DH 2012-11-15 01:39:56 +02:00
parent de070bf485
commit a90b5cf37a
1998 changed files with 1034301 additions and 0 deletions

945
rpcs3/Emu/Cell/PPUThread.h Normal file
View file

@ -0,0 +1,945 @@
#pragma once
#include "Emu/Cell/PPCThread.h"
enum
{
XER_SO = 0x80000000,
XER_OV = 0x40000000,
XER_CA = 0x20000000,
};
enum
{
CR_LT = 0x8,
CR_GT = 0x4,
CR_EQ = 0x2,
CR_SO = 0x1,
};
enum FPSCR_EXP
{
FPSCR_FX = 0x80000000,
FPSCR_FEX = 0x40000000,
FPSCR_VX = 0x20000000,
FPSCR_OX = 0x10000000,
FPSCR_UX = 0x08000000,
FPSCR_ZX = 0x04000000,
FPSCR_XX = 0x02000000,
FPSCR_VXSNAN = 0x01000000,
FPSCR_VXISI = 0x00800000,
FPSCR_VXIDI = 0x00400000,
FPSCR_VXZDZ = 0x00200000,
FPSCR_VXIMZ = 0x00100000,
FPSCR_VXVC = 0x00080000,
FPSCR_FR = 0x00040000,
FPSCR_FI = 0x00020000,
FPSCR_VXSOFT = 0x00000400,
FPSCR_VXSQRT = 0x00000200,
FPSCR_VXCVI = 0x00000100,
};
enum FPSCR_RN
{
FPSCR_RN_NEAR = 0,
FPSCR_RN_ZERO = 1,
FPSCR_RN_PINF = 2,
FPSCR_RN_MINF = 3,
};
static const u64 DOUBLE_SIGN = 0x8000000000000000ULL;
static const u64 DOUBLE_EXP = 0x7FF0000000000000ULL;
static const u64 DOUBLE_FRAC = 0x000FFFFFFFFFFFFFULL;
static const u64 DOUBLE_ZERO = 0x0000000000000000ULL;
union FPSCRhdr
{
struct
{
u32 RN :2; //Floating-point rounding control
u32 NI :1; //Floating-point non-IEEE mode
u32 XE :1; //Floating-point inexact exception enable
u32 ZE :1; //IEEE floating-point zero divide exception enable
u32 UE :1; //IEEE floating-point underflow exception enable
u32 OE :1; //IEEE floating-point overflow exception enable
u32 VE :1; //Floating-point invalid operation exception enable
u32 VXCVI :1; //Floating-point invalid operation exception for invalid integer convert
u32 VXSQRT :1; //Floating-point invalid operation exception for invalid square root
u32 VXSOFT :1; //Floating-point invalid operation exception for software request
u32 :1; //Reserved
u32 FPRF :5; //Floating-point result flags
u32 FI :1; //Floating-point fraction inexact
u32 FR :1; //Floating-point fraction rounded
u32 VXVC :1; //Floating-point invalid operation exception for invalid compare
u32 VXIMZ :1; //Floating-point invalid operation exception for * * 0
u32 VXZDZ :1; //Floating-point invalid operation exception for 0 / 0
u32 VXIDI :1; //Floating-point invalid operation exception for * + *
u32 VXISI :1; //Floating-point invalid operation exception for * - *
u32 VXSNAN :1; //Floating-point invalid operation exception for SNaN
u32 XX :1; //Floating-point inexact exception
u32 ZX :1; //Floating-point zero divide exception
u32 UX :1; //Floating-point underflow exception
u32 OX :1; //Floating-point overflow exception
u32 VX :1; //Floating-point invalid operation exception summary
u32 FEX :1; //Floating-point enabled exception summary
u32 FX :1; //Floating-point exception summary
};
u32 FPSCR;
};
union MSRhdr
{
struct
{
//Little-endian mode enable
//0 The processor runs in big-endian mode.
//1 The processor runs in little-endian mode.
u64 LE : 1;
//Recoverable exception (for system reset and machine check exceptions).
//0 Exception is not recoverable.
//1 Exception is recoverable.
u64 RI : 1;
//Reserved
u64 : 2;
//Data address translation
//0 Data address translation is disabled.
//1 Data address translation is enabled.
u64 DR : 1;
//Instruction address translation
//0 Instruction address translation is disabled.
//1 Instruction address translation is enabled.
u64 IR : 1;
//Exception prefix. The setting of this bit specifies whether an exception vector offset
//is prepended with Fs or 0s. In the following description, nnnnn is the offset of the
//exception.
//0 Exceptions are vectored to the physical address 0x0000_0000_000n_nnnn in 64-bit implementations.
//1 Exceptions are vectored to the physical address 0xFFFF_FFFF_FFFn_nnnn in 64-bit implementations.
u64 IP : 1;
//Reserved
u64 : 1;
//Floating-point exception mode 1
u64 FE1 : 1;
//Branch trace enable (Optional)
//0 The processor executes branch instructions normally.
//1 The processor generates a branch trace exception after completing the
//execution of a branch instruction, regardless of whether or not the branch was
//taken.
//Note: If the function is not implemented, this bit is treated as reserved.
u64 BE : 1;
//Single-step trace enable (Optional)
//0 The processor executes instructions normally.
//1 The processor generates a single-step trace exception upon the successful
//execution of the next instruction.
//Note: If the function is not implemented, this bit is treated as reserved.
u64 SE : 1;
//Floating-point exception mode 0
u64 FE0 : 1;
//Machine check enable
//0 Machine check exceptions are disabled.
//1 Machine check exceptions are enabled.
u64 ME : 1;
//Floating-point available
//0 The processor prevents dispatch of floating-point instructions, including
//floating-point loads, stores, and moves.
//1 The processor can execute floating-point instructions.
u64 FP : 1;
//Privilege level
//0 The processor can execute both user- and supervisor-level instructions.
//1 The processor can only execute user-level instructions.
u64 PR : 1;
//External interrupt enable
//0 While the bit is cleared the processor delays recognition of external interrupts
//and decrementer exception conditions.
//1 The processor is enabled to take an external interrupt or the decrementer
//exception.
u64 EE : 1;
//Exception little-endian mode. When an exception occurs, this bit is copied into
//MSR[LE] to select the endian mode for the context established by the exception
u64 ILE : 1;
//Reserved
u64 : 1;
//Power management enable
//0 Power management disabled (normal operation mode).
//1 Power management enabled (reduced power mode).
//Note: Power management functions are implementation-dependent. If the function
//is not implemented, this bit is treated as reserved.
u64 POW : 1;
//Reserved
u64 : 44;
//Sixty-four bit mode
//0 The 64-bit processor runs in 32-bit mode.
//1 The 64-bit processor runs in 64-bit mode. Note that this is the default setting.
u64 SF : 1;
};
u64 MSR;
};
union PVRhdr
{
struct
{
u16 revision;
u16 version;
};
u32 PVR;
};
union CRhdr
{
u32 CR;
struct
{
u8 cr0 : 4;
u8 cr1 : 4;
u8 cr2 : 4;
u8 cr3 : 4;
u8 cr4 : 4;
u8 cr5 : 4;
u8 cr6 : 4;
u8 cr7 : 4;
};
};
union XERhdr
{
u64 XER;
struct
{
u64 L : 61;
u64 CA : 1;
u64 OV : 1;
u64 SO : 1;
};
};
enum FPRType
{
FPR_NORM,
FPR_ZERO,
FPR_SNAN,
//FPR_QNAN,
FPR_INF,
FPR_PZ = 0x2,
FPR_PN = 0x4,
FPR_PINF = 0x5,
FPR_NN = 0x8,
FPR_NINF = 0x9,
FPR_QNAN = 0x11,
FPR_NZ = 0x12,
FPR_PD = 0x14,
FPR_ND = 0x18,
};
struct PPCdouble
{
union
{
double _double;
u64 _u64;
struct
{
u64 frac : 52;
u64 exp : 11;
u64 sign : 1;
};
struct
{
u64 : 51;
u64 nan : 1;
u64 : 12;
};
};
FPRType type;
u32 GetType()
{
if(exp > 0 && exp < 0x7ff) return sign ? FPR_NN : FPR_PN;
if(frac)
{
if(exp) return FPR_QNAN;
return sign ? FPR_INF : FPR_PINF;
}
return sign ? FPR_NZ : FPR_PZ;
}
u32 To32()
{
if (exp > 896 || (!frac && !exp))
{
return ((_u64 >> 32) & 0xc0000000) | ((_u64 >> 29) & 0x3fffffff);
}
if (exp >= 874)
{
return ((0x80000000 | (frac >> 21)) >> (905 - exp)) | (_u64 >> 32) & 0x80000000;
}
//?
return ((_u64 >> 32) & 0xc0000000) | ((_u64 >> 29) & 0x3fffffff);
}
u32 GetZerosCount()
{
u32 ret;
u32 dd = frac >> 32;
if(dd)
{
ret = 31;
}
else
{
dd = frac;
ret = 63;
}
if(dd > 0xffff)
{
ret -= 16;
dd >>= 16;
}
if(dd > 0xff)
{
ret -= 8;
dd >>= 8;
}
if(dd & 0xf0)
{
ret -= 4;
dd >>= 4;
}
if(dd & 0xc)
{
ret -= 2;
dd >>= 2;
}
if(dd & 0x2) ret--;
return ret;
}
PPCdouble() : _u64(0)
{
}
PPCdouble(double val) : _double(val)
{
}
PPCdouble(u64 val) : _u64(val)
{
}
PPCdouble(u32 val) : _u64(val)
{
}
};
struct FPRdouble
{
static PPCdouble ConvertToIntegerMode(const PPCdouble& d, FPSCRhdr& fpscr, bool is_64, u32 round_mode)
{
PPCdouble ret;
if(d.exp == 2047)
{
if (d.frac == 0)
{
ret.type = FPR_INF;
fpscr.FI = 0;
fpscr.FR = 0;
fpscr.VXCVI = 1;
if(fpscr.VE == 0)
{
if(is_64)
{
return d.sign ? 0x8000000000000000 : 0x7FFFFFFFFFFFFFFF;
}
else
{
return d.sign ? 0x80000000 : 0x7FFFFFFF;
}
fpscr.FPRF = 0;
}
}
else if(d.nan == 0)
{
ret.type = FPR_SNAN;
fpscr.FI = 0;
fpscr.FR = 0;
fpscr.VXCVI = 1;
fpscr.VXSNAN = 1;
if(fpscr.VE == 0)
{
return is_64 ? 0x8000000000000000 : 0x80000000;
fpscr.FPRF = 0;
}
}
else
{
ret.type = FPR_QNAN;
fpscr.FI = 0;
fpscr.FR = 0;
fpscr.VXCVI = 1;
if(fpscr.VE == 0)
{
return is_64 ? 0x8000000000000000 : 0x80000000;
fpscr.FPRF = 0;
}
}
}
else if(d.exp > 1054)
{
fpscr.FI = 0;
fpscr.FR = 0;
fpscr.VXCVI = 1;
if(fpscr.VE == 0)
{
if(is_64)
{
return d.sign ? 0x8000000000000000 : 0x7FFFFFFFFFFFFFFF;
}
else
{
return d.sign ? 0x80000000 : 0x7FFFFFFF;
}
fpscr.FPRF = 0;
}
}
ret.sign = d.sign;
if(d.exp > 0)
{
ret.exp = d.exp - 1023;
ret.frac = 1 | d.frac;
}
else if(d.exp == 0)
{
ret.exp = -1022;
ret.frac = d.frac;
}
/*
if(d.exp == 0)
{
if (d.frac == 0)
{
d.type = FPR_ZERO;
}
else
{
const u32 z = d.GetZerosCount() - 8;
d.frac <<= z + 3;
d.exp -= 1023 - 1 + z;
d.type = FPR_NORM;
}
}
else
{
d.exp -= 1023;
d.type = FPR_NORM;
d.nan = 1;
d.frac <<= 3;
}
*/
return ret;
}
static u32 ConvertToFloatMode(PPCdouble& d, u32 RN)
{
/*
u32 fpscr = 0;
switch (d.type)
{
case FPR_NORM:
d.exp += 1023;
if (d.exp > 0)
{
fpscr |= Round(d, RN);
if(d.nan)
{
d.exp++;
d.frac >>= 4;
}
else
{
d.frac >>= 3;
}
if(d.exp >= 2047)
{
d.exp = 2047;
d.frac = 0;
fpscr |= FPSCR_OX;
}
}
else
{
d.exp = -(s64)d.exp + 1;
if(d.exp <= 56)
{
d.frac >>= d.exp;
fpscr |= Round(d, RN);
d.frac <<= 1;
if(d.nan)
{
d.exp = 1;
d.frac = 0;
}
else
{
d.exp = 0;
d.frac >>= 4;
fpscr |= FPSCR_UX;
}
}
else
{
d.exp = 0;
d.frac = 0;
fpscr |= FPSCR_UX;
}
}
break;
case FPR_ZERO:
d.exp = 0;
d.frac = 0;
break;
case FPR_NAN:
d.exp = 2047;
d.frac = 1;
break;
case FPR_INF:
d.exp = 2047;
d.frac = 0;
break;
}
return fpscr;
*/
return 0;
}
static u32 Round(PPCdouble& d, u32 RN)
{
switch(RN)
{
case FPSCR_RN_NEAR:
if(d.frac & 0x7)
{
if((d.frac & 0x7) != 4 || d.frac & 0x8)
{
d.frac += 4;
}
return FPSCR_XX;
}
return 0;
case FPSCR_RN_ZERO:
if(d.frac & 0x7) return FPSCR_XX;
return 0;
case FPSCR_RN_PINF:
if(!d.sign && (d.frac & 0x7))
{
d.frac += 8;
return FPSCR_XX;
}
return 0;
case FPSCR_RN_MINF:
if(d.sign && (d.frac & 0x7))
{
d.frac += 8;
return FPSCR_XX;
}
return 0;
}
return 0;
}
static const u64 double_sign = 0x8000000000000000ULL;
static const u64 double_frac = 0x000FFFFFFFFFFFFFULL;
static bool IsINF(double d);
static bool IsNaN(double d);
static bool IsQNaN(double d);
static bool IsSNaN(double d);
static int Cmp(double a, double b);
};
union VPR_reg
{
//__m128i _m128i;
u128 _u128;
s128 _i128;
u64 _u64[2];
s64 _i64[2];
u32 _u32[4];
s32 _i32[4];
u16 _u16[8];
s16 _i16[8];
u8 _u8[16];
s8 _i8[16];
//struct { float x, y, z, w; };
VPR_reg() { Clear(); }
VPR_reg(const __m128i val){_u128._u64[0] = val.m128i_u64[0]; _u128._u64[1] = val.m128i_u64[1];}
VPR_reg(const u128 val) { _u128 = val; }
VPR_reg(const u64 val) { Clear(); _u64[0] = val; }
VPR_reg(const u32 val) { Clear(); _u32[0] = val; }
VPR_reg(const u16 val) { Clear(); _u16[0] = val; }
VPR_reg(const u8 val) { Clear(); _u8[0] = val; }
VPR_reg(const s128 val) { _i128 = val; }
VPR_reg(const s64 val) { Clear(); _i64[0] = val; }
VPR_reg(const s32 val) { Clear(); _i32[0] = val; }
VPR_reg(const s16 val) { Clear(); _i16[0] = val; }
VPR_reg(const s8 val) { Clear(); _i8[0] = val; }
operator u128() const { return _u128; }
operator s128() const { return _i128; }
operator u64() const { return _u64[0]; }
operator s64() const { return _i64[0]; }
operator u32() const { return _u32[0]; }
operator s32() const { return _i32[0]; }
operator u16() const { return _u16[0]; }
operator s16() const { return _i16[0]; }
operator u8() const { return _u8[0]; }
operator s8() const { return _i8[0]; }
operator __m128i() { __m128i ret; ret.m128i_u64[0]=_u128._u64[0]; ret.m128i_u64[1]=_u128._u64[1]; return ret; }
operator bool() const { return _u64[0] != 0 || _u64[1] != 0; }
wxString ToString() const
{
return wxString::Format("%08x%08x%08x%08x", _u32[3], _u32[2], _u32[1], _u32[0]);
}
VPR_reg operator ^ (VPR_reg right) { return _mm_xor_si128(*this, right); }
VPR_reg operator | (VPR_reg right) { return _mm_or_si128 (*this, right); }
VPR_reg operator & (VPR_reg right) { return _mm_and_si128(*this, right); }
VPR_reg operator ^ (__m128i right) { return _mm_xor_si128(*this, right); }
VPR_reg operator | (__m128i right) { return _mm_or_si128 (*this, right); }
VPR_reg operator & (__m128i right) { return _mm_and_si128(*this, right); }
bool operator == (const VPR_reg& right){ return _u64[0] == right._u64[0] && _u64[1] == right._u64[1]; }
bool operator == (const u128 right) { return _u64[0] == right._u64[0] && _u64[1] == right._u64[1]; }
bool operator == (const s128 right) { return _i64[0] == right._i64[0] && _i64[1] == right._i64[1]; }
bool operator == (const u64 right) { return _u64[0] == (u64)right && _u64[1] == 0; }
bool operator == (const s64 right) { return _i64[0] == (s64)right && _i64[1] == 0; }
bool operator == (const u32 right) { return _u64[0] == (u64)right && _u64[1] == 0; }
bool operator == (const s32 right) { return _i64[0] == (s64)right && _i64[1] == 0; }
bool operator == (const u16 right) { return _u64[0] == (u64)right && _u64[1] == 0; }
bool operator == (const s16 right) { return _i64[0] == (s64)right && _i64[1] == 0; }
bool operator == (const u8 right) { return _u64[0] == (u64)right && _u64[1] == 0; }
bool operator == (const s8 right) { return _i64[0] == (s64)right && _i64[1] == 0; }
bool operator != (const VPR_reg& right){ return !(*this == right); }
bool operator != (const u128 right) { return !(*this == right); }
bool operator != (const u64 right) { return !(*this == right); }
bool operator != (const u32 right) { return !(*this == right); }
bool operator != (const u16 right) { return !(*this == right); }
bool operator != (const u8 right) { return !(*this == right); }
bool operator != (const s128 right) { return !(*this == right); }
bool operator != (const s64 right) { return !(*this == right); }
bool operator != (const s32 right) { return !(*this == right); }
bool operator != (const s16 right) { return !(*this == right); }
bool operator != (const s8 right) { return !(*this == right); }
s64& d(const u32 c) { return _i64[1 - c]; }
u64& ud(const u32 c) { return _u64[1 - c]; }
s32& w(const u32 c) { return _i32[3 - c]; }
u32& uw(const u32 c) { return _u32[3 - c]; }
s16& h(const u32 c) { return _i16[7 - c]; }
u16& uh(const u32 c) { return _u16[7 - c]; }
s8& b(const u32 c) { return _i8[15 - c]; }
u8& ub(const u32 c) { return _u8[15 - c]; }
void Clear() { memset(this, 0, sizeof(*this)); }
};
/*
struct VPR_table
{
VPR_reg t[32];
operator VPR_reg*() { return t; }
VPR_reg& operator [] (int index)
{
return t[index];
}
}
*/
static const s32 MAX_INT_VALUE = 0x7fffffff;
class PPUThread : public PPCThread
{
public:
double FPR[32]; //Floating Point Register
FPSCRhdr FPSCR; //Floating Point Status and Control Register
u64 GPR[32]; //General-Purpose Register
VPR_reg VPR[32];
u32 vpcr;
CRhdr CR; //Condition Register
//CR0
// 0 : LT - Negative (is negative)
// : 0 - Result is not negative
// : 1 - Result is negative
// 1 : GT - Positive (is positive)
// : 0 - Result is not positive
// : 1 - Result is positive
// 2 : EQ - Zero (is zero)
// : 0 - Result is not equal to zero
// : 1 - Result is equal to zero
// 3 : SO - Summary overflow (copy of the final state XER[S0])
// : 0 - No overflow occurred
// : 1 - Overflow occurred
//CRn
// 0 : LT - Less than (rA > X)
// : 0 - rA is not less than
// : 1 - rA is less than
// 1 : GT - Greater than (rA < X)
// : 0 - rA is not greater than
// : 1 - rA is greater than
// 2 : EQ - Equal to (rA == X)
// : 0 - Result is not equal to zero
// : 1 - Result is equal to zero
// 3 : SO - Summary overflow (copy of the final state XER[S0])
// : 0 - No overflow occurred
// : 1 - Overflow occurred
//SPR : Special-Purpose Registers
XERhdr XER; //SPR 0x001 : Fixed-Point Expection Register
// 0 : SO - Summary overflow
// : 0 - No overflow occurred
// : 1 - Overflow occurred
// 1 : OV - Overflow
// : 0 - No overflow occurred
// : 1 - Overflow occurred
// 2 : CA - Carry
// : 0 - Carry did not occur
// : 1 - Carry occured
// 3 - 24 : Reserved
// 25 - 31 : TBC
// Transfer-byte count
MSRhdr MSR; //Machine State Register
PVRhdr PVR; //Processor Version Register
u64 LR; //SPR 0x008 : Link Register
u64 CTR; //SPR 0x009 : Count Register
s32 USPRG; //SPR 0x100 : User-SPR General-Purpose Registers
s32 SPRG[8]; //SPR 0x100 - 0x107 : SPR General-Purpose Registers
//TBR : Time-Base Registers
union
{
u64 TB; //TBR 0x10C - 0x10D
struct
{
u32 TBH;
u32 TBL;
};
};
u64 reserve_addr;
bool reserve;
u64 cycle;
public:
PPUThread();
~PPUThread();
inline u8 GetCR(const u8 n) const
{
switch(n)
{
case 7: return CR.cr0;
case 6: return CR.cr1;
case 5: return CR.cr2;
case 4: return CR.cr3;
case 3: return CR.cr4;
case 2: return CR.cr5;
case 1: return CR.cr6;
case 0: return CR.cr7;
}
return 0;
}
inline void SetCR(const u8 n, const u32 value)
{
switch(n)
{
case 7: CR.cr0 = value; break;
case 6: CR.cr1 = value; break;
case 5: CR.cr2 = value; break;
case 4: CR.cr3 = value; break;
case 3: CR.cr4 = value; break;
case 2: CR.cr5 = value; break;
case 1: CR.cr6 = value; break;
case 0: CR.cr7 = value; break;
}
}
inline void SetCRBit(const u8 n, const u32 bit, const bool value)
{
switch(n)
{
case 7: value ? CR.cr0 |= bit : CR.cr0 &= ~bit; break;
case 6: value ? CR.cr1 |= bit : CR.cr1 &= ~bit; break;
case 5: value ? CR.cr2 |= bit : CR.cr2 &= ~bit; break;
case 4: value ? CR.cr3 |= bit : CR.cr3 &= ~bit; break;
case 3: value ? CR.cr4 |= bit : CR.cr4 &= ~bit; break;
case 2: value ? CR.cr5 |= bit : CR.cr5 &= ~bit; break;
case 1: value ? CR.cr6 |= bit : CR.cr6 &= ~bit; break;
case 0: value ? CR.cr7 |= bit : CR.cr7 &= ~bit; break;
}
}
inline void SetCR_EQ(const u8 n, const bool value) { SetCRBit(n, CR_EQ, value); }
inline void SetCR_GT(const u8 n, const bool value) { SetCRBit(n, CR_GT, value); }
inline void SetCR_LT(const u8 n, const bool value) { SetCRBit(n, CR_LT, value); }
inline void SetCR_SO(const u8 n, const bool value) { SetCRBit(n, CR_SO, value); }
inline bool IsCR_EQ(const u8 n) const { return (GetCR(n) & CR_EQ) ? 1 : 0; }
inline bool IsCR_GT(const u8 n) const { return (GetCR(n) & CR_GT) ? 1 : 0; }
inline bool IsCR_LT(const u8 n) const { return (GetCR(n) & CR_LT) ? 1 : 0; }
template<typename T> void UpdateCRn(const u8 n, const T a, const T b)
{
if (a < b) SetCR(n, CR_LT);
else if (a > b) SetCR(n, CR_GT);
else if (a == b) SetCR(n, CR_EQ);
SetCR_SO(n, XER.SO);
}
template<typename T> void UpdateCR0(const T val)
{
UpdateCRn<T>(0, val, 0);
}
template<typename T> void UpdateCR1()
{
SetCR_LT(1, FPSCR.FX);
SetCR_GT(1, FPSCR.FEX);
SetCR_EQ(1, FPSCR.VX);
SetCR_SO(1, FPSCR.OX);
}
const u8 GetCRBit(const u32 bit) const { return 1 << (3 - (bit % 4)); }
void SetCRBit (const u32 bit, bool set) { SetCRBit(bit >> 2, GetCRBit(bit), set); }
void SetCRBit2(const u32 bit, bool set) { SetCRBit(bit >> 2, 0x8 >> (bit & 3), set); }
const u8 IsCR(const u32 bit) const { return (GetCR(bit >> 2) & GetCRBit(bit)) ? 1 : 0; }
bool IsCarry(const u64 a, const u64 b) { return a > (~b); }
void SetFPSCRException(const FPSCR_EXP mask)
{
if ((FPSCR.FPSCR & mask) != mask) FPSCR.FX = 1;
FPSCR.FPSCR |= mask;
}
void SetFPSCR_FI(const u32 val)
{
if(val) SetFPSCRException(FPSCR_XX);
FPSCR.FI = val;
}
virtual wxString RegsToString()
{
wxString ret = PPCThread::RegsToString();
for(uint i=0; i<32; ++i) ret += wxString::Format("GPR[%d] = 0x%llx\n", i, GPR[i]);
for(uint i=0; i<32; ++i) ret += wxString::Format("FPR[%d] = %.6G\n", i, FPR[i]);
ret += wxString::Format("CR = 0x%08x\n", CR);
ret += wxString::Format("LR = 0x%llx\n", LR);
ret += wxString::Format("CTR = 0x%llx\n", CTR);
ret += wxString::Format("XER = 0x%llx\n", XER);
ret += wxString::Format("FPSCR = 0x%x\n", FPSCR);
return ret;
}
void SetBranch(const u64 pc);
virtual void AddArgv(const wxString& arg);
public:
virtual void InitRegs();
virtual u64 GetFreeStackSize() const;
protected:
virtual void DoReset();
virtual void DoRun();
virtual void DoPause();
virtual void DoResume();
virtual void DoStop();
private:
virtual void DoCode(const s32 code);
};