#include "stdafx.h" #include "vm_locking.h" #include "vm_ptr.h" #include "vm_ref.h" #include "vm_reservation.h" #include "Utilities/mutex.h" #include "Utilities/Thread.h" #include "Utilities/address_range.h" #include "Emu/CPU/CPUThread.h" #include "Emu/RSX/RSXThread.h" #include "Emu/Cell/SPURecompiler.h" #include "Emu/perf_meter.hpp" #include #include #include #include "util/vm.hpp" #include "util/asm.hpp" LOG_CHANNEL(vm_log, "VM"); namespace vm { static u8* memory_reserve_4GiB(void* _addr, u64 size = 0x100000000) { for (u64 addr = reinterpret_cast(_addr) + 0x100000000; addr < 0x8000'0000'0000; addr += 0x100000000) { if (auto ptr = utils::memory_reserve(size, reinterpret_cast(addr))) { return static_cast(ptr); } } fmt::throw_exception("Failed to reserve vm memory"); } // Emulated virtual memory u8* const g_base_addr = memory_reserve_4GiB(reinterpret_cast(0x2'0000'0000), 0x2'0000'0000); // Unprotected virtual memory mirror u8* const g_sudo_addr = g_base_addr + 0x1'0000'0000; // Auxiliary virtual memory for executable areas u8* const g_exec_addr = memory_reserve_4GiB(g_sudo_addr, 0x200000000); // Hooks for memory R/W interception (default: zero offset to some function with only ret instructions) u8* const g_hook_addr = memory_reserve_4GiB(g_exec_addr, 0x800000000); // Stats for debugging u8* const g_stat_addr = memory_reserve_4GiB(g_hook_addr); // For SPU u8* const g_free_addr = g_stat_addr + 0x1'0000'0000; // Reservation stats alignas(4096) u8 g_reservations[65536 / 128 * 64]{0}; // Pointers to shared memory mirror or zeros for "normal" memory alignas(4096) atomic_t g_shmem[65536]{0}; // Memory locations alignas(64) std::vector> g_locations; // Memory mutex core shared_mutex g_mutex; // Memory mutex acknowledgement thread_local atomic_t* g_tls_locked = nullptr; // "Unique locked" range lock, as opposed to "shared" range locks from set atomic_t g_range_lock = 0; // Memory mutex: passive locks std::array, g_cfg.core.ppu_threads.max> g_locks{}; // Range lock slot allocation bits atomic_t g_range_lock_bits{}; // Memory range lock slots (sparse atomics) atomic_t g_range_lock_set[64]{}; // Memory pages std::array g_pages; std::pair try_reservation_update(u32 addr) { // Update reservation info with new timestamp auto& res = reservation_acquire(addr); const u64 rtime = res; return {!(rtime & vm::rsrv_unique_lock) && res.compare_and_swap_test(rtime, rtime + 128), rtime}; } void reservation_update(u32 addr) { u64 old = UINT64_MAX; const auto cpu = get_current_cpu_thread(); while (true) { const auto [ok, rtime] = try_reservation_update(addr); if (ok || (old & -128) < (rtime & -128)) { if (ok) { reservation_notifier(addr).notify_all(); } return; } old = rtime; if (cpu && cpu->test_stopped()) { return; } } } static void _register_lock(cpu_thread* _cpu) { for (u32 i = 0, max = g_cfg.core.ppu_threads;;) { if (!g_locks[i] && g_locks[i].compare_and_swap_test(nullptr, _cpu)) { g_tls_locked = g_locks.data() + i; break; } if (++i == max) i = 0; } } atomic_t* alloc_range_lock() { const auto [bits, ok] = g_range_lock_bits.fetch_op([](u64& bits) { if (~bits) [[likely]] { bits |= bits + 1; return true; } return false; }); if (!ok) [[unlikely]] { fmt::throw_exception("Out of range lock bits"); } return &g_range_lock_set[std::countr_one(bits)]; } void range_lock_internal(atomic_t* range_lock, u32 begin, u32 size) { perf_meter<"RHW_LOCK"_u64> perf0; auto _cpu = get_current_cpu_thread(); if (_cpu) { _cpu->state += cpu_flag::wait + cpu_flag::temp; } for (u64 i = 0;; i++) { range_lock->store(begin | (u64{size} << 32)); const u64 lock_val = g_range_lock.load(); const u64 is_share = g_shmem[begin >> 16].load(); u64 lock_addr = static_cast(lock_val); // -> u64 u32 lock_size = static_cast(lock_val << range_bits >> (range_bits + 32)); u64 addr = begin; if ((lock_val & range_full_mask) == range_locked) [[likely]] { lock_size = 128; if (is_share) { addr = static_cast(addr) | is_share; lock_addr = lock_val; } } if (addr + size <= lock_addr || addr >= lock_addr + lock_size) [[likely]] { const u64 new_lock_val = g_range_lock.load(); if (vm::check_addr(begin, vm::page_readable, size) && (!new_lock_val || new_lock_val == lock_val)) [[likely]] { break; } } // Wait a bit before accessing g_mutex range_lock->store(0); busy_wait(200); std::shared_lock lock(g_mutex, std::try_to_lock); if (!lock && i < 15) { busy_wait(200); continue; } else if (!lock) { lock.lock(); } u32 test = 0; for (u32 i = begin / 4096, max = (begin + size - 1) / 4096; i <= max; i++) { if (!(g_pages[i] & (vm::page_readable))) { test = i * 4096; break; } } if (test) { lock.unlock(); // Try tiggering a page fault (write) // TODO: Read memory if needed vm::_ref>(test) += 0; continue; } range_lock->release(begin | (u64{size} << 32)); break; } if (_cpu) { _cpu->check_state(); } } void free_range_lock(atomic_t* range_lock) noexcept { if (range_lock < g_range_lock_set || range_lock >= std::end(g_range_lock_set)) { fmt::throw_exception("Invalid range lock"); } range_lock->release(0); // Use ptr difference to determine location const auto diff = range_lock - g_range_lock_set; g_range_lock_bits &= ~(1ull << diff); } template FORCE_INLINE static u64 for_all_range_locks(u64 input, F func) { u64 result = input; for (u64 bits = input; bits; bits &= bits - 1) { const u32 id = std::countr_zero(bits); const u64 lock_val = g_range_lock_set[id].load(); if (const u32 size = static_cast(lock_val >> 32)) [[unlikely]] { const u32 addr = static_cast(lock_val); if (func(addr, size)) [[unlikely]] { continue; } } result &= ~(1ull << id); } return result; } static void _lock_main_range_lock(u64 flags, u32 addr, u32 size) { // Shouldn't really happen if (size == 0) { vm_log.warning("Tried to lock empty range (flags=0x%x, addr=0x%x)", flags >> 32, addr); g_range_lock.release(0); return; } // Limit to <512 MiB at once; make sure if it operates on big amount of data, it's page-aligned if (size >= 512 * 1024 * 1024 || (size > 65536 && size % 4096)) { fmt::throw_exception("Failed to lock range (flags=0x%x, addr=0x%x, size=0x%x)", flags >> 32, addr, size); } // Block or signal new range locks g_range_lock = addr | u64{size} << 32 | flags; utils::prefetch_read(g_range_lock_set + 0); utils::prefetch_read(g_range_lock_set + 2); utils::prefetch_read(g_range_lock_set + 4); const auto range = utils::address_range::start_length(addr, size); u64 to_clear = g_range_lock_bits.load(); while (to_clear) { to_clear = for_all_range_locks(to_clear, [&](u32 addr2, u32 size2) { if (range.overlaps(utils::address_range::start_length(addr2, size2))) [[unlikely]] { return 1; } return 0; }); if (!to_clear) [[likely]] { break; } utils::pause(); } } void passive_lock(cpu_thread& cpu) { bool ok = true; if (!g_tls_locked || *g_tls_locked != &cpu) [[unlikely]] { _register_lock(&cpu); if (cpu.state & cpu_flag::memory) [[likely]] { cpu.state -= cpu_flag::memory; } if (g_mutex.is_lockable()) { return; } ok = false; } if (!ok || cpu.state & cpu_flag::memory) { while (true) { g_mutex.lock_unlock(); cpu.state -= cpu_flag::memory; if (g_mutex.is_lockable()) [[likely]] { return; } } } } void passive_unlock(cpu_thread& cpu) { if (auto& ptr = g_tls_locked) { ptr->release(nullptr); ptr = nullptr; if (cpu.state & cpu_flag::memory) { cpu.state -= cpu_flag::memory; } } } void temporary_unlock(cpu_thread& cpu) noexcept { if (!(cpu.state & cpu_flag::wait)) cpu.state += cpu_flag::wait; if (g_tls_locked && g_tls_locked->compare_and_swap_test(&cpu, nullptr)) { cpu.state += cpu_flag::memory; } } void temporary_unlock() noexcept { if (auto cpu = get_current_cpu_thread()) { temporary_unlock(*cpu); } } reader_lock::reader_lock() { auto cpu = get_current_cpu_thread(); if (cpu) { if (!g_tls_locked || *g_tls_locked != cpu || cpu->state & cpu_flag::wait) { cpu = nullptr; } else { cpu->state += cpu_flag::wait; } } g_mutex.lock_shared(); if (cpu) { cpu->state -= cpu_flag::memory + cpu_flag::wait; } } reader_lock::~reader_lock() { if (m_upgraded) { g_mutex.unlock(); } else { g_mutex.unlock_shared(); } } void reader_lock::upgrade() { if (m_upgraded) { return; } g_mutex.lock_upgrade(); m_upgraded = true; } writer_lock::writer_lock(u32 addr /*mutable*/) { auto cpu = get_current_cpu_thread(); if (cpu) { if (!g_tls_locked || *g_tls_locked != cpu || cpu->state & cpu_flag::wait) { cpu = nullptr; } else { cpu->state += cpu_flag::wait; } } g_mutex.lock(); if (addr >= 0x10000) { perf_meter<"SUSPEND"_u64> perf0; for (auto lock = g_locks.cbegin(), end = lock + g_cfg.core.ppu_threads; lock != end; lock++) { if (auto ptr = +*lock; ptr && !(ptr->state & cpu_flag::memory)) { ptr->state.test_and_set(cpu_flag::memory); } } u64 addr1 = addr; if (u64 is_shared = g_shmem[addr >> 16]) [[unlikely]] { // Reservation address in shareable memory range addr1 = static_cast(addr) | is_shared; } g_range_lock = addr | range_locked; utils::prefetch_read(g_range_lock_set + 0); utils::prefetch_read(g_range_lock_set + 2); utils::prefetch_read(g_range_lock_set + 4); u64 to_clear = g_range_lock_bits.load(); u64 point = addr1 / 128; while (true) { to_clear = for_all_range_locks(to_clear, [&](u64 addr2, u32 size2) { // TODO (currently not possible): handle 2 64K pages (inverse range), or more pages if (u64 is_shared = g_shmem[addr2 >> 16]) [[unlikely]] { addr2 = static_cast(addr2) | is_shared; } if (point - (addr2 / 128) <= (addr2 + size2 - 1) / 128 - (addr2 / 128)) [[unlikely]] { return 1; } return 0; }); if (!to_clear) [[likely]] { break; } utils::pause(); } for (auto lock = g_locks.cbegin(), end = lock + g_cfg.core.ppu_threads; lock != end; lock++) { if (auto ptr = +*lock) { while (!(ptr->state & cpu_flag::wait)) { utils::pause(); } } } } if (cpu) { cpu->state -= cpu_flag::memory + cpu_flag::wait; } } writer_lock::~writer_lock() { g_range_lock.release(0); g_mutex.unlock(); } u64 reservation_lock_internal(u32 addr, atomic_t& res) { for (u64 i = 0;; i++) { if (u64 rtime = res; !(rtime & 127) && reservation_try_lock(res, rtime)) [[likely]] { return rtime; } if (auto cpu = get_current_cpu_thread(); cpu && cpu->state) { cpu->check_state(); } else if (i < 15) { busy_wait(500); } else { // TODO: Accurate locking in this case if (!(g_pages[addr / 4096] & page_writable)) { return -1; } std::this_thread::yield(); } } } void reservation_shared_lock_internal(atomic_t& res) { for (u64 i = 0;; i++) { auto [_oldd, _ok] = res.fetch_op([&](u64& r) { if (r & rsrv_unique_lock) { return false; } r += 1; return true; }); if (_ok) [[likely]] { return; } if (auto cpu = get_current_cpu_thread(); cpu && cpu->state) { cpu->check_state(); } else if (i < 15) { busy_wait(500); } else { std::this_thread::yield(); } } } void reservation_op_internal(u32 addr, std::function func) { auto& res = vm::reservation_acquire(addr); auto* ptr = vm::get_super_ptr(addr & -128); cpu_thread::suspend_all<+1>(get_current_cpu_thread(), {ptr, ptr + 64, &res}, [&] { if (func()) { // Success, release the lock and progress res += 127; } else { // Only release the lock on failure res -= 1; } }); } [[noreturn]] void reservation_escape_internal() { const auto _cpu = get_current_cpu_thread(); if (_cpu && _cpu->id_type() == 1) { // TODO: PPU g_escape } if (_cpu && _cpu->id_type() == 2) { spu_runtime::g_escape(static_cast(_cpu)); } thread_ctrl::emergency_exit("vm::reservation_escape"); } static void _page_map(u32 addr, u8 flags, u32 size, utils::shm* shm, std::pair>>* (*search_shm)(vm::block_t* block, utils::shm* shm)) { perf_meter<"PAGE_MAP"_u64> perf0; if (!size || (size | addr) % 4096 || flags & page_allocated) { fmt::throw_exception("Invalid arguments (addr=0x%x, size=0x%x)", addr, size); } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (g_pages[i]) { fmt::throw_exception("Memory already mapped (addr=0x%x, size=0x%x, flags=0x%x, current_addr=0x%x)", addr, size, flags, i * 4096); } } // Lock range being mapped _lock_main_range_lock(range_allocation, addr, size); if (shm && shm->flags() != 0 && shm->info++) { // Check ref counter (using unused member info for it) if (shm->info == 2) { // Allocate shm object for itself u64 shm_self = reinterpret_cast(shm->map_self()) ^ range_locked; // Pre-set range-locked flag (real pointers are 47 bits) // 1. To simplify range_lock logic // 2. To make sure it never overlaps with 32-bit addresses // Also check that it's aligned (lowest 16 bits) ensure((shm_self & 0xffff'8000'0000'ffff) == range_locked); // Find another mirror and map it as shareable too for (auto& ploc : g_locations) { if (auto loc = ploc.get()) { if (auto pp = search_shm(loc, shm)) { auto& [size2, ptr] = pp->second; for (u32 i = pp->first / 65536; i < pp->first / 65536 + size2 / 65536; i++) { g_shmem[i].release(shm_self); // Advance to the next position shm_self += 0x10000; } } } } // Unsharing only happens on deallocation currently, so make sure all further refs are shared shm->info = UINT32_MAX; } // Obtain existing pointer u64 shm_self = reinterpret_cast(shm->get()) ^ range_locked; // Check (see above) ensure((shm_self & 0xffff'8000'0000'ffff) == range_locked); // Map range as shareable for (u32 i = addr / 65536; i < addr / 65536 + size / 65536; i++) { g_shmem[i].release(std::exchange(shm_self, shm_self + 0x10000)); } } // Notify rsx that range has become valid // Note: This must be done *before* memory gets mapped while holding the vm lock, otherwise // the RSX might try to invalidate memory that got unmapped and remapped if (const auto rsxthr = g_fxo->try_get()) { rsxthr->on_notify_memory_mapped(addr, size); } auto prot = utils::protection::rw; if (~flags & page_writable) prot = utils::protection::ro; if (~flags & page_readable) prot = utils::protection::no; if (!shm) { utils::memory_protect(g_base_addr + addr, size, prot); } else if (shm->map_critical(g_base_addr + addr, prot) != g_base_addr + addr || shm->map_critical(g_sudo_addr + addr) != g_sudo_addr + addr) { fmt::throw_exception("Memory mapping failed - blame Windows (addr=0x%x, size=0x%x, flags=0x%x)", addr, size, flags); } if (flags & page_executable) { // TODO (dead code) utils::memory_commit(g_exec_addr + addr * 2, size * 2); if (g_cfg.core.ppu_debug) { utils::memory_commit(g_stat_addr + addr, size); } } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (g_pages[i].exchange(flags | page_allocated)) { fmt::throw_exception("Concurrent access (addr=0x%x, size=0x%x, flags=0x%x, current_addr=0x%x)", addr, size, flags, i * 4096); } } // Unlock g_range_lock.release(0); } bool page_protect(u32 addr, u32 size, u8 flags_test, u8 flags_set, u8 flags_clear) { perf_meter<"PAGE_PRO"_u64> perf0; vm::writer_lock lock(0); if (!size || (size | addr) % 4096) { fmt::throw_exception("Invalid arguments (addr=0x%x, size=0x%x)", addr, size); } const u8 flags_both = flags_set & flags_clear; flags_test |= page_allocated; flags_set &= ~flags_both; flags_clear &= ~flags_both; for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if ((g_pages[i] & flags_test) != (flags_test | page_allocated)) { return false; } } if (!flags_set && !flags_clear) { return true; } // Choose some impossible value (not valid without page_allocated) u8 start_value = page_executable; for (u32 start = addr / 4096, end = start + size / 4096, i = start; i < end + 1; i++) { u8 new_val = page_executable; if (i < end) { new_val = g_pages[i]; new_val |= flags_set; new_val &= ~flags_clear; } if (new_val != start_value) { const u8 old_val = g_pages[start]; if (u32 page_size = (i - start) * 4096; page_size && old_val != start_value) { u64 safe_bits = 0; if (old_val & start_value & page_readable) safe_bits |= range_readable; if (old_val & start_value & page_writable && safe_bits & range_readable) safe_bits |= range_writable; // Protect range locks from observing changes in memory protection _lock_main_range_lock(safe_bits, start * 4096, page_size); for (u32 j = start; j < i; j++) { g_pages[j].release(start_value); } if ((old_val ^ start_value) & (page_readable | page_writable)) { const auto protection = start_value & page_writable ? utils::protection::rw : (start_value & page_readable ? utils::protection::ro : utils::protection::no); utils::memory_protect(g_base_addr + start * 4096, page_size, protection); } } else { g_range_lock.release(0); } start_value = new_val; start = i; } } g_range_lock.release(0); return true; } static u32 _page_unmap(u32 addr, u32 max_size, utils::shm* shm) { perf_meter<"PAGE_UNm"_u64> perf0; if (!max_size || (max_size | addr) % 4096) { fmt::throw_exception("Invalid arguments (addr=0x%x, max_size=0x%x)", addr, max_size); } // Determine deallocation size u32 size = 0; bool is_exec = false; for (u32 i = addr / 4096; i < addr / 4096 + max_size / 4096; i++) { if ((g_pages[i] & page_allocated) == 0) { break; } if (size == 0) { is_exec = !!(g_pages[i] & page_executable); } else { // Must be consistent ensure(is_exec == !!(g_pages[i] & page_executable)); } size += 4096; } // Protect range locks from actual memory protection changes _lock_main_range_lock(range_allocation, addr, size); if (shm && shm->flags() != 0 && g_shmem[addr >> 16]) { shm->info--; for (u32 i = addr / 65536; i < addr / 65536 + size / 65536; i++) { g_shmem[i].release(0); } } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (!(g_pages[i] & page_allocated)) { fmt::throw_exception("Concurrent access (addr=0x%x, size=0x%x, current_addr=0x%x)", addr, size, i * 4096); } g_pages[i].release(0); } // Notify rsx to invalidate range // Note: This must be done *before* memory gets unmapped while holding the vm lock, otherwise // the RSX might try to call VirtualProtect on memory that is already unmapped if (auto& rsxthr = g_fxo->get(); g_fxo->is_init()) { rsxthr.on_notify_memory_unmapped(addr, size); } // Actually unmap memory if (!shm) { utils::memory_protect(g_base_addr + addr, size, utils::protection::no); std::memset(g_sudo_addr + addr, 0, size); } else { shm->unmap_critical(g_base_addr + addr); #ifdef _WIN32 shm->unmap_critical(g_sudo_addr + addr); #endif } if (is_exec) { utils::memory_decommit(g_exec_addr + addr * 2, size * 2); if (g_cfg.core.ppu_debug) { utils::memory_decommit(g_stat_addr + addr, size); } } // Unlock g_range_lock.release(0); return size; } bool check_addr(u32 addr, u8 flags, u32 size) { if (size == 0) { return true; } // Overflow checking if (0x10000'0000ull - addr < size) { return false; } // Always check this flag flags |= page_allocated; for (u32 i = addr / 4096, max = (addr + size - 1) / 4096; i <= max;) { auto state = +g_pages[i]; if (~state & flags) [[unlikely]] { return false; } if (state & page_1m_size) { i = utils::align(i + 1, 0x100000 / 4096); continue; } if (state & page_64k_size) { i = utils::align(i + 1, 0x10000 / 4096); continue; } i++; } return true; } u32 alloc(u32 size, memory_location_t location, u32 align) { const auto block = get(location); if (!block) { vm_log.error("vm::alloc(): Invalid memory location (%u)", +location); ensure(location < memory_location_max); // The only allowed locations to fail return 0; } return block->alloc(size, nullptr, align); } u32 falloc(u32 addr, u32 size, memory_location_t location, const std::shared_ptr* src) { const auto block = get(location, addr); if (!block) { vm_log.error("vm::falloc(): Invalid memory location (%u, addr=0x%x)", +location, addr); ensure(location == any || location < memory_location_max); // The only allowed locations to fail return 0; } return block->falloc(addr, size, src); } u32 dealloc(u32 addr, memory_location_t location, const std::shared_ptr* src) { const auto block = get(location, addr); if (!block) { vm_log.error("vm::dealloc(): Invalid memory location (%u, addr=0x%x)", +location, addr); ensure(location == any || location < memory_location_max); // The only allowed locations to fail return 0; } return block->dealloc(addr, src); } void lock_sudo(u32 addr, u32 size) { perf_meter<"PAGE_LCK"_u64> perf; ensure(addr % 4096 == 0); ensure(size % 4096 == 0); if (!utils::memory_lock(g_sudo_addr + addr, size)) { vm_log.error("Failed to lock sudo memory (addr=0x%x, size=0x%x). Consider increasing your system limits.", addr, size); } } // Mapped regions: addr -> shm handle constexpr auto block_map = &auto_typemap::get>>>; bool block_t::try_alloc(u32 addr, u8 flags, u32 size, std::shared_ptr&& shm) const { // Check if memory area is already mapped for (u32 i = addr / 4096; i <= (addr + size - 1) / 4096; i++) { if (g_pages[i]) { return false; } } const u32 page_addr = addr + (this->flags & stack_guarded ? 0x1000 : 0); const u32 page_size = size - (this->flags & stack_guarded ? 0x2000 : 0); if (this->flags & stack_guarded) { // Mark overflow/underflow guard pages as allocated ensure(!g_pages[addr / 4096].exchange(page_allocated)); ensure(!g_pages[addr / 4096 + size / 4096 - 1].exchange(page_allocated)); } // Map "real" memory pages; provide a function to search for mirrors with private member access _page_map(page_addr, flags, page_size, shm.get(), [](vm::block_t* _this, utils::shm* shm) { auto& map = (_this->m.*block_map)(); std::remove_reference_t::value_type* result = nullptr; // Check eligibility if (!_this || !(page_size_mask & _this->flags) || _this->addr < 0x20000000 || _this->addr >= 0xC0000000) { return result; } for (auto& pp : map) { if (pp.second.second.get() == shm) { // Found match return &pp; } } return result; }); // Fill stack guards with STACKGRD if (this->flags & stack_guarded) { auto fill64 = [](u8* ptr, u64 data, usz count) { #ifdef _MSC_VER __stosq(reinterpret_cast(ptr), data, count); #else __asm__ ("mov %0, %%rdi; mov %1, %%rax; mov %2, %%rcx; rep stosq;" : : "r" (ptr), "r" (data), "r" (count) : "rdi", "rax", "rcx", "memory"); #endif }; const u32 enda = addr + size - 4096; fill64(g_sudo_addr + addr, "STACKGRD"_u64, 4096 / sizeof(u64)); fill64(g_sudo_addr + enda, "UNDERFLO"_u64, 4096 / sizeof(u64)); } // Add entry (m.*block_map)()[addr] = std::make_pair(size, std::move(shm)); return true; } block_t::block_t(u32 addr, u32 size, u64 flags) : addr(addr) , size(size) , flags(flags) { if (flags & page_size_4k || flags & preallocated) { // Special path for whole-allocated areas allowing 4k granularity m_common = std::make_shared(size); m_common->map_critical(vm::base(addr), utils::protection::no); m_common->map_critical(vm::get_super_ptr(addr)); } } block_t::~block_t() { auto& m_map = (m.*block_map)(); { vm::writer_lock lock(0); // Deallocate all memory for (auto it = m_map.begin(), end = m_map.end(); it != end;) { const auto next = std::next(it); const auto size = it->second.first; _page_unmap(it->first, size, it->second.second.get()); it = next; } if (m_common) { m_common->unmap_critical(vm::base(addr)); #ifdef _WIN32 m_common->unmap_critical(vm::get_super_ptr(addr)); #endif } } } u32 block_t::alloc(const u32 orig_size, const std::shared_ptr* src, u32 align, u64 flags) { if (!src) { // Use the block's flags flags = this->flags; } // Determine minimal alignment const u32 min_page_size = flags & page_size_4k ? 0x1000 : 0x10000; // Align to minimal page size const u32 size = utils::align(orig_size, min_page_size) + (flags & stack_guarded ? 0x2000 : 0); // Check alignment (it's page allocation, so passing small values there is just silly) if (align < min_page_size || align != (0x80000000u >> std::countl_zero(align))) { fmt::throw_exception("Invalid alignment (size=0x%x, align=0x%x)", size, align); } // Return if size is invalid if (!orig_size || !size || orig_size > size || size > this->size) { return 0; } u8 pflags = flags & page_hidden ? 0 : page_readable | page_writable; if ((flags & page_size_64k) == page_size_64k) { pflags |= page_64k_size; } else if (!(flags & (page_size_mask & ~page_size_1m))) { pflags |= page_1m_size; } // Create or import shared memory object std::shared_ptr shm; if (m_common) ensure(!src); else if (src) shm = *src; else { shm = std::make_shared(size); } vm::writer_lock lock(0); // Search for an appropriate place (unoptimized) for (u32 addr = utils::align(this->addr, align); u64{addr} + size <= u64{this->addr} + this->size; addr += align) { if (try_alloc(addr, pflags, size, std::move(shm))) { return addr + (flags & stack_guarded ? 0x1000 : 0); } } return 0; } u32 block_t::falloc(u32 addr, const u32 orig_size, const std::shared_ptr* src, u64 flags) { if (!src) { // Use the block's flags flags = this->flags; } // Determine minimal alignment const u32 min_page_size = flags & page_size_4k ? 0x1000 : 0x10000; // Take address misalignment into account const u32 size0 = orig_size + addr % min_page_size; // Align to minimal page size const u32 size = utils::align(size0, min_page_size); // Return if addr or size is invalid // If shared memory is provided, addr/size must be aligned if (!size || addr < this->addr || orig_size > size0 || orig_size > size || (addr - addr % min_page_size) + u64{size} > this->addr + u64{this->size} || (src && (orig_size | addr) % min_page_size) || flags & stack_guarded) { return 0; } // Force aligned address addr -= addr % min_page_size; u8 pflags = flags & page_hidden ? 0 : page_readable | page_writable; if ((flags & page_size_64k) == page_size_64k) { pflags |= page_64k_size; } else if (!(flags & (page_size_mask & ~page_size_1m))) { pflags |= page_1m_size; } // Create or import shared memory object std::shared_ptr shm; if (m_common) ensure(!src); else if (src) shm = *src; else { shm = std::make_shared(size); } vm::writer_lock lock(0); if (!try_alloc(addr, pflags, size, std::move(shm))) { return 0; } return addr; } u32 block_t::dealloc(u32 addr, const std::shared_ptr* src) const { auto& m_map = (m.*block_map)(); { vm::writer_lock lock(0); const auto found = m_map.find(addr - (flags & stack_guarded ? 0x1000 : 0)); if (found == m_map.end()) { return 0; } if (src && found->second.second.get() != src->get()) { return 0; } // Get allocation size const auto size = found->second.first - (flags & stack_guarded ? 0x2000 : 0); if (flags & stack_guarded) { // Clear guard pages ensure(g_pages[addr / 4096 - 1].exchange(0) == page_allocated); ensure(g_pages[addr / 4096 + size / 4096].exchange(0) == page_allocated); } // Unmap "real" memory pages ensure(size == _page_unmap(addr, size, found->second.second.get())); // Clear stack guards if (flags & stack_guarded) { std::memset(g_sudo_addr + addr - 4096, 0, 4096); std::memset(g_sudo_addr + addr + size, 0, 4096); } // Remove entry m_map.erase(found); return size; } } std::pair> block_t::peek(u32 addr, u32 size) const { if (addr < this->addr || addr + u64{size} > this->addr + u64{this->size}) { return {addr, nullptr}; } auto& m_map = (m.*block_map)(); vm::reader_lock lock; const auto upper = m_map.upper_bound(addr); if (upper == m_map.begin()) { return {addr, nullptr}; } const auto found = std::prev(upper); // Exact address condition (size == 0) if (size == 0 && found->first != addr) { return {addr, nullptr}; } // Special case if (m_common) { return {addr, nullptr}; } // Range check if (addr + u64{size} > found->first + u64{found->second.second->size()}) { return {addr, nullptr}; } return {found->first, found->second.second}; } u32 block_t::imp_used(const vm::writer_lock&) const { u32 result = 0; for (auto& entry : (m.*block_map)()) { result += entry.second.first - (flags & stack_guarded ? 0x2000 : 0); } return result; } u32 block_t::used() { vm::writer_lock lock(0); return imp_used(lock); } static bool _test_map(u32 addr, u32 size) { const auto range = utils::address_range::start_length(addr, size); if (!range.valid()) { return false; } for (auto& block : g_locations) { if (!block) { continue; } if (range.overlaps(utils::address_range::start_length(block->addr, block->size))) { return false; } } return true; } static std::shared_ptr _find_map(u32 size, u32 align, u64 flags) { for (u32 addr = utils::align(0x20000000, align); addr - 1 < 0xC0000000 - 1; addr += align) { if (_test_map(addr, size)) { return std::make_shared(addr, size, flags); } } return nullptr; } static std::shared_ptr _map(u32 addr, u32 size, u64 flags) { if (!size || (size | addr) % 4096) { fmt::throw_exception("Invalid arguments (addr=0x%x, size=0x%x)", addr, size); } if (!_test_map(addr, size)) { return nullptr; } for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) { if (g_pages[i]) { fmt::throw_exception("Unexpected pages allocated (current_addr=0x%x)", i * 4096); } } auto block = std::make_shared(addr, size, flags); g_locations.emplace_back(block); return block; } static std::shared_ptr _get_map(memory_location_t location, u32 addr) { if (location != any) { // return selected location if (location < g_locations.size()) { return g_locations[location]; } return nullptr; } // search location by address for (auto& block : g_locations) { if (block && addr >= block->addr && addr <= block->addr + block->size - 1) { return block; } } return nullptr; } std::shared_ptr map(u32 addr, u32 size, u64 flags) { vm::writer_lock lock(0); return _map(addr, size, flags); } std::shared_ptr find_map(u32 orig_size, u32 align, u64 flags) { vm::writer_lock lock(0); // Align to minimal page size const u32 size = utils::align(orig_size, 0x10000); // Check alignment if (align < 0x10000 || align != (0x80000000u >> std::countl_zero(align))) { fmt::throw_exception("Invalid alignment (size=0x%x, align=0x%x)", size, align); } // Return if size is invalid if (!size) { return nullptr; } auto block = _find_map(size, align, flags); if (block) g_locations.emplace_back(block); return block; } std::shared_ptr unmap(u32 addr, bool must_be_empty) { vm::writer_lock lock(0); for (auto it = g_locations.begin() + memory_location_max; it != g_locations.end(); it++) { if (*it && (*it)->addr == addr) { if (must_be_empty && (*it)->flags & bf0_mask) { continue; } if (!must_be_empty && ((*it)->flags & bf0_mask) != bf0_0x2) { continue; } if (must_be_empty && (it->use_count() != 1 || (*it)->imp_used(lock))) { return *it; } auto block = std::move(*it); g_locations.erase(it); return block; } } return nullptr; } std::shared_ptr get(memory_location_t location, u32 addr) { vm::reader_lock lock; return _get_map(location, addr); } std::shared_ptr reserve_map(memory_location_t location, u32 addr, u32 area_size, u64 flags) { vm::reader_lock lock; auto area = _get_map(location, addr); if (area) { return area; } lock.upgrade(); // Allocation on arbitrary address if (location != any && location < g_locations.size()) { // return selected location auto& loc = g_locations[location]; if (!loc) { // Deferred allocation loc = _find_map(area_size, 0x10000000, flags); } return loc; } // Fixed address allocation area = _get_map(location, addr); if (area) { return area; } return _map(addr, area_size, flags); } bool try_access(u32 addr, void* ptr, u32 size, bool is_write) { vm::reader_lock lock; if (vm::check_addr(addr, is_write ? page_writable : page_readable, size)) { void* src = vm::g_sudo_addr + addr; void* dst = ptr; if (is_write) std::swap(src, dst); if (size <= 16 && (size & (size - 1)) == 0 && (addr & (size - 1)) == 0) { if (is_write) { switch (size) { case 1: atomic_storage::release(*static_cast(dst), *static_cast(src)); break; case 2: atomic_storage::release(*static_cast(dst), *static_cast(src)); break; case 4: atomic_storage::release(*static_cast(dst), *static_cast(src)); break; case 8: atomic_storage::release(*static_cast(dst), *static_cast(src)); break; case 16: atomic_storage::release(*static_cast(dst), *static_cast(src)); break; } return true; } } std::memcpy(dst, src, size); return true; } return false; } inline namespace ps3_ { static utils::shm s_hook{0x800000000, ""}; void init() { vm_log.notice("Guest memory bases address ranges:\n" "vm::g_base_addr = %p - %p\n" "vm::g_sudo_addr = %p - %p\n" "vm::g_exec_addr = %p - %p\n" "vm::g_hook_addr = %p - %p\n" "vm::g_stat_addr = %p - %p\n" "vm::g_reservations = %p - %p\n", g_base_addr, g_base_addr + UINT32_MAX, g_sudo_addr, g_sudo_addr + UINT32_MAX, g_exec_addr, g_exec_addr + 0x200000000 - 1, g_hook_addr, g_hook_addr + 0x800000000 - 1, g_stat_addr, g_stat_addr + UINT32_MAX, g_reservations, g_reservations + sizeof(g_reservations) - 1); std::memset(&g_pages, 0, sizeof(g_pages)); g_locations = { std::make_shared(0x00010000, 0x1FFF0000, page_size_64k | preallocated), // main std::make_shared(0x20000000, 0x10000000, page_size_64k | bf0_0x1), // user 64k pages nullptr, // user 1m pages nullptr, // rsx context std::make_shared(0xC0000000, 0x10000000, page_size_64k | preallocated), // video std::make_shared(0xD0000000, 0x10000000, page_size_4k | preallocated | stack_guarded | bf0_0x1), // stack std::make_shared(0xE0000000, 0x20000000, page_size_64k), // SPU reserved }; std::memset(g_reservations, 0, sizeof(g_reservations)); std::memset(g_shmem, 0, sizeof(g_shmem)); std::memset(g_range_lock_set, 0, sizeof(g_range_lock_set)); g_range_lock_bits = 0; #ifdef _WIN32 utils::memory_release(g_hook_addr, 0x800000000); #endif ensure(s_hook.map(g_hook_addr, utils::protection::rw, true)); } } void close() { g_locations.clear(); utils::memory_decommit(g_base_addr, 0x200000000); utils::memory_decommit(g_exec_addr, 0x200000000); utils::memory_decommit(g_stat_addr, 0x100000000); #ifdef _WIN32 s_hook.unmap(g_hook_addr); ensure(utils::memory_reserve(0x800000000, g_hook_addr)); #else utils::memory_decommit(g_hook_addr, 0x800000000); #endif std::memset(g_range_lock_set, 0, sizeof(g_range_lock_set)); g_range_lock_bits = 0; } } void fmt_class_string>::format(std::string& out, u64 arg) { fmt_class_string::format(out, arg); } void fmt_class_string>::format(std::string& out, u64 arg) { // Special case (may be allowed for some arguments) if (arg == 0) { out += reinterpret_cast(u8"«NULL»"); return; } // Filter certainly invalid addresses (TODO) if (arg < 0x10000 || arg >= 0xf0000000) { out += reinterpret_cast(u8"«INVALID_ADDRESS:"); fmt_class_string::format(out, arg); out += reinterpret_cast(u8"»"); return; } const auto start = out.size(); out += reinterpret_cast(u8"“"); for (vm::_ptr_base ptr = vm::cast(arg);; ptr++) { if (!vm::check_addr(ptr.addr())) { // TODO: optimize checks out.resize(start); out += reinterpret_cast(u8"«INVALID_ADDRESS:"); fmt_class_string::format(out, arg); out += reinterpret_cast(u8"»"); return; } if (const char ch = *ptr) { out += ch; } else { break; } } out += reinterpret_cast(u8"”"); }