rsx: Texture cache fixes and improvments

gl/vk/rsx: Refactoring; unify texture cache code
gl: Fixups
- Removes rsx::gl::texture class and leave gl::texture intact
- Simplify texture create and upload mechanisms
- Re-enable texture uploads with the new texture cache mechanism
rsx: texture cache - check if bit region fits into dst texture before attempting to copy
gl/vk: Cleanup
- Set initial texture layout to DST_OPTIMAL since it has no data in it anyway at the start
- Move structs outside of classes to avoid clutter
This commit is contained in:
kd-11 2017-09-08 17:52:13 +03:00
parent 07c83f6e44
commit e37a2a8f7d
26 changed files with 2438 additions and 3083 deletions

View file

@ -0,0 +1,972 @@
#pragma once
#include "../rsx_cache.h"
#include "../rsx_utils.h"
#include <atomic>
namespace rsx
{
enum texture_create_flags
{
default_component_order = 0,
native_component_order = 1,
swapped_native_component_order = 2,
};
template <typename commandbuffer_type, typename section_storage_type, typename image_resource_type, typename image_view_type, typename image_storage_type, typename texture_format>
class texture_cache
{
private:
std::pair<std::array<u8, 4>, std::array<u8, 4>> default_remap_vector =
{
{ CELL_GCM_TEXTURE_REMAP_FROM_A, CELL_GCM_TEXTURE_REMAP_FROM_R, CELL_GCM_TEXTURE_REMAP_FROM_G, CELL_GCM_TEXTURE_REMAP_FROM_B },
{ CELL_GCM_TEXTURE_REMAP_REMAP, CELL_GCM_TEXTURE_REMAP_REMAP, CELL_GCM_TEXTURE_REMAP_REMAP, CELL_GCM_TEXTURE_REMAP_REMAP }
};
protected:
struct ranged_storage
{
std::vector<section_storage_type> data; //Stored data
std::atomic_int valid_count = { 0 }; //Number of usable (non-dirty) blocks
u32 max_range = 0; //Largest stored block
void notify(u32 data_size)
{
max_range = std::max(data_size, max_range);
valid_count++;
}
void add(section_storage_type& section, u32 data_size)
{
max_range = std::max(data_size, max_range);
valid_count++;
data.push_back(std::move(section));
}
};
// Keep track of cache misses to pre-emptively flush some addresses
struct framebuffer_memory_characteristics
{
u32 misses;
u32 block_size;
texture_format format;
};
std::atomic_bool in_access_violation_handler = { false };
shared_mutex m_cache_mutex;
std::unordered_map<u32, ranged_storage> m_cache;
std::pair<u32, u32> read_only_range = std::make_pair(0xFFFFFFFF, 0);
std::pair<u32, u32> no_access_range = std::make_pair(0xFFFFFFFF, 0);
std::unordered_map<u32, framebuffer_memory_characteristics> m_cache_miss_statistics_table;
//Memory usage
const s32 m_max_zombie_objects = 32; //Limit on how many texture objects to keep around for reuse after they are invalidated
s32 m_unreleased_texture_objects = 0; //Number of invalidated objects not yet freed from memory
/* Helpers */
virtual void free_texture_section(section_storage_type&) = 0;
virtual image_view_type create_temporary_subresource_view(commandbuffer_type&, image_resource_type* src, u32 gcm_format, u16 x, u16 y, u16 w, u16 h) = 0;
virtual image_view_type create_temporary_subresource_view(commandbuffer_type&, image_storage_type* src, u32 gcm_format, u16 x, u16 y, u16 w, u16 h) = 0;
virtual section_storage_type* create_new_texture(commandbuffer_type&, u32 rsx_address, u32 rsx_size, u16 width, u16 height, u16 depth, u16 mipmaps, const u32 gcm_format,
const rsx::texture_dimension_extended type, const texture_create_flags flags, std::pair<std::array<u8, 4>, std::array<u8, 4>>& remap_vector) = 0;
virtual section_storage_type* upload_image_from_cpu(commandbuffer_type&, u32 rsx_address, u16 width, u16 height, u16 depth, u16 mipmaps, u16 pitch, const u32 gcm_format,
std::vector<rsx_subresource_layout>& subresource_layout, const rsx::texture_dimension_extended type, const bool swizzled, std::pair<std::array<u8, 4>, std::array<u8, 4>>& remap_vector) = 0;
virtual void enforce_surface_creation_type(section_storage_type& section, const texture_create_flags expected) = 0;
virtual void insert_texture_barrier() = 0;
public:
texture_cache() {}
~texture_cache() {}
virtual void destroy() = 0;
virtual bool is_depth_texture(const u32) = 0;
virtual void on_frame_end() = 0;
section_storage_type *find_texture_from_range(u32 rsx_address, u32 range)
{
auto test = std::make_pair(rsx_address, range);
for (auto &address_range : m_cache)
{
auto &range_data = address_range.second;
for (auto &tex : range_data.data)
{
if (tex.get_section_base() > rsx_address)
continue;
if (!tex.is_dirty() && tex.overlaps(test, true))
return &tex;
}
}
return nullptr;
}
section_storage_type *find_texture_from_dimensions(u32 rsx_address, u16 width = 0, u16 height = 0, u16 mipmaps = 0)
{
auto found = m_cache.find(rsx_address);
if (found != m_cache.end())
{
auto &range_data = found->second;
for (auto &tex : range_data.data)
{
if (tex.matches(rsx_address, width, height, mipmaps) && !tex.is_dirty())
{
return &tex;
}
}
}
return nullptr;
}
section_storage_type& find_cached_texture(u32 rsx_address, u32 rsx_size, bool confirm_dimensions = false, u16 width = 0, u16 height = 0, u16 mipmaps = 0)
{
{
reader_lock lock(m_cache_mutex);
auto found = m_cache.find(rsx_address);
if (found != m_cache.end())
{
auto &range_data = found->second;
for (auto &tex : range_data.data)
{
if (tex.matches(rsx_address, rsx_size) && !tex.is_dirty())
{
if (!confirm_dimensions) return tex;
if (tex.matches(rsx_address, width, height, mipmaps))
return tex;
else
{
LOG_ERROR(RSX, "Cached object for address 0x%X was found, but it does not match stored parameters.", rsx_address);
LOG_ERROR(RSX, "%d x %d vs %d x %d", width, height, tex.get_width(), tex.get_height());
}
}
}
for (auto &tex : range_data.data)
{
if (tex.is_dirty())
{
if (tex.exists())
{
m_unreleased_texture_objects--;
free_texture_section(tex);
}
range_data.notify(rsx_size);
return tex;
}
}
}
}
writer_lock lock(m_cache_mutex);
section_storage_type tmp;
m_cache[rsx_address].add(tmp, rsx_size);
return m_cache[rsx_address].data.back();
}
section_storage_type* find_flushable_section(const u32 address, const u32 range)
{
reader_lock lock(m_cache_mutex);
auto found = m_cache.find(address);
if (found != m_cache.end())
{
auto &range_data = found->second;
for (auto &tex : range_data.data)
{
if (tex.is_dirty()) continue;
if (!tex.is_flushable() && !tex.is_flushed()) continue;
if (tex.matches(address, range))
return &tex;
}
}
return nullptr;
}
template <typename ...Args>
void lock_memory_region(image_storage_type* image, const u32 memory_address, const u32 memory_size, const u32 width, const u32 height, const u32 pitch, Args&&... extras)
{
section_storage_type& region = find_cached_texture(memory_address, memory_size, true, width, height, 1);
writer_lock lock(m_cache_mutex);
if (!region.is_locked())
{
region.reset(memory_address, memory_size);
region.set_dirty(false);
no_access_range = region.get_min_max(no_access_range);
}
region.protect(utils::protection::no);
region.create(width, height, 1, 1, nullptr, image, pitch, false, std::forward<Args>(extras)...);
}
template <typename ...Args>
bool flush_memory_to_cache(const u32 memory_address, const u32 memory_size, bool skip_synchronized, Args&&... extra)
{
section_storage_type* region = find_flushable_section(memory_address, memory_size);
//TODO: Make this an assertion
if (region == nullptr)
{
LOG_ERROR(RSX, "Failed to find section for render target 0x%X + 0x%X", memory_address, memory_size);
return false;
}
if (skip_synchronized && region->is_synchronized())
return false;
region->copy_texture(false, std::forward<Args>(extra)...);
return true;
}
template <typename ...Args>
bool load_memory_from_cache(const u32 memory_address, const u32 memory_size, Args&&... extras)
{
section_storage_type *region = find_flushable_section(memory_address, memory_size);
if (region && !region->is_dirty())
{
region->fill_texture(std::forward<Args>(extras)...);
return true;
}
//No valid object found in cache
return false;
}
std::tuple<bool, section_storage_type*> address_is_flushable(u32 address)
{
if (address < no_access_range.first ||
address > no_access_range.second)
return std::make_tuple(false, nullptr);
reader_lock lock(m_cache_mutex);
auto found = m_cache.find(address);
if (found != m_cache.end())
{
auto &range_data = found->second;
for (auto &tex : range_data.data)
{
if (tex.is_dirty()) continue;
if (!tex.is_flushable()) continue;
if (tex.overlaps(address))
return std::make_tuple(true, &tex);
}
}
for (auto &address_range : m_cache)
{
if (address_range.first == address)
continue;
auto &range_data = address_range.second;
//Quickly discard range
const u32 lock_base = address_range.first & ~0xfff;
const u32 lock_limit = align(range_data.max_range + address_range.first, 4096);
if (address < lock_base || address >= lock_limit)
continue;
for (auto &tex : range_data.data)
{
if (tex.is_dirty()) continue;
if (!tex.is_flushable()) continue;
if (tex.overlaps(address))
return std::make_tuple(true, &tex);
}
}
return std::make_tuple(false, nullptr);
}
template <typename ...Args>
bool flush_address(u32 address, Args&&... extras)
{
if (address < no_access_range.first ||
address > no_access_range.second)
return false;
bool response = false;
std::pair<u32, u32> trampled_range = std::make_pair(0xffffffff, 0x0);
std::unordered_map<u32, bool> processed_ranges;
rsx::conditional_lock<shared_mutex> lock(in_access_violation_handler, m_cache_mutex);
for (auto It = m_cache.begin(); It != m_cache.end(); It++)
{
auto &range_data = It->second;
const u32 base = It->first;
bool range_reset = false;
if (processed_ranges[base] || range_data.valid_count == 0)
continue;
//Quickly discard range
const u32 lock_base = base & ~0xfff;
const u32 lock_limit = align(range_data.max_range + base, 4096);
if ((trampled_range.first >= lock_limit || lock_base >= trampled_range.second) &&
(lock_base > address || lock_limit <= address))
{
processed_ranges[base] = true;
continue;
}
for (int i = 0; i < range_data.data.size(); i++)
{
auto &tex = range_data.data[i];
if (tex.is_dirty()) continue;
if (!tex.is_flushable()) continue;
auto overlapped = tex.overlaps_page(trampled_range, address);
if (std::get<0>(overlapped))
{
auto &new_range = std::get<1>(overlapped);
if (new_range.first != trampled_range.first ||
new_range.second != trampled_range.second)
{
i = 0;
trampled_range = new_range;
range_reset = true;
}
//TODO: Map basic host_visible memory without coherent constraint
if (!tex.flush(std::forward<Args>(extras)...))
{
//Missed address, note this
//TODO: Lower severity when successful to keep the cache from overworking
record_cache_miss(tex);
}
response = true;
}
}
if (range_reset)
{
processed_ranges.clear();
It = m_cache.begin();
}
processed_ranges[base] = true;
}
return response;
}
bool invalidate_address(u32 address)
{
return invalidate_range(address, 4096 - (address & 4095));
}
bool invalidate_range(u32 address, u32 range, bool unprotect = true)
{
std::pair<u32, u32> trampled_range = std::make_pair(address, address + range);
if (trampled_range.second < read_only_range.first ||
trampled_range.first > read_only_range.second)
{
//Doesnt fall in the read_only textures range; check render targets
if (trampled_range.second < no_access_range.first ||
trampled_range.first > no_access_range.second)
return false;
}
bool response = false;
std::unordered_map<u32, bool> processed_ranges;
rsx::conditional_lock<shared_mutex> lock(in_access_violation_handler, m_cache_mutex);
for (auto It = m_cache.begin(); It != m_cache.end(); It++)
{
auto &range_data = It->second;
const u32 base = It->first;
bool range_reset = false;
if (processed_ranges[base] || range_data.valid_count == 0)
continue;
//Quickly discard range
const u32 lock_base = base & ~0xfff;
const u32 lock_limit = align(range_data.max_range + base, 4096);
if (trampled_range.first >= lock_limit || lock_base >= trampled_range.second)
{
processed_ranges[base] = true;
continue;
}
for (int i = 0; i < range_data.data.size(); i++)
{
auto &tex = range_data.data[i];
if (tex.is_dirty()) continue;
if (!tex.is_locked()) continue; //flushable sections can be 'clean' but unlocked. TODO: Handle this better
auto overlapped = tex.overlaps_page(trampled_range, address);
if (std::get<0>(overlapped))
{
auto &new_range = std::get<1>(overlapped);
if (new_range.first != trampled_range.first ||
new_range.second != trampled_range.second)
{
i = 0;
trampled_range = new_range;
range_reset = true;
}
if (unprotect)
{
tex.set_dirty(true);
tex.unprotect();
}
else
{
tex.discard();
}
m_unreleased_texture_objects++;
range_data.valid_count--;
response = true;
}
}
if (range_reset)
{
processed_ranges.clear();
It = m_cache.begin();
}
processed_ranges[base] = true;
}
return response;
}
void record_cache_miss(section_storage_type &tex)
{
const u32 memory_address = tex.get_section_base();
const u32 memory_size = tex.get_section_size();
const auto fmt = tex.get_format();
auto It = m_cache_miss_statistics_table.find(memory_address);
if (It == m_cache_miss_statistics_table.end())
{
m_cache_miss_statistics_table[memory_address] = { 1, memory_size, fmt };
return;
}
auto &value = It->second;
if (value.format != fmt || value.block_size != memory_size)
{
m_cache_miss_statistics_table[memory_address] = { 1, memory_size, fmt };
return;
}
value.misses++;
}
template <typename ...Args>
void flush_if_cache_miss_likely(const texture_format fmt, const u32 memory_address, const u32 memory_size, Args&&... extras)
{
auto It = m_cache_miss_statistics_table.find(memory_address);
if (It == m_cache_miss_statistics_table.end())
{
m_cache_miss_statistics_table[memory_address] = { 0, memory_size, fmt };
return;
}
auto &value = It->second;
if (value.format != fmt || value.block_size != memory_size)
{
//Reset since the data has changed
//TODO: Keep track of all this information together
m_cache_miss_statistics_table[memory_address] = { 0, memory_size, fmt };
return;
}
//Properly synchronized - no miss
if (!value.misses) return;
//Auto flush if this address keeps missing (not properly synchronized)
if (value.misses > 16)
{
//TODO: Determine better way of setting threshold
if (!flush_memory_to_cache(memory_address, memory_size, true, std::forward<Args>(extras)...))
value.misses--;
}
}
void purge_dirty()
{
//Reclaims all graphics memory consumed by dirty textures
std::vector<u32> empty_addresses;
empty_addresses.resize(32);
for (auto &address_range : m_cache)
{
auto &range_data = address_range.second;
if (range_data.valid_count == 0)
empty_addresses.push_back(address_range.first);
for (auto &tex : range_data.data)
{
if (!tex.is_dirty())
continue;
free_texture_section(tex);
}
}
//Free descriptor objects as well
for (const auto &address : empty_addresses)
{
m_cache.erase(address);
}
m_unreleased_texture_objects = 0;
}
template <typename RsxTextureType, typename surface_store_type>
image_view_type upload_texture(commandbuffer_type& cmd, RsxTextureType& tex, surface_store_type& m_rtts)
{
const u32 texaddr = rsx::get_address(tex.offset(), tex.location());
const u32 range = (u32)get_texture_size(tex);
const u32 format = tex.format() & ~(CELL_GCM_TEXTURE_LN | CELL_GCM_TEXTURE_UN);
const u32 tex_width = tex.width();
const u32 tex_height = tex.height();
const u32 native_pitch = (tex_width * get_format_block_size_in_bytes(format));
const u32 tex_pitch = (tex.pitch() == 0) ? native_pitch : tex.pitch();
if (!texaddr || !range)
{
LOG_ERROR(RSX, "Texture upload requested but texture not found, (address=0x%X, size=0x%X)", texaddr, range);
return 0;
}
//Check for sampleable rtts from previous render passes
if (auto texptr = m_rtts.get_texture_from_render_target_if_applicable(texaddr))
{
for (const auto& tex : m_rtts.m_bound_render_targets)
{
if (std::get<0>(tex) == texaddr)
{
if (g_cfg.video.strict_rendering_mode)
{
LOG_WARNING(RSX, "Attempting to sample a currently bound render target @ 0x%x", texaddr);
return create_temporary_subresource_view(cmd, texptr, format, 0, 0, texptr->width(), texptr->height());
}
else
{
//issue a texture barrier to ensure previous writes are visible
insert_texture_barrier();
break;
}
}
}
return texptr->get_view();
}
if (auto texptr = m_rtts.get_texture_from_depth_stencil_if_applicable(texaddr))
{
if (texaddr == std::get<0>(m_rtts.m_bound_depth_stencil))
{
if (g_cfg.video.strict_rendering_mode)
{
LOG_WARNING(RSX, "Attempting to sample a currently bound depth surface @ 0x%x", texaddr);
return create_temporary_subresource_view(cmd, texptr, format, 0, 0, texptr->width(), texptr->height());
}
else
{
//issue a texture barrier to ensure previous writes are visible
insert_texture_barrier();
}
}
return texptr->get_view();
}
/* Check if we are re-sampling a subresource of an RTV/DSV texture, bound or otherwise
* (Turbo: Super Stunt Squad does this; bypassing the need for a sync object)
* The engine does not read back the texture resource through cell, but specifies a texture location that is
* a bound render target. We can bypass the expensive download in this case
*/
const f32 internal_scale = (f32)tex_pitch / native_pitch;
const u32 internal_width = (const u32)(tex_width * internal_scale);
const auto rsc = m_rtts.get_surface_subresource_if_applicable(texaddr, internal_width, tex_height, tex_pitch, true);
if (rsc.surface)
{
//TODO: Check that this region is not cpu-dirty before doing a copy
if (tex.get_extended_texture_dimension() != rsx::texture_dimension_extended::texture_dimension_2d)
{
LOG_ERROR(RSX, "Sampling of RTT region as non-2D texture! addr=0x%x, Type=%d, dims=%dx%d",
texaddr, (u8)tex.get_extended_texture_dimension(), tex.width(), tex.height());
}
else
{
image_view_type bound_surface = 0;
if (format == CELL_GCM_TEXTURE_COMPRESSED_DXT1 || format == CELL_GCM_TEXTURE_COMPRESSED_DXT23 || format == CELL_GCM_TEXTURE_COMPRESSED_DXT45)
{
LOG_WARNING(RSX, "Performing an RTT blit but request is for a compressed texture");
}
if (!rsc.is_bound || !g_cfg.video.strict_rendering_mode)
{
if (rsc.w == tex_width && rsc.h == tex_height)
{
if (rsc.is_bound)
{
LOG_WARNING(RSX, "Sampling from a currently bound render target @ 0x%x", texaddr);
insert_texture_barrier();
}
return rsc.surface->get_view();
}
else
bound_surface = create_temporary_subresource_view(cmd, rsc.surface, format, rsc.x, rsc.y, rsc.w, rsc.h);
}
else
{
LOG_WARNING(RSX, "Attempting to sample a currently bound render target @ 0x%x", texaddr);
bound_surface = create_temporary_subresource_view(cmd, rsc.surface, format, rsc.x, rsc.y, rsc.w, rsc.h);
}
if (bound_surface)
return bound_surface;
}
}
//If all the above failed, then its probably a generic texture.
//Search in cache and upload/bind
auto cached_texture = find_texture_from_dimensions(texaddr, tex_width, tex_height);
if (cached_texture)
{
return cached_texture->get_raw_view();
}
//Do direct upload from CPU as the last resort
const auto extended_dimension = tex.get_extended_texture_dimension();
u16 height = 0;
u16 depth = 0;
switch (extended_dimension)
{
case rsx::texture_dimension_extended::texture_dimension_1d:
height = 1;
depth = 1;
break;
case rsx::texture_dimension_extended::texture_dimension_2d:
height = tex_height;
depth = 1;
break;
case rsx::texture_dimension_extended::texture_dimension_cubemap:
height = tex_height;
depth = 1;
break;
case rsx::texture_dimension_extended::texture_dimension_3d:
height = tex_height;
depth = tex.depth();
break;
}
const bool is_swizzled = !(tex.format() & CELL_GCM_TEXTURE_LN);
auto subresources_layout = get_subresources_layout(tex);
auto remap_vector = tex.decoded_remap();
return upload_image_from_cpu(cmd, texaddr, tex_width, height, depth, tex.get_exact_mipmap_count(), tex_pitch, format,
subresources_layout, extended_dimension, is_swizzled, remap_vector)->get_raw_view();
}
template <typename surface_store_type, typename blitter_type, typename ...Args>
bool upload_scaled_image(rsx::blit_src_info& src, rsx::blit_dst_info& dst, bool interpolate, commandbuffer_type& cmd, surface_store_type& m_rtts, blitter_type& blitter, Args&&... extras)
{
//Since we will have dst in vram, we can 'safely' ignore the swizzle flag
//TODO: Verify correct behavior
bool is_depth_blit = false;
bool src_is_render_target = false;
bool dst_is_render_target = false;
bool dst_is_argb8 = (dst.format == rsx::blit_engine::transfer_destination_format::a8r8g8b8);
bool src_is_argb8 = (src.format == rsx::blit_engine::transfer_source_format::a8r8g8b8);
image_resource_type vram_texture = 0;
image_resource_type dest_texture = 0;
const u32 src_address = (u32)((u64)src.pixels - (u64)vm::base(0));
const u32 dst_address = (u32)((u64)dst.pixels - (u64)vm::base(0));
//Check if src/dst are parts of render targets
auto dst_subres = m_rtts.get_surface_subresource_if_applicable(dst.rsx_address, dst.width, dst.clip_height, dst.pitch, true, true, false);
dst_is_render_target = dst_subres.surface != nullptr;
//TODO: Handle cases where src or dst can be a depth texture while the other is a color texture - requires a render pass to emulate
auto src_subres = m_rtts.get_surface_subresource_if_applicable(src.rsx_address, src.width, src.height, src.pitch, true, true, false);
src_is_render_target = src_subres.surface != nullptr;
//Always use GPU blit if src or dst is in the surface store
if (!g_cfg.video.use_gpu_texture_scaling && !(src_is_render_target || dst_is_render_target))
return false;
u16 max_dst_width = dst.width;
u16 max_dst_height = dst.height;
float scale_x = dst.scale_x;
float scale_y = dst.scale_y;
size2i clip_dimensions = { dst.clip_width, dst.clip_height };
//Dimensions passed are restricted to powers of 2; get real height from clip_height and width from pitch
size2i dst_dimensions = { dst.pitch / (dst_is_argb8 ? 4 : 2), dst.clip_height };
//Offset in x and y for src is 0 (it is already accounted for when getting pixels_src)
//Reproject final clip onto source...
const u16 src_w = (const u16)((f32)clip_dimensions.width / dst.scale_x);
const u16 src_h = (const u16)((f32)clip_dimensions.height / dst.scale_y);
areai src_area = { 0, 0, src_w, src_h };
areai dst_area = { 0, 0, dst.clip_width, dst.clip_height };
//Check if trivial memcpy can perform the same task
//Used to copy programs to the GPU in some cases
bool is_memcpy = false;
u32 memcpy_bytes_length = 0;
if (dst_is_argb8 == src_is_argb8 && !dst.swizzled)
{
if ((src.slice_h == 1 && dst.clip_height == 1) ||
(dst.clip_width == src.width && dst.clip_height == src.slice_h && src.pitch == dst.pitch))
{
const u8 bpp = dst_is_argb8 ? 4 : 2;
is_memcpy = true;
memcpy_bytes_length = dst.clip_width * bpp * dst.clip_height;
}
}
section_storage_type* cached_dest = nullptr;
if (!dst_is_render_target)
{
//First check if this surface exists in VRAM with exact dimensions
//Since scaled GPU resources are not invalidated by the CPU, we need to reuse older surfaces if possible
cached_dest = find_texture_from_dimensions(dst.rsx_address, dst_dimensions.width, dst_dimensions.height);
//Check for any available region that will fit this one
if (!cached_dest) cached_dest = find_texture_from_range(dst_address, dst.pitch * dst.clip_height);
if (cached_dest)
{
//Prep surface
enforce_surface_creation_type(*cached_dest, dst.swizzled ? rsx::texture_create_flags::swapped_native_component_order : rsx::texture_create_flags::native_component_order);
//TODO: Move this code into utils since it is used alot
if (const u32 address_offset = dst.rsx_address - cached_dest->get_section_base())
{
const u16 bpp = dst_is_argb8 ? 4 : 2;
const u16 offset_y = address_offset / dst.pitch;
const u16 offset_x = address_offset % dst.pitch;
const u16 offset_x_in_block = offset_x / bpp;
dst_area.x1 += offset_x_in_block;
dst_area.x2 += offset_x_in_block;
dst_area.y1 += offset_y;
dst_area.y2 += offset_y;
}
//Validate clipping region
if ((unsigned)dst_area.x2 <= cached_dest->get_width() &&
(unsigned)dst_area.y2 <= cached_dest->get_height())
{
dest_texture = cached_dest->get_raw_texture();
max_dst_width = cached_dest->get_width();
max_dst_height = cached_dest->get_height();
}
else
cached_dest = nullptr;
}
if (!cached_dest && is_memcpy)
{
memcpy(dst.pixels, src.pixels, memcpy_bytes_length);
return true;
}
}
else
{
dst_area.x1 += dst_subres.x;
dst_area.x2 += dst_subres.x;
dst_area.y1 += dst_subres.y;
dst_area.y2 += dst_subres.y;
dest_texture = dst_subres.surface->get_surface();
max_dst_width = dst_subres.surface->get_surface_width();
max_dst_height = dst_subres.surface->get_surface_height();
if (is_memcpy)
{
//Some render target descriptions are actually invalid
//Confirm this is a flushable RTT
const auto rsx_pitch = dst_subres.surface->get_rsx_pitch();
const auto native_pitch = dst_subres.surface->get_native_pitch();
if (rsx_pitch <= 64 && native_pitch != rsx_pitch)
{
memcpy(dst.pixels, src.pixels, memcpy_bytes_length);
return true;
}
}
}
//Create source texture if does not exist
if (!src_is_render_target)
{
auto preloaded_texture = find_texture_from_dimensions(src_address, src.width, src.slice_h);
if (preloaded_texture != nullptr)
{
vram_texture = preloaded_texture->get_raw_texture();
}
else
{
flush_address(src.rsx_address, std::forward<Args>(extras)...);
const u16 pitch_in_block = src_is_argb8 ? src.pitch >> 2 : src.pitch >> 1;
std::vector<rsx_subresource_layout> subresource_layout;
rsx_subresource_layout subres = {};
subres.width_in_block = src.width;
subres.height_in_block = src.slice_h;
subres.pitch_in_bytes = pitch_in_block;
subres.depth = 1;
subres.data = { (const gsl::byte*)src.pixels, src.pitch * src.slice_h };
subresource_layout.push_back(subres);
const u32 gcm_format = src_is_argb8 ? CELL_GCM_TEXTURE_A8R8G8B8 : CELL_GCM_TEXTURE_R5G6B5;
vram_texture = upload_image_from_cpu(cmd, src_address, src.width, src.slice_h, 1, 1, src.pitch, gcm_format,
subresource_layout, rsx::texture_dimension_extended::texture_dimension_2d, dst.swizzled, default_remap_vector)->get_raw_texture();
}
}
else
{
if (src_subres.w != clip_dimensions.width ||
src_subres.h != clip_dimensions.height)
{
f32 subres_scaling_x = (f32)src.pitch / src_subres.surface->get_native_pitch();
const int dst_width = (int)(src_subres.w * dst.scale_x * subres_scaling_x);
const int dst_height = (int)(src_subres.h * dst.scale_y);
dst_area.x2 = dst_area.x1 + dst_width;
dst_area.y2 = dst_area.y1 + dst_height;
}
src_area.x2 = src_subres.w;
src_area.y2 = src_subres.h;
src_area.x1 += src_subres.x;
src_area.x2 += src_subres.x;
src_area.y1 += src_subres.y;
src_area.y2 += src_subres.y;
if (src.compressed_y)
{
dst_area.y1 *= 2;
dst_area.y2 *= 2;
dst_dimensions.height *= 2;
}
vram_texture = src_subres.surface->get_surface();
}
bool format_mismatch = false;
if (src_subres.is_depth_surface)
{
if (dest_texture)
{
if (dst_is_render_target && !dst_subres.is_depth_surface)
{
LOG_ERROR(RSX, "Depth->RGBA blit requested but not supported");
return true;
}
if (!cached_dest->has_compatible_format(src_subres.surface))
format_mismatch = true;
}
is_depth_blit = true;
}
//TODO: Check for other types of format mismatch
if (format_mismatch)
{
invalidate_range(cached_dest->get_section_base(), cached_dest->get_section_size());
dest_texture = 0;
cached_dest = nullptr;
}
//Validate clipping region
if ((dst.offset_x + dst.clip_x + dst.clip_width) > max_dst_width) dst.clip_x = 0;
if ((dst.offset_y + dst.clip_y + dst.clip_height) > max_dst_height) dst.clip_y = 0;
//Reproject clip offsets onto source to simplify blit
if (dst.clip_x || dst.clip_y)
{
const u16 scaled_clip_offset_x = (const u16)((f32)dst.clip_x / dst.scale_x);
const u16 scaled_clip_offset_y = (const u16)((f32)dst.clip_y / dst.scale_y);
src_area.x1 += scaled_clip_offset_x;
src_area.x2 += scaled_clip_offset_x;
src_area.y1 += scaled_clip_offset_y;
src_area.y2 += scaled_clip_offset_y;
}
if (dest_texture == 0)
{
u32 gcm_format;
if (is_depth_blit)
gcm_format = (dst_is_argb8) ? CELL_GCM_TEXTURE_DEPTH24_D8 : CELL_GCM_TEXTURE_DEPTH16;
else
gcm_format = (dst_is_argb8) ? CELL_GCM_TEXTURE_A8R8G8B8 : CELL_GCM_TEXTURE_R5G6B5;
dest_texture = create_new_texture(cmd, dst.rsx_address, dst.pitch * dst.clip_height,
dst_dimensions.width, dst_dimensions.height, 1, 1,
gcm_format, rsx::texture_dimension_extended::texture_dimension_2d,
dst.swizzled? rsx::texture_create_flags::swapped_native_component_order : rsx::texture_create_flags::native_component_order,
default_remap_vector)->get_raw_texture();
}
blitter.scale_image(vram_texture, dest_texture, src_area, dst_area, interpolate, is_depth_blit);
return true;
}
};
}