#include "stdafx.h" #include "Utilities/Config.h" #include "Emu/Memory/Memory.h" #include "Emu/System.h" #include "Emu/IdManager.h" #include "Emu/Cell/PPUThread.h" #include "Emu/Cell/ErrorCodes.h" #include "Emu/Cell/lv2/sys_spu.h" #include "Emu/Cell/lv2/sys_event_flag.h" #include "Emu/Cell/lv2/sys_event.h" #include "Emu/Cell/lv2/sys_interrupt.h" #include "Emu/Cell/SPUDisAsm.h" #include "Emu/Cell/SPUThread.h" #include "Emu/Cell/SPUInterpreter.h" #include "Emu/Cell/SPURecompiler.h" #include "Emu/Memory/wait_engine.h" #include #include #include extern u64 get_timebased_time(); enum class spu_decoder_type { precise, fast, asmjit, llvm, }; cfg::map_entry g_cfg_spu_decoder(cfg::root.core, "SPU Decoder", 2, { { "Interpreter (precise)", spu_decoder_type::precise }, { "Interpreter (fast)", spu_decoder_type::fast }, { "Recompiler (ASMJIT)", spu_decoder_type::asmjit }, { "Recompiler (LLVM)", spu_decoder_type::llvm }, }); const spu_decoder s_spu_interpreter_precise; const spu_decoder s_spu_interpreter_fast; void spu_int_ctrl_t::set(u64 ints) { // leave only enabled interrupts ints &= mask; // notify if at least 1 bit was set if (ints && ~stat.fetch_or(ints) & ints && tag) { LV2_LOCK; if (tag && tag->handler) { tag->handler->exec(); } } } const spu_imm_table_t g_spu_imm; spu_imm_table_t::scale_table_t::scale_table_t() { for (s32 i = -155; i < 174; i++) { m_data[i + 155] = _mm_set1_ps(static_cast(std::exp2(i))); } } spu_imm_table_t::spu_imm_table_t() { for (u32 i = 0; i < sizeof(fsm) / sizeof(fsm[0]); i++) { for (u32 j = 0; j < 4; j++) { fsm[i]._u32[j] = (i & (1 << j)) ? 0xffffffff : 0; } } for (u32 i = 0; i < sizeof(fsmh) / sizeof(fsmh[0]); i++) { for (u32 j = 0; j < 8; j++) { fsmh[i]._u16[j] = (i & (1 << j)) ? 0xffff : 0; } } for (u32 i = 0; i < sizeof(fsmb) / sizeof(fsmb[0]); i++) { for (u32 j = 0; j < 16; j++) { fsmb[i]._u8[j] = (i & (1 << j)) ? 0xff : 0; } } for (u32 i = 0; i < sizeof(sldq_pshufb) / sizeof(sldq_pshufb[0]); i++) { for (u32 j = 0; j < 16; j++) { sldq_pshufb[i]._u8[j] = static_cast(j - i); } } for (u32 i = 0; i < sizeof(srdq_pshufb) / sizeof(srdq_pshufb[0]); i++) { for (u32 j = 0; j < 16; j++) { srdq_pshufb[i]._u8[j] = (j + i > 15) ? 0xff : static_cast(j + i); } } for (u32 i = 0; i < sizeof(rldq_pshufb) / sizeof(rldq_pshufb[0]); i++) { for (u32 j = 0; j < 16; j++) { rldq_pshufb[i]._u8[j] = static_cast((j - i) & 0xf); } } } std::string SPUThread::get_name() const { return fmt::format("%sSPU[0x%x] Thread (%s)", offset >= RAW_SPU_BASE_ADDR ? "Raw" : "", id, m_name); } std::string SPUThread::dump() const { std::string ret = "Registers:\n=========\n"; for (uint i = 0; i<128; ++i) ret += fmt::format("GPR[%d] = %s\n", i, gpr[i]); return ret; } void SPUThread::cpu_init() { gpr = {}; fpscr.Reset(); ch_mfc_args = {}; mfc_queue.clear(); ch_tag_mask = 0; ch_tag_stat.data.store({}); ch_stall_stat.data.store({}); ch_atomic_stat.data.store({}); ch_in_mbox.clear(); ch_out_mbox.data.store({}); ch_out_intr_mbox.data.store({}); snr_config = 0; ch_snr1.data.store({}); ch_snr2.data.store({}); ch_event_mask = 0; ch_event_stat = 0; last_raddr = 0; ch_dec_start_timestamp = get_timebased_time(); // ??? ch_dec_value = 0; run_ctrl = 0; status = 0; npc = 0; int_ctrl[0].clear(); int_ctrl[1].clear(); int_ctrl[2].clear(); gpr[1]._u32[3] = 0x3FFF0; // initial stack frame pointer } extern thread_local std::string(*g_tls_log_prefix)(); void SPUThread::cpu_task() { std::fesetround(FE_TOWARDZERO); if (custom_task) { if (check_state()) return; return custom_task(*this); } if (g_cfg_spu_decoder.get() == spu_decoder_type::asmjit) { if (!spu_db) spu_db = fxm::get_always(); return spu_recompiler_base::enter(*this); } g_tls_log_prefix = [] { const auto cpu = static_cast(get_current_cpu_thread()); return fmt::format("%s [0x%05x]", cpu->get_name(), cpu->pc); }; // Select opcode table const auto& table = *( g_cfg_spu_decoder.get() == spu_decoder_type::precise ? &s_spu_interpreter_precise.get_table() : g_cfg_spu_decoder.get() == spu_decoder_type::fast ? &s_spu_interpreter_fast.get_table() : throw std::logic_error("Invalid SPU decoder")); // LS base address const auto base = vm::_ptr(offset); while (true) { if (!state.load()) { // Read opcode const u32 op = base[pc / 4]; // Call interpreter function table[spu_decode(op)](*this, { op }); // Next instruction pc += 4; continue; } if (check_state()) return; } } SPUThread::~SPUThread() { // Deallocate Local Storage vm::dealloc_verbose_nothrow(offset); } SPUThread::SPUThread(const std::string& name) : cpu_thread(cpu_type::spu) , m_name(name) , index(0) , offset(0) { } SPUThread::SPUThread(const std::string& name, u32 index) : cpu_thread(cpu_type::spu) , m_name(name) , index(index) , offset(vm::alloc(0x40000, vm::main)) { ENSURES(offset); } void SPUThread::push_snr(u32 number, u32 value) { // Get channel const auto channel = number & 1 ? &ch_snr2 : &ch_snr1; // Check corresponding SNR register settings if ((snr_config >> number) & 1) { channel->push_or(*this, value); } else { channel->push(*this, value); } } void SPUThread::do_dma_transfer(u32 cmd, spu_mfc_arg_t args) { if (cmd & (MFC_BARRIER_MASK | MFC_FENCE_MASK)) { _mm_mfence(); } u32 eal = vm::cast(args.ea, HERE); if (eal >= SYS_SPU_THREAD_BASE_LOW && offset < RAW_SPU_BASE_ADDR) // SPU Thread Group MMIO (LS and SNR) { const u32 index = (eal - SYS_SPU_THREAD_BASE_LOW) / SYS_SPU_THREAD_OFFSET; // thread number in group const u32 offset = (eal - SYS_SPU_THREAD_BASE_LOW) % SYS_SPU_THREAD_OFFSET; // LS offset or MMIO register const auto group = tg.lock(); if (group && index < group->num && group->threads[index]) { auto& spu = static_cast(*group->threads[index]); if (offset + args.size - 1 < 0x40000) // LS access { eal = spu.offset + offset; // redirect access } else if ((cmd & MFC_PUT_CMD) && args.size == 4 && (offset == SYS_SPU_THREAD_SNR1 || offset == SYS_SPU_THREAD_SNR2)) { spu.push_snr(SYS_SPU_THREAD_SNR2 == offset, _ref(args.lsa)); return; } else { throw EXCEPTION("Invalid MMIO offset (cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x)", cmd, args.lsa, args.ea, args.tag, args.size); } } else { throw EXCEPTION("Invalid thread type (cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x)", cmd, args.lsa, args.ea, args.tag, args.size); } } switch (cmd & ~(MFC_BARRIER_MASK | MFC_FENCE_MASK)) { case MFC_PUT_CMD: case MFC_PUTR_CMD: { std::memcpy(vm::base(eal), vm::base(offset + args.lsa), args.size); return; } case MFC_GET_CMD: { std::memcpy(vm::base(offset + args.lsa), vm::base(eal), args.size); return; } } throw EXCEPTION("Invalid command %s (cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x)", get_mfc_cmd_name(cmd), cmd, args.lsa, args.ea, args.tag, args.size); } void SPUThread::do_dma_list_cmd(u32 cmd, spu_mfc_arg_t args) { if (!(cmd & MFC_LIST_MASK)) { throw EXCEPTION("Invalid command %s (cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x)", get_mfc_cmd_name(cmd), cmd, args.lsa, args.ea, args.tag, args.size); } const u32 list_addr = args.ea & 0x3ffff; const u32 list_size = args.size / 8; args.lsa &= 0x3fff0; struct list_element { be_t sb; // Stall-and-Notify bit (0x8000) be_t ts; // List Transfer Size be_t ea; // External Address Low }; for (u32 i = 0; i < list_size; i++) { auto rec = vm::ptr::make(offset + list_addr + i * 8); const u32 size = rec->ts; const u32 addr = rec->ea; if (size) { spu_mfc_arg_t transfer; transfer.ea = addr; transfer.lsa = args.lsa | (addr & 0xf); transfer.tag = args.tag; transfer.size = size; do_dma_transfer(cmd & ~MFC_LIST_MASK, transfer); args.lsa += std::max(size, 16); } if (rec->sb & 0x8000) { ch_stall_stat.set_value((1 << args.tag) | ch_stall_stat.get_value()); spu_mfc_arg_t stalled; stalled.ea = (args.ea & ~0xffffffff) | (list_addr + (i + 1) * 8); stalled.lsa = args.lsa; stalled.tag = args.tag; stalled.size = (list_size - i - 1) * 8; mfc_queue.emplace_back(cmd, stalled); return; } } } void SPUThread::process_mfc_cmd(u32 cmd) { LOG_TRACE(SPU, "DMA %s: cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x", get_mfc_cmd_name(cmd), cmd, ch_mfc_args.lsa, ch_mfc_args.ea, ch_mfc_args.tag, ch_mfc_args.size); switch (cmd) { case MFC_PUT_CMD: case MFC_PUTB_CMD: case MFC_PUTF_CMD: case MFC_PUTR_CMD: case MFC_PUTRB_CMD: case MFC_PUTRF_CMD: case MFC_GET_CMD: case MFC_GETB_CMD: case MFC_GETF_CMD: { return do_dma_transfer(cmd, ch_mfc_args); } case MFC_PUTL_CMD: case MFC_PUTLB_CMD: case MFC_PUTLF_CMD: case MFC_PUTRL_CMD: case MFC_PUTRLB_CMD: case MFC_PUTRLF_CMD: case MFC_GETL_CMD: case MFC_GETLB_CMD: case MFC_GETLF_CMD: { return do_dma_list_cmd(cmd, ch_mfc_args); } case MFC_GETLLAR_CMD: // acquire reservation { if (ch_mfc_args.size != 128) { break; } const u32 raddr = vm::cast(ch_mfc_args.ea, HERE); vm::reservation_acquire(vm::base(offset + ch_mfc_args.lsa), raddr, 128); if (std::exchange(last_raddr, raddr)) { ch_event_stat |= SPU_EVENT_LR; } return ch_atomic_stat.set_value(MFC_GETLLAR_SUCCESS); } case MFC_PUTLLC_CMD: // store conditionally { if (ch_mfc_args.size != 128) { break; } if (vm::reservation_update(vm::cast(ch_mfc_args.ea, HERE), vm::base(offset + ch_mfc_args.lsa), 128)) { if (std::exchange(last_raddr, 0) == 0) { throw std::runtime_error("PUTLLC succeeded without GETLLAR" HERE); } return ch_atomic_stat.set_value(MFC_PUTLLC_SUCCESS); } else { if (std::exchange(last_raddr, 0)) { ch_event_stat |= SPU_EVENT_LR; } return ch_atomic_stat.set_value(MFC_PUTLLC_FAILURE); } } case MFC_PUTLLUC_CMD: // store unconditionally case MFC_PUTQLLUC_CMD: { if (ch_mfc_args.size != 128) { break; } vm::reservation_op(vm::cast(ch_mfc_args.ea, HERE), 128, [this]() { std::memcpy(vm::base_priv(vm::cast(ch_mfc_args.ea, HERE)), vm::base(offset + ch_mfc_args.lsa), 128); }); if (last_raddr != 0 && vm::g_tls_did_break_reservation) { ch_event_stat |= SPU_EVENT_LR; last_raddr = 0; } if (cmd == MFC_PUTLLUC_CMD) { ch_atomic_stat.set_value(MFC_PUTLLUC_SUCCESS); } return; } case MFC_BARRIER_CMD: case MFC_EIEIO_CMD: case MFC_SYNC_CMD: _mm_mfence(); return; } throw EXCEPTION("Unknown command %s (cmd=0x%x, lsa=0x%x, ea=0x%llx, tag=0x%x, size=0x%x)", get_mfc_cmd_name(cmd), cmd, ch_mfc_args.lsa, ch_mfc_args.ea, ch_mfc_args.tag, ch_mfc_args.size); } u32 SPUThread::get_events(bool waiting) { // check reservation status and set SPU_EVENT_LR if lost if (last_raddr != 0 && !vm::reservation_test(operator->())) { ch_event_stat |= SPU_EVENT_LR; last_raddr = 0; } // initialize waiting if (waiting) { // polling with atomically set/removed SPU_EVENT_WAITING flag return ch_event_stat.atomic_op([this](u32& stat) -> u32 { if (u32 res = stat & ch_event_mask) { stat &= ~SPU_EVENT_WAITING; return res; } else { stat |= SPU_EVENT_WAITING; return 0; } }); } // simple polling return ch_event_stat & ch_event_mask; } void SPUThread::set_events(u32 mask) { if (u32 unimpl = mask & ~SPU_EVENT_IMPLEMENTED) { throw EXCEPTION("Unimplemented events (0x%x)", unimpl); } // Set new events, get old event mask const u32 old_stat = ch_event_stat.fetch_or(mask); // Notify if some events were set if (~old_stat & mask && old_stat & SPU_EVENT_WAITING && ch_event_stat & SPU_EVENT_WAITING) { lock_notify(); } } void SPUThread::set_interrupt_status(bool enable) { if (enable) { // detect enabling interrupts with events masked if (u32 mask = ch_event_mask) { throw EXCEPTION("SPU Interrupts not implemented (mask=0x%x)", mask); } ch_event_stat |= SPU_EVENT_INTR_ENABLED; } else { ch_event_stat &= ~SPU_EVENT_INTR_ENABLED; } } u32 SPUThread::get_ch_count(u32 ch) { LOG_TRACE(SPU, "get_ch_count(ch=%d [%s])", ch, ch < 128 ? spu_ch_name[ch] : "???"); switch (ch) { //case MFC_Cmd: return 16; //case SPU_WrSRR0: return 1; break; //case SPU_RdSRR0: return 1; break; case SPU_WrOutMbox: return ch_out_mbox.get_count() ^ 1; break; case SPU_WrOutIntrMbox: return ch_out_intr_mbox.get_count() ^ 1; break; case SPU_RdInMbox: return ch_in_mbox.get_count(); break; case MFC_RdTagStat: return ch_tag_stat.get_count(); break; case MFC_RdListStallStat: return ch_stall_stat.get_count(); break; case MFC_WrTagUpdate: return ch_tag_stat.get_count(); break; // hack case SPU_RdSigNotify1: return ch_snr1.get_count(); break; case SPU_RdSigNotify2: return ch_snr2.get_count(); break; case MFC_RdAtomicStat: return ch_atomic_stat.get_count(); break; case SPU_RdEventStat: return get_events() ? 1 : 0; break; } throw EXCEPTION("Unknown/illegal channel (ch=%d [%s])", ch, ch < 128 ? spu_ch_name[ch] : "???"); } bool SPUThread::get_ch_value(u32 ch, u32& out) { LOG_TRACE(SPU, "get_ch_value(ch=%d [%s])", ch, ch < 128 ? spu_ch_name[ch] : "???"); auto read_channel = [&](spu_channel_t& channel) { if (!channel.try_pop(out)) { thread_lock{*this}, thread_ctrl::wait(WRAP_EXPR(state & cpu_state::stop || channel.try_pop(out))); return !state.test(cpu_state::stop); } return true; }; switch (ch) { //case SPU_RdSRR0: // value = SRR0; // break; case SPU_RdInMbox: { std::unique_lock lock(*this, std::defer_lock); while (true) { if (const uint old_count = ch_in_mbox.try_pop(out)) { if (old_count == 4 /* SPU_IN_MBOX_THRESHOLD */) // TODO: check this { int_ctrl[2].set(SPU_INT2_STAT_SPU_MAILBOX_THRESHOLD_INT); } return true; } CHECK_EMU_STATUS; if (state & cpu_state::stop) { return false; } if (!lock) { lock.lock(); continue; } thread_ctrl::wait(); } } case MFC_RdTagStat: { return read_channel(ch_tag_stat); } case MFC_RdTagMask: { out = ch_tag_mask; return true; } case SPU_RdSigNotify1: { return read_channel(ch_snr1); } case SPU_RdSigNotify2: { return read_channel(ch_snr2); } case MFC_RdAtomicStat: { return read_channel(ch_atomic_stat); } case MFC_RdListStallStat: { return read_channel(ch_stall_stat); } case SPU_RdDec: { out = ch_dec_value - (u32)(get_timebased_time() - ch_dec_start_timestamp); return true; } case SPU_RdEventMask: { out = ch_event_mask; return true; } case SPU_RdEventStat: { std::unique_lock lock(*this, std::defer_lock); // start waiting or return immediately if (u32 res = get_events(true)) { out = res; return true; } if (ch_event_mask & SPU_EVENT_LR) { // register waiter if polling reservation status is required vm::wait_op(last_raddr, 128, WRAP_EXPR(get_events(true) || state & cpu_state::stop)); } else { lock.lock(); // simple waiting loop otherwise while (!get_events(true) && !(state & cpu_state::stop)) { CHECK_EMU_STATUS; thread_ctrl::wait(); } } ch_event_stat &= ~SPU_EVENT_WAITING; if (state & cpu_state::stop) { return false; } out = get_events(); return true; } case SPU_RdMachStat: { // HACK: "Not isolated" status // Return SPU Interrupt status in LSB out = (ch_event_stat & SPU_EVENT_INTR_ENABLED) != 0; return true; } } throw EXCEPTION("Unknown/illegal channel (ch=%d [%s])", ch, ch < 128 ? spu_ch_name[ch] : "???"); } bool SPUThread::set_ch_value(u32 ch, u32 value) { LOG_TRACE(SPU, "set_ch_value(ch=%d [%s], value=0x%x)", ch, ch < 128 ? spu_ch_name[ch] : "???", value); switch (ch) { //case SPU_WrSRR0: // SRR0 = value & 0x3FFFC; //LSLR & ~3 // break; case SPU_WrOutIntrMbox: { if (offset >= RAW_SPU_BASE_ADDR) { std::unique_lock lock(*this, std::defer_lock); while (!ch_out_intr_mbox.try_push(value)) { CHECK_EMU_STATUS; if (state & cpu_state::stop) { return false; } if (!lock) { lock.lock(); continue; } thread_ctrl::wait(); } int_ctrl[2].set(SPU_INT2_STAT_MAILBOX_INT); return true; } else { const u8 code = value >> 24; if (code < 64) { /* ===== sys_spu_thread_send_event (used by spu_printf) ===== */ LV2_LOCK; const u8 spup = code & 63; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_spu_thread_send_event(value=0x%x, spup=%d): Out_MBox is empty", value, spup); } if (u32 count = ch_in_mbox.get_count()) { throw EXCEPTION("sys_spu_thread_send_event(value=0x%x, spup=%d): In_MBox is not empty (count=%d)", value, spup, count); } const u32 data = ch_out_mbox.get_value(); ch_out_mbox.set_value(data, 0); LOG_TRACE(SPU, "sys_spu_thread_send_event(spup=%d, data0=0x%x, data1=0x%x)", spup, value & 0x00ffffff, data); const auto queue = this->spup[spup].lock(); if (!queue) { LOG_WARNING(SPU, "sys_spu_thread_send_event(spup=%d, data0=0x%x, data1=0x%x): event queue not connected", spup, (value & 0x00ffffff), data); return ch_in_mbox.set_values(1, CELL_ENOTCONN), true; // TODO: check error passing } if (queue->events() >= queue->size) { return ch_in_mbox.set_values(1, CELL_EBUSY), true; } queue->push(lv2_lock, SYS_SPU_THREAD_EVENT_USER_KEY, id, ((u64)spup << 32) | (value & 0x00ffffff), data); return ch_in_mbox.set_values(1, CELL_OK), true; } else if (code < 128) { /* ===== sys_spu_thread_throw_event ===== */ LV2_LOCK; const u8 spup = code & 63; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_spu_thread_throw_event(value=0x%x, spup=%d): Out_MBox is empty", value, spup); } const u32 data = ch_out_mbox.get_value(); ch_out_mbox.set_value(data, 0); LOG_TRACE(SPU, "sys_spu_thread_throw_event(spup=%d, data0=0x%x, data1=0x%x)", spup, value & 0x00ffffff, data); const auto queue = this->spup[spup].lock(); if (!queue) { LOG_WARNING(SPU, "sys_spu_thread_throw_event(spup=%d, data0=0x%x, data1=0x%x): event queue not connected", spup, (value & 0x00ffffff), data); return true; } // TODO: check passing spup value if (queue->events() >= queue->size) { LOG_WARNING(SPU, "sys_spu_thread_throw_event(spup=%d, data0=0x%x, data1=0x%x) failed (queue is full)", spup, (value & 0x00ffffff), data); return true; } queue->push(lv2_lock, SYS_SPU_THREAD_EVENT_USER_KEY, id, ((u64)spup << 32) | (value & 0x00ffffff), data); return true; } else if (code == 128) { /* ===== sys_event_flag_set_bit ===== */ LV2_LOCK; const u32 flag = value & 0xffffff; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_event_flag_set_bit(value=0x%x (flag=%d)): Out_MBox is empty", value, flag); } if (u32 count = ch_in_mbox.get_count()) { throw EXCEPTION("sys_event_flag_set_bit(value=0x%x (flag=%d)): In_MBox is not empty (%d)", value, flag, count); } const u32 data = ch_out_mbox.get_value(); ch_out_mbox.set_value(data, 0); if (flag > 63) { throw EXCEPTION("sys_event_flag_set_bit(id=%d, value=0x%x (flag=%d)): Invalid flag", data, value, flag); } LOG_TRACE(SPU, "sys_event_flag_set_bit(id=%d, value=0x%x (flag=%d))", data, value, flag); const auto eflag = idm::get(data); if (!eflag) { return ch_in_mbox.set_values(1, CELL_ESRCH), true; } const u64 bitptn = 1ull << flag; if (~eflag->pattern.fetch_or(bitptn) & bitptn) { // notify if the bit was set eflag->notify_all(lv2_lock); } return ch_in_mbox.set_values(1, CELL_OK), true; } else if (code == 192) { /* ===== sys_event_flag_set_bit_impatient ===== */ LV2_LOCK; const u32 flag = value & 0xffffff; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_event_flag_set_bit_impatient(value=0x%x (flag=%d)): Out_MBox is empty", value, flag); } const u32 data = ch_out_mbox.get_value(); ch_out_mbox.set_value(data, 0); if (flag > 63) { throw EXCEPTION("sys_event_flag_set_bit_impatient(id=%d, value=0x%x (flag=%d)): Invalid flag", data, value, flag); } LOG_TRACE(SPU, "sys_event_flag_set_bit_impatient(id=%d, value=0x%x (flag=%d))", data, value, flag); const auto eflag = idm::get(data); if (!eflag) { return true; } const u64 bitptn = 1ull << flag; if (~eflag->pattern.fetch_or(bitptn) & bitptn) { // notify if the bit was set eflag->notify_all(lv2_lock); } return true; } else { if (ch_out_mbox.get_count()) { throw EXCEPTION("SPU_WrOutIntrMbox: unknown data (value=0x%x); Out_MBox = 0x%x", value, ch_out_mbox.get_value()); } else { throw EXCEPTION("SPU_WrOutIntrMbox: unknown data (value=0x%x)", value); } } } } case SPU_WrOutMbox: { std::unique_lock lock(*this, std::defer_lock); while (!ch_out_mbox.try_push(value)) { CHECK_EMU_STATUS; if (state & cpu_state::stop) { return false; } if (!lock) { lock.lock(); continue; } thread_ctrl::wait(); } return true; } case MFC_WrTagMask: { ch_tag_mask = value; return true; } case MFC_WrTagUpdate: { ch_tag_stat.set_value(ch_tag_mask); // hack return true; } case MFC_LSA: { if (value >= 0x40000) { break; } ch_mfc_args.lsa = value; return true; } case MFC_EAH: { ch_mfc_args.eah = value; return true; } case MFC_EAL: { ch_mfc_args.eal = value; return true; } case MFC_Size: { if (value > 16 * 1024) { break; } ch_mfc_args.size = (u16)value; return true; } case MFC_TagID: { if (value >= 32) { break; } ch_mfc_args.tag = (u16)value; return true; } case MFC_Cmd: { process_mfc_cmd(value); ch_mfc_args = {}; // clear non-persistent data return true; } case MFC_WrListStallAck: { if (value >= 32) { break; } size_t processed = 0; for (size_t i = 0; i < mfc_queue.size(); i++) { if (mfc_queue[i].second.tag == value) { do_dma_list_cmd(mfc_queue[i].first, mfc_queue[i].second); mfc_queue[i].second.tag = 0xdead; processed++; } } while (processed) { for (size_t i = 0; i < mfc_queue.size(); i++) { if (mfc_queue[i].second.tag == 0xdead) { mfc_queue.erase(mfc_queue.begin() + i); processed--; break; } } } return true; } case SPU_WrDec: { ch_dec_start_timestamp = get_timebased_time(); ch_dec_value = value; return true; } case SPU_WrEventMask: { // detect masking events with enabled interrupt status if (value && ch_event_stat & SPU_EVENT_INTR_ENABLED) { throw EXCEPTION("SPU Interrupts not implemented (mask=0x%x)", value); } // detect masking unimplemented events if (value & ~SPU_EVENT_IMPLEMENTED) { break; } ch_event_mask = value; return true; } case SPU_WrEventAck: { if (value & ~SPU_EVENT_IMPLEMENTED) { break; } ch_event_stat &= ~value; return true; } } throw EXCEPTION("Unknown/illegal channel (ch=%d [%s], value=0x%x)", ch, ch < 128 ? spu_ch_name[ch] : "???", value); } bool SPUThread::stop_and_signal(u32 code) { LOG_TRACE(SPU, "stop_and_signal(code=0x%x)", code); if (offset >= RAW_SPU_BASE_ADDR) { status.atomic_op([code](u32& status) { status = (status & 0xffff) | (code << 16); status |= SPU_STATUS_STOPPED_BY_STOP; status &= ~SPU_STATUS_RUNNING; }); int_ctrl[2].set(SPU_INT2_STAT_SPU_STOP_AND_SIGNAL_INT); state += cpu_state::stop; return true; // ??? } switch (code) { case 0x001: { std::this_thread::sleep_for(1ms); // hack return true; } case 0x002: { state += cpu_state::ret; return true; } case 0x003: { const auto found = m_addr_to_hle_function_map.find(pc); if (found == m_addr_to_hle_function_map.end()) { throw EXCEPTION("HLE function not registered (PC=0x%05x)", pc); } if (const auto return_to_caller = found->second(*this)) { pc = (gpr[0]._u32[3] & 0x3fffc) - 4; } return true; } case 0x110: { /* ===== sys_spu_thread_receive_event ===== */ LV2_LOCK; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_spu_thread_receive_event(): Out_MBox is empty"); } if (u32 count = ch_in_mbox.get_count()) { LOG_ERROR(SPU, "sys_spu_thread_receive_event(): In_MBox is not empty (%d)", count); return ch_in_mbox.set_values(1, CELL_EBUSY), true; } const u32 spuq = ch_out_mbox.get_value(); ch_out_mbox.set_value(spuq, 0); LOG_TRACE(SPU, "sys_spu_thread_receive_event(spuq=0x%x)", spuq); const auto group = tg.lock(); if (!group) { throw EXCEPTION("Invalid SPU Thread Group"); } if (group->type & SYS_SPU_THREAD_GROUP_TYPE_EXCLUSIVE_NON_CONTEXT) // this check may be inaccurate { return ch_in_mbox.set_values(1, CELL_EINVAL), true; } std::shared_ptr queue; for (auto& v : this->spuq) { if (spuq == v.first) { queue = v.second.lock(); if (queue) { break; } } } if (!queue) { return ch_in_mbox.set_values(1, CELL_EINVAL), true; // TODO: check error value } // check thread group status while (group->state >= SPU_THREAD_GROUP_STATUS_WAITING && group->state <= SPU_THREAD_GROUP_STATUS_SUSPENDED) { CHECK_EMU_STATUS; if (state & cpu_state::stop) { return false; } group->cv.wait_for(lv2_lock, 1ms); } // change group status if (group->state == SPU_THREAD_GROUP_STATUS_RUNNING) { group->state = SPU_THREAD_GROUP_STATUS_WAITING; for (auto& thread : group->threads) { if (thread) { thread->state += cpu_state::suspend; } } } else { throw EXCEPTION("Unexpected SPU Thread Group state (%d)", (u32)group->state); } if (queue->events()) { const auto event = queue->pop(lv2_lock); ch_in_mbox.set_values(4, CELL_OK, static_cast(std::get<1>(event)), static_cast(std::get<2>(event)), static_cast(std::get<3>(event))); } else { // add waiter; protocol is ignored in current implementation sleep_entry waiter(queue->thread_queue(lv2_lock), *this); // wait on the event queue while (!state.test_and_reset(cpu_state::signal)) { CHECK_EMU_STATUS; if (state & cpu_state::stop) { return false; } get_current_thread_cv().wait(lv2_lock); } // event data must be set by push() } // restore thread group status if (group->state == SPU_THREAD_GROUP_STATUS_WAITING) { group->state = SPU_THREAD_GROUP_STATUS_RUNNING; } else if (group->state == SPU_THREAD_GROUP_STATUS_WAITING_AND_SUSPENDED) { group->state = SPU_THREAD_GROUP_STATUS_SUSPENDED; } else { throw EXCEPTION("Unexpected SPU Thread Group state (%d)", (u32)group->state); } for (auto& thread : group->threads) { if (thread && thread.get() != this) { thread->state -= cpu_state::suspend; thread->lock_notify(); } } state -= cpu_state::suspend; group->cv.notify_all(); return true; } case 0x101: { /* ===== sys_spu_thread_group_exit ===== */ LV2_LOCK; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_spu_thread_group_exit(): Out_MBox is empty"); } const u32 value = ch_out_mbox.get_value(); ch_out_mbox.set_value(value, 0); LOG_TRACE(SPU, "sys_spu_thread_group_exit(status=0x%x)", value); const auto group = tg.lock(); if (!group) { throw EXCEPTION("Invalid SPU Thread Group"); } for (auto& thread : group->threads) { if (thread && thread.get() != this) { thread->state += cpu_state::stop; thread->lock_notify(); } } group->state = SPU_THREAD_GROUP_STATUS_INITIALIZED; group->exit_status = value; group->join_state |= SPU_TGJSF_GROUP_EXIT; group->cv.notify_one(); state += cpu_state::stop; return true; } case 0x102: { /* ===== sys_spu_thread_exit ===== */ LV2_LOCK; if (!ch_out_mbox.get_count()) { throw EXCEPTION("sys_spu_thread_exit(): Out_MBox is empty"); } LOG_TRACE(SPU, "sys_spu_thread_exit(status=0x%x)", ch_out_mbox.get_value()); const auto group = tg.lock(); if (!group) { throw EXCEPTION("Invalid SPU Thread Group"); } status |= SPU_STATUS_STOPPED_BY_STOP; group->cv.notify_one(); state += cpu_state::stop; return true; } } if (!ch_out_mbox.get_count()) { throw EXCEPTION("Unknown STOP code: 0x%x (Out_MBox is empty)", code); } else { throw EXCEPTION("Unknown STOP code: 0x%x (Out_MBox=0x%x)", code, ch_out_mbox.get_value()); } } void SPUThread::halt() { LOG_TRACE(SPU, "halt()"); if (offset >= RAW_SPU_BASE_ADDR) { status.atomic_op([](u32& status) { status |= SPU_STATUS_STOPPED_BY_HALT; status &= ~SPU_STATUS_RUNNING; }); int_ctrl[2].set(SPU_INT2_STAT_SPU_HALT_OR_STEP_INT); throw cpu_state::stop; } status |= SPU_STATUS_STOPPED_BY_HALT; throw EXCEPTION("Halt"); } void SPUThread::fast_call(u32 ls_addr) { // LS:0x0: this is originally the entry point of the interrupt handler, but interrupts are not implemented _ref(0) = 0x00000002; // STOP 2 auto old_pc = pc; auto old_lr = gpr[0]._u32[3]; auto old_stack = gpr[1]._u32[3]; // only saved and restored (may be wrong) auto old_task = std::move(custom_task); pc = ls_addr; gpr[0]._u32[3] = 0x0; custom_task = nullptr; try { cpu_task(); } catch (cpu_state _s) { state += _s; if (_s != cpu_state::ret) throw; } state -= cpu_state::ret; pc = old_pc; gpr[0]._u32[3] = old_lr; gpr[1]._u32[3] = old_stack; custom_task = std::move(old_task); } void SPUThread::RegisterHleFunction(u32 addr, std::function function) { m_addr_to_hle_function_map[addr] = function; _ref(addr) = 0x00000003; // STOP 3 } void SPUThread::UnregisterHleFunction(u32 addr) { m_addr_to_hle_function_map.erase(addr); } void SPUThread::UnregisterHleFunctions(u32 start_addr, u32 end_addr) { for (auto iter = m_addr_to_hle_function_map.begin(); iter != m_addr_to_hle_function_map.end();) { if (iter->first >= start_addr && iter->first <= end_addr) { m_addr_to_hle_function_map.erase(iter++); } else { iter++; } } }