num} * (metadata_section_size + edat->block_size); u8 metadata[0x20]{}; in->read_at(metadata_sec_offset, metadata, 0x20); std::memcpy(hash_result, metadata, 0x14); // If FLAG 0x20 is set, apply custom xor. for (int j = 0; j < 0x10; j++) hash_result[j] = metadata[j] ^ metadata[j + 0x10]; offset = metadata_sec_offset + 0x20; length = edat->block_size; if ((block_num == (total_blocks - 1)) && (edat->file_size % edat->block_size)) length = static_cast(edat->file_size % edat->block_size); } else { metadata_sec_offset = metadata_offset + u64{block_num} * metadata_section_size; in->read_at(metadata_sec_offset, hash_result, 0x10); offset = metadata_offset + u64{block_num} * edat->block_size + total_blocks * metadata_section_size; length = edat->block_size; if ((block_num == (total_blocks - 1)) && (edat->file_size % edat->block_size)) length = static_cast(edat->file_size % edat->block_size); } // Locate the real data. const usz pad_length = length; length = utils::align(pad_length, 0x10); // Setup buffers for decryption and read the data. std::vector enc_data_buf(length == pad_length ? 0 : length); std::vector dec_data_buf(length); // Try to use out buffer for file reads if no padding is needed instead of a new buffer u8* enc_data = length == pad_length ? out : enc_data_buf.data(); // Variable to avoid copies when possible u8* dec_data = dec_data_buf.data(); std::memset(hash, 0, 0x10); std::memset(key_result, 0, 0x10); in->read_at(offset, enc_data, length); // Generate a key for the current block. auto b_key = get_block_key(block_num, npd); // Encrypt the block key with the crypto key. aesecb128_encrypt(crypt_key, reinterpret_cast(&b_key), key_result); if ((edat->flags & EDAT_FLAG_0x10) != 0) { aesecb128_encrypt(crypt_key, key_result, hash); // If FLAG 0x10 is set, encrypt again to get the final hash. } else { std::memcpy(hash, key_result, 0x10); } // Setup the crypto and hashing mode based on the extra flags. int crypto_mode = ((edat->flags & EDAT_FLAG_0x02) == 0) ? 0x2 : 0x1; int hash_mode; if ((edat->flags & EDAT_FLAG_0x10) == 0) hash_mode = 0x02; else if ((edat->flags & EDAT_FLAG_0x20) == 0) hash_mode = 0x04; else hash_mode = 0x01; if ((edat->flags & EDAT_ENCRYPTED_KEY_FLAG) != 0) { crypto_mode |= 0x10000000; hash_mode |= 0x10000000; } const bool should_decompress = ((edat->flags & EDAT_COMPRESSED_FLAG) != 0) && compression_end; if ((edat->flags & EDAT_DEBUG_DATA_FLAG) != 0) { // Reset the flags. crypto_mode |= 0x01000000; hash_mode |= 0x01000000; // Simply copy the data without the header or the footer. if (should_decompress) { std::memcpy(dec_data, enc_data, length); } else { // Optimize when decompression is not needed by avoiding 2 copies dec_data = enc_data; } } else { // IV is null if NPD version is 1 or 0. u8* iv = (npd->version <= 1) ? empty_iv : npd->digest; // Call main crypto routine on this data block. if (!decrypt(hash_mode, crypto_mode, (npd->version == 4), enc_data, dec_data, length, key_result, iv, hash, hash_result)) { edat_log.error("Block at offset 0x%llx has invalid hash!", offset); return -1; } } // Apply additional de-compression if needed and write the decrypted data. if (should_decompress) { const int res = decompress(out, dec_data, edat->block_size); size_left -= res; if (size_left == 0) { if (res < 0) { edat_log.error("Decompression failed!"); return -1; } } return res; } if (dec_data != out) { std::memcpy(out, dec_data, pad_length); } return pad_length; } // set file offset to beginning before calling bool check_data(u8* key, EDAT_HEADER* edat, NPD_HEADER* npd, const fs::file* f, bool verbose) { u8 header[0xA0] = { 0 }; u8 empty_header[0xA0] = { 0 }; u8 header_hash[0x10] = { 0 }; u8 metadata_hash[0x10] = { 0 }; const u64 file_offset = f->pos(); // Check NPD version and flags. if ((npd->version == 0) || (npd->version == 1)) { if (edat->flags & 0x7EFFFFFE) { edat_log.error("Bad header flags!"); return false; } } else if (npd->version == 2) { if (edat->flags & 0x7EFFFFE0) { edat_log.error("Bad header flags!"); return false; } } else if ((npd->version == 3) || (npd->version == 4)) { if (edat->flags & 0x7EFFFFC0) { edat_log.error("Bad header flags!"); return false; } } else { edat_log.error("Unknown version!"); return false; } // Read in the file header. f->read(header, 0xA0); // Read in the header and metadata section hashes. f->seek(file_offset + 0x90); f->read(metadata_hash, 0x10); f->read(header_hash, 0x10); // Setup the hashing mode and the crypto mode used in the file. const int crypto_mode = 0x1; int hash_mode = ((edat->flags & EDAT_ENCRYPTED_KEY_FLAG) == 0) ? 0x00000002 : 0x10000002; if ((edat->flags & EDAT_DEBUG_DATA_FLAG) != 0) { hash_mode |= 0x01000000; if (verbose) edat_log.warning("DEBUG data detected!"); } // Setup header key and iv buffers. unsigned char header_key[0x10] = { 0 }; unsigned char header_iv[0x10] = { 0 }; // Test the header hash (located at offset 0xA0). if (!decrypt(hash_mode, crypto_mode, (npd->version == 4), header, empty_header, 0xA0, header_key, header_iv, key, header_hash)) { if (verbose) edat_log.warning("Header hash is invalid!"); // If the header hash test fails and the data is not DEBUG, then RAP/RIF/KLIC key is invalid. if ((edat->flags & EDAT_DEBUG_DATA_FLAG) != EDAT_DEBUG_DATA_FLAG) { edat_log.error("RAP/RIF/KLIC key is invalid!"); return false; } } // Parse the metadata info. const int metadata_section_size = ((edat->flags & EDAT_COMPRESSED_FLAG) != 0 || (edat->flags & EDAT_FLAG_0x20) != 0) ? 0x20 : 0x10; if (((edat->flags & EDAT_COMPRESSED_FLAG) != 0)) { if (verbose) edat_log.warning("COMPRESSED data detected!"); } if (!edat->block_size) { return false; } const usz block_num = utils::aligned_div(edat->file_size, edat->block_size); constexpr usz metadata_offset = 0x100; const usz metadata_size = utils::mul_saturate(metadata_section_size, block_num); u64 metadata_section_offset = metadata_offset; if (utils::add_saturate(utils::add_saturate(file_offset, metadata_section_offset), metadata_size) > f->size()) { return false; } u64 bytes_read = 0; const auto metadata = std::make_unique(metadata_size); const auto empty_metadata = std::make_unique(metadata_size); while (bytes_read < metadata_size) { // Locate the metadata blocks. const usz offset = file_offset + metadata_section_offset; // Read in the metadata. f->read_at(offset, metadata.get() + bytes_read, metadata_section_size); // Adjust sizes. bytes_read += metadata_section_size; if (((edat->flags & EDAT_FLAG_0x20) != 0)) // Metadata block before each data block. metadata_section_offset += (metadata_section_size + edat->block_size); else metadata_section_offset += metadata_section_size; } // Test the metadata section hash (located at offset 0x90). if (!decrypt(hash_mode, crypto_mode, (npd->version == 4), metadata.get(), empty_metadata.get(), metadata_size, header_key, header_iv, key, metadata_hash)) { if (verbose) edat_log.warning("Metadata section hash is invalid!"); } // Checking ECDSA signatures. if ((edat->flags & EDAT_DEBUG_DATA_FLAG) == 0) { // Setup buffers. unsigned char metadata_signature[0x28] = { 0 }; unsigned char header_signature[0x28] = { 0 }; unsigned char signature_hash[20] = { 0 }; unsigned char signature_r[0x15] = { 0 }; unsigned char signature_s[0x15] = { 0 }; unsigned char zero_buf[0x15] = { 0 }; // Setup ECDSA curve and public key. ecdsa_set_curve(VSH_CURVE_P, VSH_CURVE_A, VSH_CURVE_B, VSH_CURVE_N, VSH_CURVE_GX, VSH_CURVE_GY); ecdsa_set_pub(VSH_PUB); // Read in the metadata and header signatures. f->seek(0xB0); f->read(metadata_signature, 0x28); f->read(header_signature, 0x28); // Checking metadata signature. // Setup signature r and s. signature_r[0] = 0; signature_s[0] = 0; std::memcpy(signature_r + 1, metadata_signature, 0x14); std::memcpy(signature_s + 1, metadata_signature + 0x14, 0x14); if ((!std::memcmp(signature_r, zero_buf, 0x15)) || (!std::memcmp(signature_s, zero_buf, 0x15))) { edat_log.warning("Metadata signature is invalid!"); } else { // Setup signature hash. if ((edat->flags & EDAT_FLAG_0x20) != 0) //Sony failed again, they used buffer from 0x100 with half size of real metadata. { const usz metadata_buf_size = block_num * 0x10; std::vector metadata_buf(metadata_buf_size); f->read_at(file_offset + metadata_offset, metadata_buf.data(), metadata_buf_size); sha1(metadata_buf.data(), metadata_buf_size, signature_hash); } else sha1(metadata.get(), metadata_size, signature_hash); if (!ecdsa_verify(signature_hash, signature_r, signature_s)) { edat_log.warning("Metadata signature is invalid!"); if (((edat->block_size + 0ull) * block_num) > 0x100000000) edat_log.warning("*Due to large file size, metadata signature status may be incorrect!"); } } // Checking header signature. // Setup header signature r and s. signature_r[0] = 0; signature_s[0] = 0; std::memcpy(signature_r + 1, header_signature, 0x14); std::memcpy(signature_s + 1, header_signature + 0x14, 0x14); if ((!std::memcmp(signature_r, zero_buf, 0x15)) || (!std::memcmp(signature_s, zero_buf, 0x15))) { edat_log.warning("Header signature is invalid!"); } else { // Setup header signature hash. std::memset(signature_hash, 0, 20); u8 header_buf[0xD8]{}; f->read_at(file_offset, header_buf, 0xD8); sha1(header_buf, 0xD8, signature_hash); if (!ecdsa_verify(signature_hash, signature_r, signature_s)) edat_log.warning("Header signature is invalid!"); } } return true; } bool validate_dev_klic(const u8* klicensee, NPD_HEADER *npd) { if ((npd->license & 0x3) != 0x3) { return true; } unsigned char dev[0x60]{}; // Build the dev buffer (first 0x60 bytes of NPD header in big-endian). std::memcpy(dev, npd, 0x60); // Fix endianness. s32 version = std::bit_cast>(npd->version); s32 license = std::bit_cast>(npd->license); s32 type = std::bit_cast>(npd->type); std::memcpy(dev + 0x4, &version, 4); std::memcpy(dev + 0x8, &license, 4); std::memcpy(dev + 0xC, &type, 4); // Check for an empty dev_hash (can't validate if devklic is NULL); u128 klic; std::memcpy(&klic, klicensee, sizeof(klic)); // Generate klicensee xor key. u128 key = klic ^ std::bit_cast(NP_OMAC_KEY_2); // Hash with generated key and compare with dev_hash. return cmac_hash_compare(reinterpret_cast(&key), 0x10, dev, 0x60, npd->dev_hash, 0x10); } bool validate_npd_hashes(std::string_view file_name, const u8* klicensee, NPD_HEADER* npd, EDAT_HEADER* edat, bool verbose) { // Ignore header validation in DEBUG data. if (edat->flags & EDAT_DEBUG_DATA_FLAG) { return true; } if (!validate_dev_klic(klicensee, npd)) { return false; } if (file_name.empty()) { return true; } const usz buf_len = 0x30 + file_name.size(); std::unique_ptr buf(new u8[buf_len]); std::unique_ptr buf_lower(new u8[buf_len]); std::unique_ptr buf_upper(new u8[buf_len]); // Build the title buffer (content_id + file_name). std::memcpy(buf.get(), npd->content_id, 0x30); std::memcpy(buf.get() + 0x30, file_name.data(), file_name.size()); std::memcpy(buf_lower.get(), buf.get(), buf_len); std::memcpy(buf_upper.get(), buf.get(), buf_len); for (usz i = std::basic_string_view(buf.get() + 0x30, file_name.size()).find_last_of('.'); i < buf_len; i++) { const u8 c = static_cast(buf[i]); buf_upper[i] = std::toupper(c); buf_lower[i] = std::tolower(c); } // Hash with NPDRM_OMAC_KEY_3 and compare with title_hash. // Try to ignore case sensivity with file extension const bool title_hash_result = cmac_hash_compare(const_cast(NP_OMAC_KEY_3), 0x10, buf.get(), buf_len, npd->title_hash, 0x10) || cmac_hash_compare(const_cast(NP_OMAC_KEY_3), 0x10, buf_lower.get(), buf_len, npd->title_hash, 0x10) || cmac_hash_compare(const_cast(NP_OMAC_KEY_3), 0x10, buf_upper.get(), buf_len, npd->title_hash, 0x10); if (verbose) { if (title_hash_result) edat_log.notice("NPD title hash is valid!"); else edat_log.warning("NPD title hash is invalid!"); } return title_hash_result; } void read_npd_edat_header(const fs::file* input, NPD_HEADER& NPD, EDAT_HEADER& EDAT) { char npd_header[0x80]{}; char edat_header[0x10]{}; usz pos = input->pos(); pos += input->read_at(pos, npd_header, sizeof(npd_header)); input->read_at(pos, edat_header, sizeof(edat_header)); std::memcpy(&NPD.magic, npd_header, 4); NPD.version = read_from_ptr>(npd_header, 4); NPD.license = read_from_ptr>(npd_header, 8); NPD.type = read_from_ptr>(npd_header, 12); std::memcpy(NPD.content_id, &npd_header[16], 0x30); std::memcpy(NPD.digest, &npd_header[64], 0x10); std::memcpy(NPD.title_hash, &npd_header[80], 0x10); std::memcpy(NPD.dev_hash, &npd_header[96], 0x10); NPD.activate_time = read_from_ptr>(npd_header, 112); NPD.expire_time = read_from_ptr>(npd_header, 120); EDAT.flags = read_from_ptr>(edat_header, 0); EDAT.block_size = read_from_ptr>(edat_header, 4); EDAT.file_size = read_from_ptr>(edat_header, 8); } u128 GetEdatRifKeyFromRapFile(const fs::file& rap_file) { u128 rapkey{}; u128 rifkey{}; rap_file.read(rapkey); rap_to_rif(reinterpret_cast(&rapkey), reinterpret_cast(&rifkey)); return rifkey; } bool VerifyEDATHeaderWithKLicense(const fs::file& input, const std::string& input_file_name, const u8* custom_klic, NPD_HEADER* npd_out) { // Setup NPD and EDAT/SDAT structs. NPD_HEADER NPD; EDAT_HEADER EDAT; // Read in the NPD and EDAT/SDAT headers. read_npd_edat_header(&input, NPD, EDAT); if (NPD.magic != "NPD\0"_u32) { edat_log.error("%s has invalid NPD header or already decrypted.", input_file_name); return false; } if ((EDAT.flags & SDAT_FLAG) == SDAT_FLAG) { edat_log.error("SDATA file given to edat function"); return false; } // Perform header validation (EDAT only). char real_file_name[CRYPTO_MAX_PATH]{}; extract_file_name(input_file_name.c_str(), real_file_name); if (!validate_npd_hashes(real_file_name, custom_klic, &NPD, &EDAT, false)) { edat_log.error("NPD hash validation failed!"); return false; } std::string_view sv{NPD.content_id, std::size(NPD.content_id)}; sv = sv.substr(0, sv.find_first_of('\0')); if (npd_out) { memcpy(npd_out, &NPD, sizeof(NPD_HEADER)); } return true; } // Decrypts full file fs::file DecryptEDAT(const fs::file& input, const std::string& input_file_name, int mode, u8 *custom_klic, bool verbose) { if (!input) { return {}; } // Prepare the files. input.seek(0); // Set DEVKLIC u128 devklic{}; // Select the EDAT key mode. switch (mode) { case 0: break; case 1: memcpy(&devklic, NP_KLIC_FREE, 0x10); break; case 2: memcpy(&devklic, NP_OMAC_KEY_2, 0x10); break; case 3: memcpy(&devklic, NP_OMAC_KEY_3, 0x10); break; case 4: memcpy(&devklic, NP_KLIC_KEY, 0x10); break; case 5: memcpy(&devklic, NP_PSX_KEY, 0x10); break; case 6: memcpy(&devklic, NP_PSP_KEY_1, 0x10); break; case 7: memcpy(&devklic, NP_PSP_KEY_2, 0x10); break; case 8: { if (custom_klic != NULL) memcpy(&devklic, custom_klic, 0x10); else { edat_log.error("Invalid custom klic!"); return fs::file{}; } break; } default: edat_log.error("Invalid mode!"); return fs::file{}; } // Delete the bad output file if any errors arise. auto data = std::make_unique(input, devklic, input_file_name, false); if (!data->ReadHeader()) { return fs::file{}; } fs::file output; output.reset(std::move(data)); return output; } bool EDATADecrypter::ReadHeader() { edata_file.seek(0); // Read in the NPD and EDAT/SDAT headers. read_npd_edat_header(&edata_file, npdHeader, edatHeader); if (npdHeader.magic != "NPD\0"_u32) { edat_log.error("Not an NPDRM file"); return false; } // Check for SDAT flag. if ((edatHeader.flags & SDAT_FLAG) == SDAT_FLAG) { // Generate SDAT key. dec_key = std::bit_cast(npdHeader.dev_hash) ^ std::bit_cast(SDAT_KEY); } else { // extract key from RIF char real_file_name[CRYPTO_MAX_PATH]{}; extract_file_name(m_file_name.c_str(), real_file_name); if (!validate_npd_hashes(real_file_name, reinterpret_cast(&dec_key), &npdHeader, &edatHeader, false)) { edat_log.error("NPD hash validation failed!"); return true; } // Select EDAT key. if (m_is_key_final) { // Already provided } // Type 3: Use supplied dec_key. else if ((npdHeader.license & 0x3) == 0x3) { // } // Type 2: Use key from RAP file (RIF key). (also used for type 1 at the moment) else { const std::string rap_path = rpcs3::utils::get_rap_file_path(npdHeader.content_id); if (fs::file rap{rap_path}; rap && rap.size() >= sizeof(dec_key)) { dec_key = GetEdatRifKeyFromRapFile(rap); } // Make sure we don't have an empty RIF key. if (!dec_key) { edat_log.error("A valid RAP file is needed for this EDAT file! (license=%d)", npdHeader.license); return true; } edat_log.trace("RIFKEY: %s", std::bit_cast>(dec_key)); } } edata_file.seek(0); // k the ecdsa_verify function in this check_data function takes a ridiculous amount of time // like it slows down load time by a factor of x20, at least, so its ignored for now if (false && !check_data(reinterpret_cast(&dec_key), &edatHeader, &npdHeader, &edata_file, false)) { edat_log.error("NPDRM check_data() failed!"); return false; } file_size = edatHeader.file_size; total_blocks = ::narrow(utils::aligned_div(edatHeader.file_size, edatHeader.block_size)); // Try decrypting the first block instead u8 data_sample[1]; if (file_size && !ReadData(0, data_sample, 1)) { edat_log.error("NPDRM ReadData() failed!"); return false; } return true; } u64 EDATADecrypter::ReadData(u64 pos, u8* data, u64 size) { size = std::min(size, pos > edatHeader.file_size ? 0 : edatHeader.file_size - pos); if (!size) { return 0; } // Now we need to offset things to account for the actual 'range' requested const u64 startOffset = pos % edatHeader.block_size; const u64 num_blocks = utils::aligned_div(startOffset + size, edatHeader.block_size); // Find and decrypt block range covering pos + size const u32 starting_block = ::narrow(pos / edatHeader.block_size); const u32 ending_block = ::narrow(std::min(starting_block + num_blocks, total_blocks)); u64 writeOffset = 0; std::vector data_buf(edatHeader.block_size); for (u32 i = starting_block; i < ending_block; i++) { u64 res = decrypt_block(&edata_file, data_buf.data(), &edatHeader, &npdHeader, reinterpret_cast(&dec_key), i, total_blocks, edatHeader.file_size); if (res == umax) { edat_log.error("Error Decrypting data"); return 0; } const usz skip_start = (i == starting_block ? startOffset : 0); if (skip_start >= res) { break; } const usz end_pos = (i != total_blocks - 1 ? edatHeader.block_size : (edatHeader.file_size - 1) % edatHeader.block_size + 1); const usz read_end = std::min(res, i == ending_block - 1 ? std::min(end_pos, (startOffset + size - 1) % edatHeader.block_size + 1) : end_pos); std::memcpy(data + writeOffset, data_buf.data() + skip_start, read_end - skip_start); std::memset(data_buf.data(), 0, read_end - skip_start); writeOffset += read_end - skip_start; } return writeOffset; }