Merge pull request #1027 from Nekotekina/master

Event and SPU refactoring
This commit is contained in:
B1ackDaemon 2015-03-05 02:36:20 +02:00
commit 8c046429cc
79 changed files with 2836 additions and 2621 deletions

View file

@ -2,7 +2,9 @@
#include "Log.h" #include "Log.h"
#include "rpcs3/Ini.h" #include "rpcs3/Ini.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/CPU/CPUThread.h" #include "Emu/CPU/CPUThread.h"
#include "Emu/Cell/RawSPUThread.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Thread.h" #include "Thread.h"
@ -105,8 +107,8 @@ enum x64_reg_t : u32
enum x64_op_t : u32 enum x64_op_t : u32
{ {
X64OP_NONE, X64OP_NONE,
X64OP_LOAD, // obtain and put the value into x64 register (from Memory.ReadMMIO32, for example) X64OP_LOAD, // obtain and put the value into x64 register
X64OP_STORE, // take the value from x64 register or an immediate and use it (pass in Memory.WriteMMIO32, for example) X64OP_STORE, // take the value from x64 register or an immediate and use it
// example: add eax,[rax] -> X64OP_LOAD_ADD (add the value to x64 register) // example: add eax,[rax] -> X64OP_LOAD_ADD (add the value to x64 register)
// example: add [rax],eax -> X64OP_LOAD_ADD_STORE (this will probably never happen for MMIO registers) // example: add [rax],eax -> X64OP_LOAD_ADD_STORE (this will probably never happen for MMIO registers)
@ -464,7 +466,7 @@ typedef ucontext_t x64_context;
#ifdef __APPLE__ #ifdef __APPLE__
#define X64REG(context, reg) (darwin_x64reg(context, reg)) #define X64REG(context, reg) (darwin_x64reg(context, reg))
#define XMMREG(context, reg) (reinterpret_cast<u128*>(&(context)->uc_mcontext->__fs.__fpu_xmm0[reg])) #define XMMREG(context, reg) (reinterpret_cast<u128*>(&(context)->uc_mcontext->__fs.__fpu_xmm0.__xmm_reg[reg]))
#define EFLAGS(context) ((context)->uc_mcontext->__ss.__rflags) #define EFLAGS(context) ((context)->uc_mcontext->__ss.__rflags)
uint64_t* darwin_x64reg(x64_context *context, int reg) uint64_t* darwin_x64reg(x64_context *context, int reg)
@ -768,18 +770,27 @@ bool handle_access_violation(u32 addr, bool is_writing, x64_context* context)
// check if address is RawSPU MMIO register // check if address is RawSPU MMIO register
if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET) if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET)
{ {
auto t = Emu.GetCPU().GetRawSPUThread((addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET);
if (!t)
{
return false;
}
if (a_size != 4 || !d_size || !i_size) if (a_size != 4 || !d_size || !i_size)
{ {
LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", op, reg, d_size, a_size, i_size); LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", op, reg, d_size, a_size, i_size);
return false; return false;
} }
auto& spu = static_cast<RawSPUThread&>(*t);
switch (op) switch (op)
{ {
case X64OP_LOAD: case X64OP_LOAD:
{ {
u32 value; u32 value;
if (is_writing || !Memory.ReadMMIO32(addr, value) || !put_x64_reg_value(context, reg, d_size, re32(value))) if (is_writing || !spu.ReadReg(addr, value) || !put_x64_reg_value(context, reg, d_size, re32(value)))
{ {
return false; return false;
} }
@ -789,7 +800,7 @@ bool handle_access_violation(u32 addr, bool is_writing, x64_context* context)
case X64OP_STORE: case X64OP_STORE:
{ {
u64 reg_value; u64 reg_value;
if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value) || !Memory.WriteMMIO32(addr, re32((u32)reg_value))) if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value) || !spu.WriteReg(addr, re32((u32)reg_value)))
{ {
return false; return false;
} }

View file

@ -1,5 +1,4 @@
#pragma once #pragma once
#include "Emu/Memory/atomic_type.h"
static std::thread::id main_thread; static std::thread::id main_thread;

View file

@ -34,7 +34,7 @@ if (NOT MSVC)
set(CMAKE_C_FLAGS_MINSIZEREL "${CMAKE_C_FLAGS_MINSIZEREL} -Os -D_NDEBUG") set(CMAKE_C_FLAGS_MINSIZEREL "${CMAKE_C_FLAGS_MINSIZEREL} -Os -D_NDEBUG")
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -O1 -D_NDEBUG") set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -O1 -D_NDEBUG")
set(CMAKE_C_FLAGS_RELWITHDEBINFO "${CMAKE_C_FLAGS_RELWITHDEBINFO} -O1 -g -D_NDEBUG") set(CMAKE_C_FLAGS_RELWITHDEBINFO "${CMAKE_C_FLAGS_RELWITHDEBINFO} -O1 -g -D_NDEBUG")
add_definitions(-msse2) add_definitions(-msse2 -mcx16)
endif() endif()
if (APPLE) if (APPLE)

View file

@ -296,7 +296,7 @@ namespace ARMv7_instrs
context.fmt_debug_str("0x%08x: %s", context.thread.PC, context.debug_str); context.fmt_debug_str("0x%08x: %s", context.thread.PC, context.debug_str);
LV2_LOCK(0); LV2_LOCK;
auto found = g_armv7_dump.find(context.thread.PC); auto found = g_armv7_dump.find(context.thread.PC);
if (found != g_armv7_dump.end()) if (found != g_armv7_dump.end())

View file

@ -232,7 +232,7 @@ void ARMv7Thread::FastStop()
armv7_thread::armv7_thread(u32 entry, const std::string& name, u32 stack_size, s32 prio) armv7_thread::armv7_thread(u32 entry, const std::string& name, u32 stack_size, s32 prio)
{ {
thread = &Emu.GetCPU().AddThread(CPU_THREAD_ARMv7); thread = Emu.GetCPU().AddThread(CPU_THREAD_ARMv7);
thread->SetName(name); thread->SetName(name);
thread->SetEntry(entry); thread->SetEntry(entry);
@ -277,11 +277,13 @@ cpu_thread& armv7_thread::args(std::initializer_list<std::string> values)
cpu_thread& armv7_thread::run() cpu_thread& armv7_thread::run()
{ {
thread->Run(); auto& armv7 = static_cast<ARMv7Thread&>(*thread);
armv7.Run();
// set arguments // set arguments
static_cast<ARMv7Thread*>(thread)->context.GPR[0] = argc; armv7.context.GPR[0] = argc;
static_cast<ARMv7Thread*>(thread)->context.GPR[1] = argv; armv7.context.GPR[1] = argv;
return *this; return *this;
} }

View file

@ -6,19 +6,10 @@ struct psv_cond_t
u32 attr; u32 attr;
s32 mutexId; s32 mutexId;
private:
psv_cond_t() = delete;
psv_cond_t(const psv_cond_t&) = delete;
psv_cond_t(psv_cond_t&&) = delete;
psv_cond_t& operator =(const psv_cond_t&) = delete;
psv_cond_t& operator =(psv_cond_t&&) = delete;
public: public:
psv_cond_t(const char* name, u32 attr, s32 mutexId); psv_cond_t(const char* name, u32 attr, s32 mutexId);
void on_init(s32 id) {}
void on_stop() {}
}; };
extern psv_object_list_t<psv_cond_t, SCE_KERNEL_THREADMGR_UID_CLASS_COND> g_psv_cond_list; typedef psv_object_list_t<psv_cond_t, SCE_KERNEL_THREADMGR_UID_CLASS_COND> psv_cond_list_t;
extern psv_cond_list_t g_psv_cond_list;

View file

@ -6,19 +6,10 @@ struct psv_event_flag_t
u32 attr; u32 attr;
u32 pattern; u32 pattern;
private:
psv_event_flag_t() = delete;
psv_event_flag_t(const psv_event_flag_t&) = delete;
psv_event_flag_t(psv_event_flag_t&&) = delete;
psv_event_flag_t& operator =(const psv_event_flag_t&) = delete;
psv_event_flag_t& operator =(psv_event_flag_t&&) = delete;
public: public:
psv_event_flag_t(const char* name, u32 attr, u32 pattern); psv_event_flag_t(const char* name, u32 attr, u32 pattern);
void on_init(s32 id) {}
void on_stop() {}
}; };
extern psv_object_list_t<psv_event_flag_t, SCE_KERNEL_THREADMGR_UID_CLASS_EVENT_FLAG> g_psv_ef_list; typedef psv_object_list_t<psv_event_flag_t, SCE_KERNEL_THREADMGR_UID_CLASS_EVENT_FLAG> psv_ef_list_t;
extern psv_ef_list_t g_psv_ef_list;

View file

@ -6,19 +6,10 @@ struct psv_mutex_t
u32 attr; u32 attr;
s32 count; s32 count;
private:
psv_mutex_t() = delete;
psv_mutex_t(const psv_mutex_t&) = delete;
psv_mutex_t(psv_mutex_t&&) = delete;
psv_mutex_t& operator =(const psv_mutex_t&) = delete;
psv_mutex_t& operator =(psv_mutex_t&&) = delete;
public: public:
psv_mutex_t(const char* name, u32 attr, s32 count); psv_mutex_t(const char* name, u32 attr, s32 count);
void on_init(s32 id) {}
void on_stop() {}
}; };
extern psv_object_list_t<psv_mutex_t, SCE_KERNEL_THREADMGR_UID_CLASS_MUTEX> g_psv_mutex_list; typedef psv_object_list_t<psv_mutex_t, SCE_KERNEL_THREADMGR_UID_CLASS_MUTEX> psv_mutex_list_t;
extern psv_mutex_list_t g_psv_mutex_list;

View file

@ -7,19 +7,10 @@ struct psv_sema_t
s32 value; s32 value;
s32 max; s32 max;
private:
psv_sema_t() = delete;
psv_sema_t(const psv_sema_t&) = delete;
psv_sema_t(psv_sema_t&&) = delete;
psv_sema_t& operator =(const psv_sema_t&) = delete;
psv_sema_t& operator =(psv_sema_t&&) = delete;
public: public:
psv_sema_t(const char* name, u32 attr, s32 init_value, s32 max_value); psv_sema_t(const char* name, u32 attr, s32 init_value, s32 max_value);
void on_init(s32 id) {}
void on_stop() {}
}; };
extern psv_object_list_t<psv_sema_t, SCE_KERNEL_THREADMGR_UID_CLASS_SEMA> g_psv_sema_list; typedef psv_object_list_t<psv_sema_t, SCE_KERNEL_THREADMGR_UID_CLASS_SEMA> psv_sema_list_t;
extern psv_sema_list_t g_psv_sema_list;

View file

@ -47,18 +47,17 @@ s32 sceKernelCreateThread(
sceLibKernel.Warning("sceKernelCreateThread(pName=0x%x, entry=0x%x, initPriority=%d, stackSize=0x%x, attr=0x%x, cpuAffinityMask=0x%x, pOptParam=0x%x)", sceLibKernel.Warning("sceKernelCreateThread(pName=0x%x, entry=0x%x, initPriority=%d, stackSize=0x%x, attr=0x%x, cpuAffinityMask=0x%x, pOptParam=0x%x)",
pName, entry, initPriority, stackSize, attr, cpuAffinityMask, pOptParam); pName, entry, initPriority, stackSize, attr, cpuAffinityMask, pOptParam);
ARMv7Thread& new_thread = static_cast<ARMv7Thread&>(Emu.GetCPU().AddThread(CPU_THREAD_ARMv7)); auto t = Emu.GetCPU().AddThread(CPU_THREAD_ARMv7);
const auto id = new_thread.GetId(); auto& armv7 = static_cast<ARMv7Thread&>(*t);
new_thread.SetEntry(entry.addr());
new_thread.SetPrio(initPriority);
new_thread.SetStackSize(stackSize);
new_thread.SetName(pName.get_ptr());
sceLibKernel.Warning("*** New ARMv7 Thread [%s] (entry=0x%x): id -> 0x%x", pName.get_ptr(), entry, id); armv7.SetEntry(entry.addr());
armv7.SetPrio(initPriority);
armv7.SetStackSize(stackSize);
armv7.SetName(pName.get_ptr());
armv7.Run();
new_thread.Run(); return armv7.GetId();
return id;
} }
s32 sceKernelStartThread(s32 threadId, u32 argSize, vm::psv::ptr<const void> pArgBlock) s32 sceKernelStartThread(s32 threadId, u32 argSize, vm::psv::ptr<const void> pArgBlock)
@ -398,11 +397,12 @@ s32 sceKernelCreateEventFlag(vm::psv::ptr<const char> pName, u32 attr, u32 initP
{ {
sceLibKernel.Error("sceKernelCreateEventFlag(pName=0x%x, attr=0x%x, initPattern=0x%x, pOptParam=0x%x)", pName, attr, initPattern, pOptParam); sceLibKernel.Error("sceKernelCreateEventFlag(pName=0x%x, attr=0x%x, initPattern=0x%x, pOptParam=0x%x)", pName, attr, initPattern, pOptParam);
std::shared_ptr<psv_event_flag_t> ef(new psv_event_flag_t(pName.get_ptr(), attr, initPattern)); if (s32 id = g_psv_ef_list.add(new psv_event_flag_t(pName.get_ptr(), attr, initPattern), 0))
{
const s32 id = g_psv_ef_list.add(ef);
return id; return id;
}
RETURN_ERROR(SCE_KERNEL_ERROR_ERROR);
} }
s32 sceKernelDeleteEventFlag(s32 evfId) s32 sceKernelDeleteEventFlag(s32 evfId)
@ -461,23 +461,31 @@ s32 sceKernelCreateSema(vm::psv::ptr<const char> pName, u32 attr, s32 initCount,
{ {
sceLibKernel.Error("sceKernelCreateSema(pName=0x%x, attr=0x%x, initCount=%d, maxCount=%d, pOptParam=0x%x)", pName, attr, initCount, maxCount, pOptParam); sceLibKernel.Error("sceKernelCreateSema(pName=0x%x, attr=0x%x, initCount=%d, maxCount=%d, pOptParam=0x%x)", pName, attr, initCount, maxCount, pOptParam);
std::shared_ptr<psv_sema_t> sema(new psv_sema_t(pName.get_ptr(), attr, initCount, maxCount)); if (s32 id = g_psv_sema_list.add(new psv_sema_t(pName.get_ptr(), attr, initCount, maxCount), 0))
{
const s32 id = g_psv_sema_list.add(sema);
return id; return id;
}
RETURN_ERROR(SCE_KERNEL_ERROR_ERROR);
} }
s32 sceKernelDeleteSema(s32 semaId) s32 sceKernelDeleteSema(s32 semaId)
{ {
sceLibKernel.Error("sceKernelDeleteSema(semaId=0x%x)", semaId); sceLibKernel.Error("sceKernelDeleteSema(semaId=0x%x)", semaId);
ref_t<psv_sema_t> sema = g_psv_sema_list.get(semaId);
if (!sema)
{
RETURN_ERROR(SCE_KERNEL_ERROR_INVALID_UID);
}
if (!g_psv_sema_list.remove(semaId)) if (!g_psv_sema_list.remove(semaId))
{ {
RETURN_ERROR(SCE_KERNEL_ERROR_INVALID_UID); RETURN_ERROR(SCE_KERNEL_ERROR_INVALID_UID);
} }
throw SCE_OK; return SCE_OK;
} }
s32 sceKernelOpenSema(vm::psv::ptr<const char> pName) s32 sceKernelOpenSema(vm::psv::ptr<const char> pName)
@ -492,7 +500,18 @@ s32 sceKernelCloseSema(s32 semaId)
s32 sceKernelWaitSema(s32 semaId, s32 needCount, vm::psv::ptr<u32> pTimeout) s32 sceKernelWaitSema(s32 semaId, s32 needCount, vm::psv::ptr<u32> pTimeout)
{ {
throw __FUNCTION__; sceLibKernel.Error("sceKernelWaitSema(semaId=0x%x, needCount=%d, pTimeout=0x%x)", semaId, needCount, pTimeout);
ref_t<psv_sema_t> sema = g_psv_sema_list.get(semaId);
if (!sema)
{
RETURN_ERROR(SCE_KERNEL_ERROR_INVALID_UID);
}
sceLibKernel.Error("*** name = %s", sema->name);
Emu.Pause();
return SCE_OK;
} }
s32 sceKernelWaitSemaCB(s32 semaId, s32 needCount, vm::psv::ptr<u32> pTimeout) s32 sceKernelWaitSemaCB(s32 semaId, s32 needCount, vm::psv::ptr<u32> pTimeout)
@ -526,11 +545,12 @@ s32 sceKernelCreateMutex(vm::psv::ptr<const char> pName, u32 attr, s32 initCount
{ {
sceLibKernel.Error("sceKernelCreateMutex(pName=0x%x, attr=0x%x, initCount=%d, pOptParam=0x%x)", pName, attr, initCount, pOptParam); sceLibKernel.Error("sceKernelCreateMutex(pName=0x%x, attr=0x%x, initCount=%d, pOptParam=0x%x)", pName, attr, initCount, pOptParam);
std::shared_ptr<psv_mutex_t> mutex(new psv_mutex_t(pName.get_ptr(), attr, initCount)); if (s32 id = g_psv_mutex_list.add(new psv_mutex_t(pName.get_ptr(), attr, initCount), 0))
{
const s32 id = g_psv_mutex_list.add(mutex);
return id; return id;
}
RETURN_ERROR(SCE_KERNEL_ERROR_ERROR);
} }
s32 sceKernelDeleteMutex(s32 mutexId) s32 sceKernelDeleteMutex(s32 mutexId)
@ -626,11 +646,12 @@ s32 sceKernelCreateCond(vm::psv::ptr<const char> pName, u32 attr, s32 mutexId, v
{ {
sceLibKernel.Error("sceKernelCreateCond(pName=0x%x, attr=0x%x, mutexId=0x%x, pOptParam=0x%x)", pName, attr, mutexId, pOptParam); sceLibKernel.Error("sceKernelCreateCond(pName=0x%x, attr=0x%x, mutexId=0x%x, pOptParam=0x%x)", pName, attr, mutexId, pOptParam);
std::shared_ptr<psv_cond_t> cond(new psv_cond_t(pName.get_ptr(), attr, mutexId)); if (s32 id = g_psv_cond_list.add(new psv_cond_t(pName.get_ptr(), attr, mutexId), 0))
{
const s32 id = g_psv_cond_list.add(cond);
return id; return id;
}
RETURN_ERROR(SCE_KERNEL_ERROR_ERROR);
} }
s32 sceKernelDeleteCond(s32 condId) s32 sceKernelDeleteCond(s32 condId)

View file

@ -152,7 +152,7 @@ namespace sce_libc_func
{ {
sceLibc.Warning("__cxa_atexit(func=0x%x, arg=0x%x, dso=0x%x)", func, arg, dso); sceLibc.Warning("__cxa_atexit(func=0x%x, arg=0x%x, dso=0x%x)", func, arg, dso);
LV2_LOCK(0); LV2_LOCK;
g_atexit.insert(g_atexit.begin(), [func, arg, dso](ARMv7Context& context) g_atexit.insert(g_atexit.begin(), [func, arg, dso](ARMv7Context& context)
{ {
@ -164,7 +164,7 @@ namespace sce_libc_func
{ {
sceLibc.Warning("__aeabi_atexit(arg=0x%x, func=0x%x, dso=0x%x)", arg, func, dso); sceLibc.Warning("__aeabi_atexit(arg=0x%x, func=0x%x, dso=0x%x)", arg, func, dso);
LV2_LOCK(0); LV2_LOCK;
g_atexit.insert(g_atexit.begin(), [func, arg, dso](ARMv7Context& context) g_atexit.insert(g_atexit.begin(), [func, arg, dso](ARMv7Context& context)
{ {
@ -176,7 +176,7 @@ namespace sce_libc_func
{ {
sceLibc.Warning("exit()"); sceLibc.Warning("exit()");
LV2_LOCK(0); LV2_LOCK;
for (auto func : g_atexit) for (auto func : g_atexit)
{ {

View file

@ -8,10 +8,10 @@
#include "Modules/psv_mutex.h" #include "Modules/psv_mutex.h"
#include "Modules/psv_cond.h" #include "Modules/psv_cond.h"
psv_object_list_t<psv_sema_t, SCE_KERNEL_THREADMGR_UID_CLASS_SEMA> g_psv_sema_list; psv_sema_list_t g_psv_sema_list;
psv_object_list_t<psv_event_flag_t, SCE_KERNEL_THREADMGR_UID_CLASS_EVENT_FLAG> g_psv_ef_list; psv_ef_list_t g_psv_ef_list;
psv_object_list_t<psv_mutex_t, SCE_KERNEL_THREADMGR_UID_CLASS_MUTEX> g_psv_mutex_list; psv_mutex_list_t g_psv_mutex_list;
psv_object_list_t<psv_cond_t, SCE_KERNEL_THREADMGR_UID_CLASS_COND> g_psv_cond_list; psv_cond_list_t g_psv_cond_list;
void clear_all_psv_objects() void clear_all_psv_objects()
{ {

View file

@ -24,12 +24,26 @@ union psv_uid_t
template<typename T, u32 type> template<typename T, u32 type>
class psv_object_list_t // Class for managing object data class psv_object_list_t // Class for managing object data
{ {
std::array<std::shared_ptr<T>, 0x8000> m_data; public:
typedef refcounter_t<T> rc_type;
typedef ref_t<T> ref_type;
static const u32 max = 0x8000;
private:
std::array<rc_type, max> m_data;
std::atomic<u32> m_hint; // guessing next free position std::atomic<u32> m_hint; // guessing next free position
std::mutex m_mutex; // TODO: remove it when shared_ptr atomic ops are fully available
void error(s32 uid)
{
throw fmt::format("Invalid UID requested (type=0x%x, uid=0x%x)", type, uid);
}
public: public:
psv_object_list_t() : m_hint(0) {} psv_object_list_t()
: m_hint(0)
{
}
psv_object_list_t(const psv_object_list_t&) = delete; psv_object_list_t(const psv_object_list_t&) = delete;
psv_object_list_t(psv_object_list_t&&) = delete; psv_object_list_t(psv_object_list_t&&) = delete;
@ -40,7 +54,7 @@ public:
public: public:
static const u32 uid_class = type; static const u32 uid_class = type;
// check if UID is potentially valid (will return true if the object doesn't exist) // check if UID is potentially valid (will return true even if the object doesn't exist)
bool check(s32 uid) bool check(s32 uid)
{ {
const psv_uid_t id = psv_uid_t::make(uid); const psv_uid_t id = psv_uid_t::make(uid);
@ -49,76 +63,65 @@ public:
return !id.sign && id.type == uid_class && id.oddness == 1; return !id.sign && id.type == uid_class && id.oddness == 1;
} }
// share object with UID specified (will return empty pointer if the object doesn't exist or the UID is invalid) // share object with UID specified
std::shared_ptr<T> find(s32 uid) ref_type get(s32 uid)
{ {
if (!check(uid)) if (!check(uid))
{ {
return nullptr; return ref_type();
} }
return m_data[psv_uid_t::make(uid).number]; return &m_data[psv_uid_t::make(uid).number];
} }
std::shared_ptr<T> operator [](s32 uid) ref_type operator [](s32 uid)
{ {
return find(uid); return get(uid);
} }
// generate UID for newly created object (will return zero if the limit exceeded) // generate UID for newly created object (will return zero if the limit exceeded)
s32 add(std::shared_ptr<T>& data) s32 add(T* data, s32 error_code)
{ {
std::lock_guard<std::mutex> lock(m_mutex); for (u32 i = 0, j = m_hint; i < m_data.size(); i++, j = (j + 1) % m_data.size())
for (u32 i = 0, j = m_hint % m_data.size(); i < m_data.size(); i++, j = (j + 1) % m_data.size())
{ {
// find an empty position and copy the pointer // find an empty position and copy the pointer
if (!m_data[j]) if (m_data[j].try_set(data))
{ {
m_data[j] = data; m_hint = (j + 1) % m_data.size(); // guess next position
m_hint = j + 1; // guess next position
psv_uid_t id = psv_uid_t::make(1); // odd number psv_uid_t id = psv_uid_t::make(1); // make UID
id.type = uid_class; // set type id.type = uid_class;
id.number = j; // set position id.number = j;
data->on_init(id.uid); // save UID
return id.uid; // return UID return id.uid; // return UID
} }
} }
return 0; delete data;
return error_code;
} }
// remove object with UID specified and share it for the last time (will return empty pointer if the object doesn't exists or the UID is invalid) // remove object with specified UID
std::shared_ptr<T> remove(s32 uid) bool remove(s32 uid)
{ {
if (!check(uid)) if (!check(uid))
{ {
return nullptr; return false;
} }
const u32 pos = psv_uid_t::make(uid).number; const u32 pos = psv_uid_t::make(uid).number;
std::lock_guard<std::mutex> lock(m_mutex); m_hint = std::min<u32>(pos, m_hint);
std::shared_ptr<T> old_ptr = nullptr; return m_data[pos].try_remove();
m_data[pos].swap(old_ptr);
m_hint = pos;
return old_ptr;
} }
// remove all objects // remove all objects
void clear() void clear()
{ {
std::lock_guard<std::mutex> lock(m_mutex); for (auto& v : m_data)
for (auto& object : m_data)
{ {
if (object) v.try_remove();
{
object->on_stop();
}
object = nullptr;
} }
m_hint = 0; m_hint = 0;

View file

@ -20,7 +20,6 @@ CPUThread::CPUThread(CPUThreadType type)
, m_type(type) , m_type(type)
, m_stack_size(0) , m_stack_size(0)
, m_stack_addr(0) , m_stack_addr(0)
, m_offset(0)
, m_prio(0) , m_prio(0)
, m_dec(nullptr) , m_dec(nullptr)
, m_is_step(false) , m_is_step(false)
@ -30,6 +29,7 @@ CPUThread::CPUThread(CPUThreadType type)
, m_trace_enabled(false) , m_trace_enabled(false)
, m_trace_call_stack(true) , m_trace_call_stack(true)
{ {
offset = 0;
} }
CPUThread::~CPUThread() CPUThread::~CPUThread()
@ -125,11 +125,9 @@ void CPUThread::Reset()
CloseStack(); CloseStack();
SetPc(0); SetPc(0);
cycle = 0;
m_is_branch = false; m_is_branch = false;
m_status = Stopped; m_status = Stopped;
m_error = 0;
DoReset(); DoReset();
} }
@ -202,29 +200,6 @@ void CPUThread::SetPc(const u32 pc)
PC = pc; PC = pc;
} }
void CPUThread::SetError(const u32 error)
{
if(error == 0)
{
m_error = 0;
}
else
{
m_error |= error;
}
}
std::vector<std::string> CPUThread::ErrorToString(const u32 error)
{
std::vector<std::string> earr;
if(error == 0) return earr;
earr.push_back("Unknown error");
return earr;
}
void CPUThread::Run() void CPUThread::Run()
{ {
if(!IsStopped()) if(!IsStopped())
@ -322,7 +297,7 @@ void CPUThread::Task()
for (uint i = 0; i<bp.size(); ++i) for (uint i = 0; i<bp.size(); ++i)
{ {
if (bp[i] == m_offset + PC) if (bp[i] == offset + PC)
{ {
Emu.Pause(); Emu.Pause();
break; break;
@ -349,7 +324,7 @@ void CPUThread::Task()
Step(); Step();
//if (m_trace_enabled) //if (m_trace_enabled)
//trace.push_back(PC); //trace.push_back(PC);
NextPc(m_dec->DecodeMemory(PC + m_offset)); NextPc(m_dec->DecodeMemory(PC + offset));
if (status == CPUThread_Step) if (status == CPUThread_Step)
{ {

View file

@ -26,10 +26,8 @@ class CPUThread : public ThreadBase
{ {
protected: protected:
u32 m_status; u32 m_status;
u32 m_error;
u32 m_id; u32 m_id;
u64 m_prio; u64 m_prio;
u32 m_offset;
CPUThreadType m_type; CPUThreadType m_type;
bool m_joinable; bool m_joinable;
bool m_joining; bool m_joining;
@ -61,12 +59,10 @@ public:
void SetId(const u32 id); void SetId(const u32 id);
void SetName(const std::string& name); void SetName(const std::string& name);
void SetPrio(const u64 prio) { m_prio = prio; } void SetPrio(const u64 prio) { m_prio = prio; }
void SetOffset(const u32 offset) { m_offset = offset; }
void SetExitStatus(const u64 status) { m_exit_status = status; } void SetExitStatus(const u64 status) { m_exit_status = status; }
u32 GetOffset() const { return m_offset; }
u64 GetExitStatus() const { return m_exit_status; }
u64 GetPrio() const { return m_prio; } u64 GetPrio() const { return m_prio; }
u64 GetExitStatus() const { return m_exit_status; }
std::string GetName() const { return NamedThreadBase::GetThreadName(); } std::string GetName() const { return NamedThreadBase::GetThreadName(); }
std::string GetFName() const std::string GetFName() const
@ -116,13 +112,10 @@ public:
u32 entry; u32 entry;
u32 PC; u32 PC;
u32 nPC; u32 nPC;
u64 cycle; u32 index;
u32 offset;
bool m_is_branch; bool m_is_branch;
bool m_trace_enabled; bool m_trace_enabled;
bool m_is_interrupt;
bool m_has_interrupt;
u64 m_interrupt_arg;
u64 m_last_syscall; u64 m_last_syscall;
protected: protected:
@ -138,12 +131,6 @@ public:
void SetPc(const u32 pc); void SetPc(const u32 pc);
void SetEntry(const u32 entry); void SetEntry(const u32 entry);
void SetError(const u32 error);
static std::vector<std::string> ErrorToString(const u32 error);
std::vector<std::string> ErrorToString() { return ErrorToString(m_error); }
bool IsOk() const { return m_error == 0; }
bool IsRunning() const; bool IsRunning() const;
bool IsPaused() const; bool IsPaused() const;
bool IsStopped() const; bool IsStopped() const;
@ -153,7 +140,6 @@ public:
void SetJoinable(bool joinable) { m_joinable = joinable; } void SetJoinable(bool joinable) { m_joinable = joinable; }
void SetJoining(bool joining) { m_joining = joining; } void SetJoining(bool joining) { m_joining = joining; }
u32 GetError() const { return m_error; }
u32 GetId() const { return m_id; } u32 GetId() const { return m_id; }
CPUThreadType GetType() const { return m_type; } CPUThreadType GetType() const { return m_type; }
@ -238,7 +224,7 @@ CPUThread* GetCurrentCPUThread();
class cpu_thread class cpu_thread
{ {
protected: protected:
CPUThread* thread; std::shared_ptr<CPUThread> thread;
public: public:
u32 get_entry() const u32 get_entry() const

View file

@ -24,9 +24,9 @@ void CPUThreadManager::Close()
while(m_threads.size()) RemoveThread(m_threads[0]->GetId()); while(m_threads.size()) RemoveThread(m_threads[0]->GetId());
} }
CPUThread& CPUThreadManager::AddThread(CPUThreadType type) std::shared_ptr<CPUThread> CPUThreadManager::AddThread(CPUThreadType type)
{ {
std::lock_guard<std::mutex> lock(m_mtx_thread); std::lock_guard<std::mutex> lock(m_mutex);
std::shared_ptr<CPUThread> new_thread; std::shared_ptr<CPUThread> new_thread;
@ -43,8 +43,18 @@ CPUThread& CPUThreadManager::AddThread(CPUThreadType type)
break; break;
} }
case CPU_THREAD_RAW_SPU: case CPU_THREAD_RAW_SPU:
{
for (u32 i = 0; i < m_raw_spu.size(); i++)
{
if (!m_raw_spu[i])
{ {
new_thread.reset(new RawSPUThread()); new_thread.reset(new RawSPUThread());
new_thread->index = i;
m_raw_spu[i] = new_thread;
break;
}
}
break; break;
} }
case CPU_THREAD_ARMv7: case CPU_THREAD_ARMv7:
@ -55,17 +65,20 @@ CPUThread& CPUThreadManager::AddThread(CPUThreadType type)
default: assert(0); default: assert(0);
} }
if (new_thread)
{
new_thread->SetId(Emu.GetIdManager().GetNewID(new_thread->GetTypeString() + " Thread", new_thread)); new_thread->SetId(Emu.GetIdManager().GetNewID(new_thread->GetTypeString() + " Thread", new_thread));
m_threads.push_back(new_thread); m_threads.push_back(new_thread);
SendDbgCommand(DID_CREATE_THREAD, new_thread.get()); SendDbgCommand(DID_CREATE_THREAD, new_thread.get());
}
return *new_thread; return new_thread;
} }
void CPUThreadManager::RemoveThread(const u32 id) void CPUThreadManager::RemoveThread(u32 id)
{ {
std::lock_guard<std::mutex> lock(m_mtx_thread); std::lock_guard<std::mutex> lock(m_mutex);
std::shared_ptr<CPUThread> thr; std::shared_ptr<CPUThread> thr;
u32 thread_index = 0; u32 thread_index = 0;
@ -84,6 +97,12 @@ void CPUThreadManager::RemoveThread(const u32 id)
thr->Close(); thr->Close();
m_threads.erase(m_threads.begin() + thread_index); m_threads.erase(m_threads.begin() + thread_index);
if (thr->GetType() == CPU_THREAD_RAW_SPU)
{
assert(thr->index < m_raw_spu.size());
m_raw_spu[thr->index] = nullptr;
}
} }
// Removing the ID should trigger the actual deletion of the thread // Removing the ID should trigger the actual deletion of the thread
@ -91,21 +110,6 @@ void CPUThreadManager::RemoveThread(const u32 id)
Emu.CheckStatus(); Emu.CheckStatus();
} }
s32 CPUThreadManager::GetThreadNumById(CPUThreadType type, u32 id)
{
std::lock_guard<std::mutex> lock(m_mtx_thread);
s32 num = 0;
for(u32 i=0; i<m_threads.size(); ++i)
{
if(m_threads[i]->GetId() == id) return num;
if(m_threads[i]->GetType() == type) num++;
}
return -1;
}
std::shared_ptr<CPUThread> CPUThreadManager::GetThread(u32 id) std::shared_ptr<CPUThread> CPUThreadManager::GetThread(u32 id)
{ {
std::shared_ptr<CPUThread> res; std::shared_ptr<CPUThread> res;
@ -130,21 +134,19 @@ std::shared_ptr<CPUThread> CPUThreadManager::GetThread(u32 id, CPUThreadType typ
return res; return res;
} }
RawSPUThread* CPUThreadManager::GetRawSPUThread(u32 num) std::shared_ptr<CPUThread> CPUThreadManager::GetRawSPUThread(u32 index)
{ {
if (num < sizeof(Memory.RawSPUMem) / sizeof(Memory.RawSPUMem[0])) if (index >= m_raw_spu.size())
{
return (RawSPUThread*)Memory.RawSPUMem[num];
}
else
{ {
return nullptr; return nullptr;
} }
return m_raw_spu[index];
} }
void CPUThreadManager::Exec() void CPUThreadManager::Exec()
{ {
std::lock_guard<std::mutex> lock(m_mtx_thread); std::lock_guard<std::mutex> lock(m_mutex);
for(u32 i = 0; i < m_threads.size(); ++i) for(u32 i = 0; i < m_threads.size(); ++i)
{ {

View file

@ -6,8 +6,10 @@ enum CPUThreadType : unsigned char;
class CPUThreadManager class CPUThreadManager
{ {
std::mutex m_mutex;
std::vector<std::shared_ptr<CPUThread>> m_threads; std::vector<std::shared_ptr<CPUThread>> m_threads;
std::mutex m_mtx_thread; std::array<std::shared_ptr<CPUThread>, 5> m_raw_spu;
public: public:
CPUThreadManager(); CPUThreadManager();
@ -15,14 +17,15 @@ public:
void Close(); void Close();
CPUThread& AddThread(CPUThreadType type); std::shared_ptr<CPUThread> AddThread(CPUThreadType type);
void RemoveThread(const u32 id);
void RemoveThread(u32 id);
std::vector<std::shared_ptr<CPUThread>> GetThreads() { std::lock_guard<std::mutex> lock(m_mutex); return m_threads; }
std::vector<std::shared_ptr<CPUThread>> GetThreads() { std::lock_guard<std::mutex> lock(m_mtx_thread); return m_threads; }
s32 GetThreadNumById(CPUThreadType type, u32 id);
std::shared_ptr<CPUThread> GetThread(u32 id); std::shared_ptr<CPUThread> GetThread(u32 id);
std::shared_ptr<CPUThread> GetThread(u32 id, CPUThreadType type); std::shared_ptr<CPUThread> GetThread(u32 id, CPUThreadType type);
RawSPUThread* GetRawSPUThread(u32 num); std::shared_ptr<CPUThread> GetRawSPUThread(u32 index);
void Exec(); void Exec();
void Task(); void Task();

View file

@ -1,2 +1,47 @@
#include "stdafx.h" #include "stdafx.h"
#include "MFC.h" #include "MFC.h"
const char* get_mfc_cmd_name(u32 cmd)
{
switch (cmd)
{
case MFC_PUT_CMD: return "PUT";
case MFC_PUTB_CMD: return "PUTB";
case MFC_PUTF_CMD: return "PUTF";
case MFC_PUTS_CMD: return "PUTS";
case MFC_PUTBS_CMD: return "PUTBS";
case MFC_PUTFS_CMD: return "PUTFS";
case MFC_PUTR_CMD: return "PUTR";
case MFC_PUTRB_CMD: return "PUTRB";
case MFC_PUTRF_CMD: return "PUTRF";
case MFC_GET_CMD: return "GET";
case MFC_GETB_CMD: return "GETB";
case MFC_GETF_CMD: return "GETF";
case MFC_GETS_CMD: return "GETS";
case MFC_GETBS_CMD: return "GETBS";
case MFC_GETFS_CMD: return "GETFS";
case MFC_PUTL_CMD: return "PUTL";
case MFC_PUTLB_CMD: return "PUTLB";
case MFC_PUTLF_CMD: return "PUTLF";
case MFC_PUTRL_CMD: return "PUTRL";
case MFC_PUTRLB_CMD: return "PUTRLB";
case MFC_PUTRLF_CMD: return "PUTRLF";
case MFC_GETL_CMD: return "GETL";
case MFC_GETLB_CMD: return "GETLB";
case MFC_GETLF_CMD: return "GETLF";
case MFC_GETLLAR_CMD: return "GETLLAR";
case MFC_PUTLLC_CMD: return "PUTLLC";
case MFC_PUTLLUC_CMD: return "PUTLLUC";
case MFC_PUTQLLUC_CMD: return "PUTQLLUC";
case MFC_SNDSIG_CMD: return "SNDSIG";
case MFC_SNDSIGB_CMD: return "SNDSIGB";
case MFC_SNDSIGF_CMD: return "SNDSIGF";
case MFC_BARRIER_CMD: return "BARRIER";
case MFC_EIEIO_CMD: return "EIEIO";
case MFC_SYNC_CMD: return "SYNC";
}
return "UNKNOWN";
}

View file

@ -1,10 +1,14 @@
#pragma once #pragma once
enum const char* get_mfc_cmd_name(u32 cmd);
enum : u32
{ {
MFC_PUT_CMD = 0x20, MFC_PUTB_CMD = 0x21, MFC_PUTF_CMD = 0x22, MFC_PUT_CMD = 0x20, MFC_PUTB_CMD = 0x21, MFC_PUTF_CMD = 0x22,
MFC_PUTS_CMD = 0x28, MFC_PUTBS_CMD = 0x29, MFC_PUTFS_CMD = 0x2a,
MFC_PUTR_CMD = 0x30, MFC_PUTRB_CMD = 0x31, MFC_PUTRF_CMD = 0x32, MFC_PUTR_CMD = 0x30, MFC_PUTRB_CMD = 0x31, MFC_PUTRF_CMD = 0x32,
MFC_GET_CMD = 0x40, MFC_GETB_CMD = 0x41, MFC_GETF_CMD = 0x42, MFC_GET_CMD = 0x40, MFC_GETB_CMD = 0x41, MFC_GETF_CMD = 0x42,
MFC_GETS_CMD = 0x48, MFC_GETBS_CMD = 0x49, MFC_GETFS_CMD = 0x4a,
MFC_PUTL_CMD = 0x24, MFC_PUTLB_CMD = 0x25, MFC_PUTLF_CMD = 0x26, MFC_PUTL_CMD = 0x24, MFC_PUTLB_CMD = 0x25, MFC_PUTLF_CMD = 0x26,
MFC_PUTRL_CMD = 0x34, MFC_PUTRLB_CMD = 0x35, MFC_PUTRLF_CMD = 0x36, MFC_PUTRL_CMD = 0x34, MFC_PUTRLB_CMD = 0x35, MFC_PUTRLF_CMD = 0x36,
MFC_GETL_CMD = 0x44, MFC_GETLB_CMD = 0x45, MFC_GETLF_CMD = 0x46, MFC_GETL_CMD = 0x44, MFC_GETLB_CMD = 0x45, MFC_GETLF_CMD = 0x46,
@ -21,52 +25,68 @@ enum
MFC_BARRIER_MASK = 0x01, MFC_BARRIER_MASK = 0x01,
MFC_FENCE_MASK = 0x02, MFC_FENCE_MASK = 0x02,
MFC_LIST_MASK = 0x04, MFC_LIST_MASK = 0x04,
MFC_START_MASK = 0x08, // ??? MFC_START_MASK = 0x08,
MFC_RESULT_MASK = 0x10, // ??? MFC_RESULT_MASK = 0x10, // ???
MFC_MASK_CMD = 0xffff,
}; };
// Atomic Status Update // Atomic Status Update
enum enum : u32
{ {
MFC_PUTLLC_SUCCESS = 0, MFC_PUTLLC_SUCCESS = 0,
MFC_PUTLLC_FAILURE = 1, //reservation was lost MFC_PUTLLC_FAILURE = 1, // reservation was lost
MFC_PUTLLUC_SUCCESS = 2, MFC_PUTLLUC_SUCCESS = 2,
MFC_GETLLAR_SUCCESS = 4, MFC_GETLLAR_SUCCESS = 4,
}; };
// MFC Write Tag Status Update Request Channel (ch23) operations // MFC Write Tag Status Update Request Channel (ch23) operations
enum enum : u32
{ {
MFC_TAG_UPDATE_IMMEDIATE = 0, MFC_TAG_UPDATE_IMMEDIATE = 0,
MFC_TAG_UPDATE_ANY = 1, MFC_TAG_UPDATE_ANY = 1,
MFC_TAG_UPDATE_ALL = 2, MFC_TAG_UPDATE_ALL = 2,
}; };
enum enum : u32
{
MFC_SPU_TO_PPU_MAILBOX_STATUS_MASK = 0x000000FF,
MFC_SPU_TO_PPU_MAILBOX_STATUS_SHIFT = 0x0,
MFC_PPU_TO_SPU_MAILBOX_STATUS_MASK = 0x0000FF00,
MFC_PPU_TO_SPU_MAILBOX_STATUS_SHIFT = 0x8,
MFC_PPU_TO_SPU_MAILBOX_MAX = 0x4,
MFC_SPU_TO_PPU_INT_MAILBOX_STATUS_MASK = 0x00FF0000,
MFC_SPU_TO_PPU_INT_MAILBOX_STATUS_SHIFT = 0x10,
};
enum
{ {
MFC_PPU_DMA_CMD_ENQUEUE_SUCCESSFUL = 0x00, MFC_PPU_DMA_CMD_ENQUEUE_SUCCESSFUL = 0x00,
MFC_PPU_DMA_CMD_SEQUENCE_ERROR = 0x01, MFC_PPU_DMA_CMD_SEQUENCE_ERROR = 0x01,
MFC_PPU_DMA_QUEUE_FULL = 0x02, MFC_PPU_DMA_QUEUE_FULL = 0x02,
}; };
enum enum : u32
{
MFC_PROXY_COMMAND_QUEUE_EMPTY_FLAG = 0x80000000,
};
enum : u32
{ {
MFC_PPU_MAX_QUEUE_SPACE = 0x08, MFC_PPU_MAX_QUEUE_SPACE = 0x08,
MFC_SPU_MAX_QUEUE_SPACE = 0x10, MFC_SPU_MAX_QUEUE_SPACE = 0x10,
}; };
struct DMAC struct spu_mfc_arg_t
{ {
union
{
u64 ea;
struct
{
u32 eal;
u32 eah;
};
};
u32 lsa;
union
{
struct
{
u16 tag;
u16 size;
};
u32 size_tag;
};
}; };

View file

@ -53,8 +53,6 @@ void PPUThread::DoReset()
FPSCR.FPSCR = 0; FPSCR.FPSCR = 0;
VSCR.VSCR = 0; VSCR.VSCR = 0;
VRSAVE = 0; VRSAVE = 0;
cycle = 0;
} }
void PPUThread::InitRegs() void PPUThread::InitRegs()
@ -230,7 +228,7 @@ void PPUThread::Task()
ppu_thread::ppu_thread(u32 entry, const std::string& name, u32 stack_size, u32 prio) ppu_thread::ppu_thread(u32 entry, const std::string& name, u32 stack_size, u32 prio)
{ {
thread = &Emu.GetCPU().AddThread(CPU_THREAD_PPU); thread = Emu.GetCPU().AddThread(CPU_THREAD_PPU);
thread->SetName(name); thread->SetName(name);
thread->SetEntry(entry); thread->SetEntry(entry);
@ -279,7 +277,7 @@ ppu_thread& ppu_thread::gpr(uint index, u64 value)
{ {
assert(index < 32); assert(index < 32);
static_cast<PPUThread*>(thread)->GPR[index] = value; static_cast<PPUThread&>(*thread).GPR[index] = value;
return *this; return *this;
} }

View file

@ -6,212 +6,207 @@
#include "Emu/Cell/RawSPUThread.h" #include "Emu/Cell/RawSPUThread.h"
thread_local spu_mfc_arg_t raw_spu_mfc[8] = {};
RawSPUThread::RawSPUThread(CPUThreadType type) RawSPUThread::RawSPUThread(CPUThreadType type)
: SPUThread(type) : SPUThread(type)
, MemoryBlock()
{ {
m_index = Memory.InitRawSPU(this);
Reset();
} }
RawSPUThread::~RawSPUThread() RawSPUThread::~RawSPUThread()
{ {
Memory.CloseRawSPU(this, m_index);
} }
bool RawSPUThread::Read32(const u32 addr, u32* value) void RawSPUThread::start()
{ {
const u32 offset = addr - GetStartAddr() - RAW_SPU_PROB_OFFSET; status.write_relaxed(SPU_STATUS_RUNNING);
// calling Exec() directly in SIGSEGV handler may cause problems
// (probably because Exec() creates new thread, faults of this thread aren't handled by this handler anymore)
Emu.GetCallbackManager().Async([this](PPUThread& PPU)
{
FastRun();
});
}
bool RawSPUThread::ReadReg(const u32 addr, u32& value)
{
const u32 offset = addr - RAW_SPU_BASE_ADDR - index * RAW_SPU_OFFSET - RAW_SPU_PROB_OFFSET;
switch (offset) switch (offset)
{ {
case MFC_CMDStatus_offs: case MFC_CMDStatus_offs:
{ {
*value = MFC2.CMDStatus.GetValue(); value = MFC_PPU_DMA_CMD_ENQUEUE_SUCCESSFUL;
break; return true;
} }
case MFC_QStatus_offs: case MFC_QStatus_offs:
{ {
// TagStatus is not used: mask is written directly value = MFC_PROXY_COMMAND_QUEUE_EMPTY_FLAG | MFC_PPU_MAX_QUEUE_SPACE;
*value = MFC2.QueryMask.GetValue(); return true;
break;
} }
case SPU_Out_MBox_offs: case SPU_Out_MBox_offs:
{ {
// if Out_MBox is empty, the result is undefined value = ch_out_mbox.pop_uncond();
SPU.Out_MBox.PopUncond(*value); return true;
break;
} }
case SPU_MBox_Status_offs: case SPU_MBox_Status_offs:
{ {
*value = (SPU.Out_MBox.GetCount() & 0xff) | (SPU.In_MBox.GetFreeCount() << 8) | (SPU.Out_IntrMBox.GetCount() << 16); value = (ch_out_mbox.get_count() & 0xff) | ((4 - ch_in_mbox.get_count()) << 8 & 0xff) | (ch_out_intr_mbox.get_count() << 16 & 0xff);
break; return true;
} }
case SPU_Status_offs: case SPU_Status_offs:
{ {
*value = SPU.Status.GetValue(); value = status.read_relaxed();
break;
}
default:
{
// TODO: read value from LS if necessary (not important)
LOG_ERROR(Log::SPU, "RawSPUThread[%d]: Read32(0x%llx)", m_index, offset);
return false;
}
}
return true; return true;
}
}
LOG_ERROR(Log::SPU, "RawSPUThread[%d]: Read32(0x%x): unknown/illegal offset (0x%x)", index, addr, offset);
return false;
} }
bool RawSPUThread::Write32(const u32 addr, const u32 value) bool RawSPUThread::WriteReg(const u32 addr, const u32 value)
{ {
const u32 offset = addr - GetStartAddr() - RAW_SPU_PROB_OFFSET; const u32 offset = addr - RAW_SPU_BASE_ADDR - index * RAW_SPU_OFFSET - RAW_SPU_PROB_OFFSET;
switch (offset) switch (offset)
{ {
case MFC_LSA_offs: case MFC_LSA_offs:
{ {
MFC2.LSA.SetValue(value); if (value >= 0x40000)
{
break; break;
} }
raw_spu_mfc[index].lsa = value;
return true;
}
case MFC_EAH_offs: case MFC_EAH_offs:
{ {
MFC2.EAH.SetValue(value); raw_spu_mfc[index].eah = value;
break; return true;
} }
case MFC_EAL_offs: case MFC_EAL_offs:
{ {
MFC2.EAL.SetValue(value); raw_spu_mfc[index].eal = value;
break; return true;
} }
case MFC_Size_Tag_offs: case MFC_Size_Tag_offs:
{ {
MFC2.Size_Tag.SetValue(value); if (value >> 16 > 16 * 1024 || (u16)value >= 32)
{
break; break;
} }
case MFC_CMDStatus_offs: raw_spu_mfc[index].size_tag = value;
return true;
}
case MFC_Class_CMD_offs:
{ {
MFC2.CMDStatus.SetValue(value); do_dma_transfer(value & ~MFC_START_MASK, raw_spu_mfc[index]);
EnqMfcCmd(MFC2); raw_spu_mfc[index] = {}; // clear non-persistent data
break;
if (value & MFC_START_MASK)
{
start();
}
return true;
} }
case Prxy_QueryType_offs: case Prxy_QueryType_offs:
{ {
switch(value) // 0 - no query requested; cancel previous request
{ // 1 - set (interrupt) status upon completion of any enabled tag groups
case 2: break; // 2 - set (interrupt) status upon completion of all enabled tag groups
default: if (value > 2)
{ {
LOG_ERROR(Log::SPU, "RawSPUThread[%d]: Unknown Prxy Query Type. (prxy_query=0x%x)", m_index, value);
return false;
}
}
MFC2.QueryType.SetValue(value); // not used
break; break;
} }
if (value)
{
int2.set(SPU_INT2_STAT_DMA_TAG_GROUP_COMPLETION_INT); // TODO
}
return true;
}
case Prxy_QueryMask_offs: case Prxy_QueryMask_offs:
{ {
MFC2.QueryMask.SetValue(value); // TagStatus is not used //proxy_tag_mask = value;
break; return true;
} }
case SPU_In_MBox_offs: case SPU_In_MBox_offs:
{ {
// if In_MBox is already full, the last message is overwritten ch_in_mbox.push_uncond(value);
SPU.In_MBox.PushUncond(value); return true;
break;
} }
case SPU_RunCntl_offs: case SPU_RunCntl_offs:
{ {
if (value == SPU_RUNCNTL_RUNNABLE) if (value == SPU_RUNCNTL_RUN_REQUEST)
{ {
// calling Exec() directly in SIGSEGV handler may cause problems start();
// (probably because Exec() creates new thread, faults of this thread aren't handled by this handler anymore)
Emu.GetCallbackManager().Async([this](PPUThread& PPU)
{
SPU.Status.SetValue(SPU_STATUS_RUNNING);
Exec();
});
} }
else if (value == SPU_RUNCNTL_STOP) else if (value == SPU_RUNCNTL_STOP_REQUEST)
{ {
SPU.Status.SetValue(SPU_STATUS_STOPPED); status &= ~SPU_STATUS_RUNNING;
Stop(); FastStop();
} }
else else
{ {
LOG_ERROR(Log::SPU, "RawSPUThread[%d]: Write32(SPU_RunCtrl, 0x%x): unknown value", m_index, value);
return false;
}
break; break;
} }
run_ctrl.write_relaxed(value);
return true;
}
case SPU_NPC_offs: case SPU_NPC_offs:
{ {
if (value & 3) if ((value & 2) || value >= 0x40000)
{ {
// least significant bit contains some interrupt flag
LOG_ERROR(Log::SPU, "RawSPUThread[%d]: Write32(SPU_NPC_offs, 0x%x): lowest bits set", m_index, value);
return false;
}
SPU.NPC.SetValue(value);
break; break;
} }
npc.write_relaxed(value);
return true;
}
case SPU_RdSigNotify1_offs: case SPU_RdSigNotify1_offs:
{ {
WriteSNR(0, value); write_snr(0, value);
break; return true;
} }
case SPU_RdSigNotify2_offs: case SPU_RdSigNotify2_offs:
{ {
WriteSNR(1, value); write_snr(1, value);
break;
}
default:
{
// TODO: write value to LS if necessary (not important)
LOG_ERROR(Log::SPU, "RawSPUThread[%d]: Write32(0x%llx, 0x%x)", m_index, offset, value);
return false;
}
}
return true; return true;
} }
}
void RawSPUThread::InitRegs() LOG_ERROR(SPU, "RawSPUThread[%d]: Write32(0x%x, value=0x%x): unknown/illegal offset (0x%x)", index, addr, value, offset);
{ return false;
ls_offset = m_offset = GetStartAddr() + RAW_SPU_LS_OFFSET;
SPUThread::InitRegs();
}
u32 RawSPUThread::GetIndex() const
{
return m_index;
} }
void RawSPUThread::Task() void RawSPUThread::Task()
{ {
PC = SPU.NPC.GetValue(); PC = npc.exchange(0) & ~3;
SPUThread::Task(); SPUThread::Task();
SPU.NPC.SetValue(PC); npc.write_relaxed(PC | 1);
} }

View file

@ -6,22 +6,16 @@ __forceinline static u32 GetRawSPURegAddrByNum(int num, int offset)
return RAW_SPU_OFFSET * num + RAW_SPU_BASE_ADDR + RAW_SPU_PROB_OFFSET + offset; return RAW_SPU_OFFSET * num + RAW_SPU_BASE_ADDR + RAW_SPU_PROB_OFFSET + offset;
} }
class RawSPUThread class RawSPUThread : public SPUThread
: public SPUThread
, public MemoryBlock
{ {
u32 m_index;
public: public:
RawSPUThread(CPUThreadType type = CPU_THREAD_RAW_SPU); RawSPUThread(CPUThreadType type = CPU_THREAD_RAW_SPU);
virtual ~RawSPUThread(); virtual ~RawSPUThread();
bool Read32(const u32 addr, u32* value); void start();
bool Write32(const u32 addr, const u32 value);
public: bool ReadReg(const u32 addr, u32& value);
virtual void InitRegs(); bool WriteReg(const u32 addr, const u32 value);
u32 GetIndex() const;
private: private:
virtual void Task(); virtual void Task();

View file

@ -0,0 +1,10 @@
#pragma once
class SPUThread;
struct SPUContext
{
u128 gpr[128];
SPUThread& thread;
};

View file

@ -94,7 +94,7 @@ private:
//0 - 10 //0 - 10
void STOP(u32 code) void STOP(u32 code)
{ {
CPU.StopAndSignal(code); CPU.stop_and_signal(code);
LOG2_OPCODE(); LOG2_OPCODE();
} }
void LNOP() void LNOP()
@ -116,12 +116,11 @@ private:
} }
void RDCH(u32 rt, u32 ra) void RDCH(u32 rt, u32 ra)
{ {
CPU.ReadChannel(CPU.GPR[rt], ra); CPU.GPR[rt] = u128::from32r(CPU.get_ch_value(ra));
} }
void RCHCNT(u32 rt, u32 ra) void RCHCNT(u32 rt, u32 ra)
{ {
CPU.GPR[rt].clear(); CPU.GPR[rt] = u128::from32r(CPU.get_ch_count(ra));
CPU.GPR[rt]._u32[3] = CPU.GetChannelCount(ra);
} }
void SF(u32 rt, u32 ra, u32 rb) void SF(u32 rt, u32 ra, u32 rb)
{ {
@ -312,7 +311,7 @@ private:
} }
void WRCH(u32 ra, u32 rt) void WRCH(u32 ra, u32 rt)
{ {
CPU.WriteChannel(ra, CPU.GPR[rt]); CPU.set_ch_value(ra, CPU.GPR[rt]._u32[3]);
} }
void BIZ(u32 intr, u32 rt, u32 ra) void BIZ(u32 intr, u32 rt, u32 ra)
{ {
@ -406,7 +405,7 @@ private:
{ {
u32 lsa = (CPU.GPR[ra]._u32[3] + CPU.GPR[rb]._u32[3]) & 0x3fff0; u32 lsa = (CPU.GPR[ra]._u32[3] + CPU.GPR[rb]._u32[3]) & 0x3fff0;
CPU.WriteLS128(lsa, CPU.GPR[rt]); CPU.write128(lsa, CPU.GPR[rt]);
} }
void BI(u32 intr, u32 ra) void BI(u32 intr, u32 ra)
{ {
@ -433,8 +432,7 @@ private:
} }
u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0); u32 target = branchTarget(CPU.GPR[ra]._u32[3], 0);
CPU.GPR[rt].clear(); CPU.GPR[rt] = u128::from32r(CPU.PC + 4);
CPU.GPR[rt]._u32[3] = CPU.PC + 4;
LOG5_OPCODE("branch (0x%x)", target); LOG5_OPCODE("branch (0x%x)", target);
CPU.SetBranch(target); CPU.SetBranch(target);
} }
@ -536,7 +534,7 @@ private:
{ {
u32 lsa = (CPU.GPR[ra]._u32[3] + CPU.GPR[rb]._u32[3]) & 0x3fff0; u32 lsa = (CPU.GPR[ra]._u32[3] + CPU.GPR[rb]._u32[3]) & 0x3fff0;
CPU.GPR[rt] = CPU.ReadLS128(lsa); CPU.GPR[rt] = CPU.read128(lsa);
} }
void ROTQBYBI(u32 rt, u32 ra, u32 rb) void ROTQBYBI(u32 rt, u32 ra, u32 rb)
{ {
@ -864,8 +862,7 @@ private:
{ {
if (CPU.GPR[ra]._s32[3] > CPU.GPR[rb]._s32[3]) if (CPU.GPR[ra]._s32[3] > CPU.GPR[rb]._s32[3])
{ {
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT); CPU.halt();
CPU.Stop();
} }
} }
void CLZ(u32 rt, u32 ra) void CLZ(u32 rt, u32 ra)
@ -1199,8 +1196,7 @@ private:
{ {
if (CPU.GPR[ra]._u32[3] > CPU.GPR[rb]._u32[3]) if (CPU.GPR[ra]._u32[3] > CPU.GPR[rb]._u32[3])
{ {
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT); CPU.halt();
CPU.Stop();
} }
} }
void DFMA(u32 rt, u32 ra, u32 rb, bool neg, bool sub) void DFMA(u32 rt, u32 ra, u32 rb, bool neg, bool sub)
@ -1453,8 +1449,7 @@ private:
{ {
if (CPU.GPR[ra]._s32[3] == CPU.GPR[rb]._s32[3]) if (CPU.GPR[ra]._s32[3] == CPU.GPR[rb]._s32[3])
{ {
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT); CPU.halt();
CPU.Stop();
} }
} }
@ -1564,7 +1559,7 @@ private:
{ {
u32 lsa = (i16 << 2) & 0x3fff0; u32 lsa = (i16 << 2) & 0x3fff0;
CPU.WriteLS128(lsa, CPU.GPR[rt]); CPU.write128(lsa, CPU.GPR[rt]);
} }
void BRNZ(u32 rt, s32 i16) void BRNZ(u32 rt, s32 i16)
{ {
@ -1609,7 +1604,7 @@ private:
{ {
u32 lsa = branchTarget(CPU.PC, i16) & 0x3fff0; u32 lsa = branchTarget(CPU.PC, i16) & 0x3fff0;
CPU.WriteLS128(lsa, CPU.GPR[rt]); CPU.write128(lsa, CPU.GPR[rt]);
} }
void BRA(s32 i16) void BRA(s32 i16)
{ {
@ -1621,13 +1616,12 @@ private:
{ {
u32 lsa = (i16 << 2) & 0x3fff0; u32 lsa = (i16 << 2) & 0x3fff0;
CPU.GPR[rt] = CPU.ReadLS128(lsa); CPU.GPR[rt] = CPU.read128(lsa);
} }
void BRASL(u32 rt, s32 i16) void BRASL(u32 rt, s32 i16)
{ {
u32 target = branchTarget(0, i16); u32 target = branchTarget(0, i16);
CPU.GPR[rt].clear(); CPU.GPR[rt] = u128::from32r(CPU.PC + 4);
CPU.GPR[rt]._u32[3] = CPU.PC + 4;
LOG5_OPCODE("branch (0x%x)", target); LOG5_OPCODE("branch (0x%x)", target);
CPU.SetBranch(target); CPU.SetBranch(target);
} }
@ -1656,8 +1650,7 @@ private:
void BRSL(u32 rt, s32 i16) void BRSL(u32 rt, s32 i16)
{ {
u32 target = branchTarget(CPU.PC, i16); u32 target = branchTarget(CPU.PC, i16);
CPU.GPR[rt].clear(); CPU.GPR[rt] = u128::from32r(CPU.PC + 4);
CPU.GPR[rt]._u32[3] = CPU.PC + 4;
LOG5_OPCODE("branch (0x%x)", target); LOG5_OPCODE("branch (0x%x)", target);
CPU.SetBranch(target); CPU.SetBranch(target);
} }
@ -1665,7 +1658,7 @@ private:
{ {
u32 lsa = branchTarget(CPU.PC, i16) & 0x3fff0; u32 lsa = branchTarget(CPU.PC, i16) & 0x3fff0;
CPU.GPR[rt] = CPU.ReadLS128(lsa); CPU.GPR[rt] = CPU.read128(lsa);
} }
void IL(u32 rt, s32 i16) void IL(u32 rt, s32 i16)
{ {
@ -1748,13 +1741,13 @@ private:
{ {
const u32 lsa = (CPU.GPR[ra]._s32[3] + i10) & 0x3fff0; const u32 lsa = (CPU.GPR[ra]._s32[3] + i10) & 0x3fff0;
CPU.WriteLS128(lsa, CPU.GPR[rt]); CPU.write128(lsa, CPU.GPR[rt]);
} }
void LQD(u32 rt, s32 i10, u32 ra) //i10 is shifted left by 4 while decoding void LQD(u32 rt, s32 i10, u32 ra) //i10 is shifted left by 4 while decoding
{ {
const u32 lsa = (CPU.GPR[ra]._s32[3] + i10) & 0x3fff0; const u32 lsa = (CPU.GPR[ra]._s32[3] + i10) & 0x3fff0;
CPU.GPR[rt] = CPU.ReadLS128(lsa); CPU.GPR[rt] = CPU.read128(lsa);
} }
void XORI(u32 rt, u32 ra, s32 i10) void XORI(u32 rt, u32 ra, s32 i10)
{ {
@ -1790,8 +1783,7 @@ private:
{ {
if (CPU.GPR[ra]._s32[3] > i10) if (CPU.GPR[ra]._s32[3] > i10)
{ {
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT); CPU.halt();
CPU.Stop();
} }
} }
void CLGTI(u32 rt, u32 ra, s32 i10) void CLGTI(u32 rt, u32 ra, s32 i10)
@ -1817,8 +1809,7 @@ private:
{ {
if (CPU.GPR[ra]._u32[3] > (u32)i10) if (CPU.GPR[ra]._u32[3] > (u32)i10)
{ {
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT); CPU.halt();
CPU.Stop();
} }
} }
void MPYI(u32 rt, u32 ra, s32 i10) void MPYI(u32 rt, u32 ra, s32 i10)
@ -1850,8 +1841,7 @@ private:
{ {
if (CPU.GPR[ra]._s32[3] == i10) if (CPU.GPR[ra]._s32[3] == i10)
{ {
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT); CPU.halt();
CPU.Stop();
} }
} }

View file

@ -380,7 +380,7 @@ private:
static void STOP(u32 code) static void STOP(u32 code)
{ {
SPUThread& CPU = *(SPUThread*)GetCurrentNamedThread(); SPUThread& CPU = *(SPUThread*)GetCurrentNamedThread();
CPU.StopAndSignal(code); CPU.stop_and_signal(code);
LOG2_OPCODE(); LOG2_OPCODE();
} }
}; };
@ -418,7 +418,7 @@ private:
{ {
c.mov(cpu_dword(PC), CPU.PC); c.mov(cpu_dword(PC), CPU.PC);
WRAPPER_BEGIN(rt, ra, yy, zz); WRAPPER_BEGIN(rt, ra, yy, zz);
CPU.ReadChannel(CPU.GPR[rt], ra); CPU.GPR[rt] = u128::from32r(CPU.get_ch_value(ra));
WRAPPER_END(rt, ra, 0, 0); WRAPPER_END(rt, ra, 0, 0);
// TODO // TODO
} }
@ -426,8 +426,7 @@ private:
{ {
c.mov(cpu_dword(PC), CPU.PC); c.mov(cpu_dword(PC), CPU.PC);
WRAPPER_BEGIN(rt, ra, yy, zz); WRAPPER_BEGIN(rt, ra, yy, zz);
CPU.GPR[rt].clear(); CPU.GPR[rt] = u128::from32r(CPU.get_ch_count(ra));
CPU.GPR[rt]._u32[3] = CPU.GetChannelCount(ra);
WRAPPER_END(rt, ra, 0, 0); WRAPPER_END(rt, ra, 0, 0);
// TODO // TODO
} }
@ -1034,7 +1033,7 @@ private:
{ {
c.mov(cpu_dword(PC), CPU.PC); c.mov(cpu_dword(PC), CPU.PC);
WRAPPER_BEGIN(ra, rt, yy, zz); WRAPPER_BEGIN(ra, rt, yy, zz);
CPU.WriteChannel(ra, CPU.GPR[rt]); CPU.set_ch_value(ra, CPU.GPR[rt]._u32[3]);
WRAPPER_END(ra, rt, 0, 0); WRAPPER_END(ra, rt, 0, 0);
// TODO // TODO

View file

@ -49,7 +49,7 @@ void SPURecompilerCore::Compile(u16 pos)
u64 time0 = 0; u64 time0 = 0;
SPUDisAsm dis_asm(CPUDisAsm_InterpreterMode); SPUDisAsm dis_asm(CPUDisAsm_InterpreterMode);
dis_asm.offset = vm::get_ptr<u8>(CPU.ls_offset); dis_asm.offset = vm::get_ptr<u8>(CPU.offset);
StringLogger stringLogger; StringLogger stringLogger;
stringLogger.setOption(kLoggerOptionBinaryForm, true); stringLogger.setOption(kLoggerOptionBinaryForm, true);
@ -103,7 +103,7 @@ void SPURecompilerCore::Compile(u16 pos)
while (true) while (true)
{ {
const u32 opcode = vm::read32(CPU.ls_offset + pos * 4); const u32 opcode = vm::read32(CPU.offset + pos * 4);
m_enc->do_finalize = false; m_enc->do_finalize = false;
if (opcode) if (opcode)
{ {
@ -182,8 +182,8 @@ void SPURecompilerCore::Compile(u16 pos)
u32 SPURecompilerCore::DecodeMemory(const u32 address) u32 SPURecompilerCore::DecodeMemory(const u32 address)
{ {
assert(CPU.ls_offset == address - CPU.PC); assert(CPU.offset == address - CPU.PC);
const u32 m_offset = CPU.ls_offset; const u32 m_offset = CPU.offset;
const u16 pos = (u16)(CPU.PC >> 2); const u16 pos = (u16)(CPU.PC >> 2);
//ConLog.Write("DecodeMemory: pos=%d", pos); //ConLog.Write("DecodeMemory: pos=%d", pos);
@ -268,8 +268,7 @@ u32 SPURecompilerCore::DecodeMemory(const u32 address)
if (res & 0x1000000) if (res & 0x1000000)
{ {
CPU.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT); CPU.halt();
CPU.Stop();
res &= ~0x1000000; res &= ~0x1000000;
} }

File diff suppressed because it is too large Load diff

View file

@ -1,13 +1,14 @@
#pragma once #pragma once
#include "Emu/Cell/Common.h" #include "Emu/Cell/Common.h"
#include "Emu/CPU/CPUThread.h" #include "Emu/CPU/CPUThread.h"
#include "Emu/Memory/atomic_type.h" #include "Emu/Cell/SPUContext.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h"
#include "Emu/SysCalls/lv2/sys_event.h"
#include "Emu/Event.h"
#include "MFC.h" #include "MFC.h"
enum SPUchannels struct event_queue_t;
struct spu_group_t;
// SPU Channels
enum : u32
{ {
SPU_RdEventStat = 0, //Read event status with mask applied SPU_RdEventStat = 0, //Read event status with mask applied
SPU_WrEventMask = 1, //Write event mask SPU_WrEventMask = 1, //Write event mask
@ -25,7 +26,8 @@ enum SPUchannels
SPU_WrOutIntrMbox = 30, //Write outbound interrupt mailbox contents (interrupting PPU) SPU_WrOutIntrMbox = 30, //Write outbound interrupt mailbox contents (interrupting PPU)
}; };
enum MFCchannels // MFC Channels
enum : u32
{ {
MFC_WrMSSyncReq = 9, //Write multisource synchronization request MFC_WrMSSyncReq = 9, //Write multisource synchronization request
MFC_RdTagMask = 12, //Read tag mask MFC_RdTagMask = 12, //Read tag mask
@ -43,7 +45,8 @@ enum MFCchannels
MFC_RdAtomicStat = 27, //Read completion status of last completed immediate MFC atomic update command MFC_RdAtomicStat = 27, //Read completion status of last completed immediate MFC atomic update command
}; };
enum SPUEvents // SPU Events
enum : u32
{ {
SPU_EVENT_MS = 0x1000, // multisource synchronization event SPU_EVENT_MS = 0x1000, // multisource synchronization event
SPU_EVENT_A = 0x800, // privileged attention event SPU_EVENT_A = 0x800, // privileged attention event
@ -61,12 +64,31 @@ enum SPUEvents
SPU_EVENT_IMPLEMENTED = SPU_EVENT_LR, SPU_EVENT_IMPLEMENTED = SPU_EVENT_LR,
}; };
enum // SPU Class 0 Interrupts
enum : u64
{ {
SPU_RUNCNTL_STOP = 0, SPU_INT0_STAT_DMA_ALIGNMENT_INT = (1ull << 0),
SPU_RUNCNTL_RUNNABLE = 1, SPU_INT0_STAT_INVALID_DMA_CMD_INT = (1ull << 1),
SPU_INT0_STAT_SPU_ERROR_INT = (1ull << 2),
}; };
// SPU Class 2 Interrupts
enum : u64
{
SPU_INT2_STAT_MAILBOX_INT = (1ull << 0),
SPU_INT2_STAT_SPU_STOP_AND_SIGNAL_INT = (1ull << 1),
SPU_INT2_STAT_SPU_HALT_OR_STEP_INT = (1ull << 2),
SPU_INT2_STAT_DMA_TAG_GROUP_COMPLETION_INT = (1ull << 3),
SPU_INT2_STAT_SPU_MAILBOX_THRESHOLD_INT = (1ull << 4),
};
enum
{
SPU_RUNCNTL_STOP_REQUEST = 0,
SPU_RUNCNTL_RUN_REQUEST = 1,
};
// SPU Status Register bits (not accurate)
enum enum
{ {
SPU_STATUS_STOPPED = 0x0, SPU_STATUS_STOPPED = 0x0,
@ -80,10 +102,9 @@ enum
enum : u32 enum : u32
{ {
SYS_SPU_THREAD_BASE_LOW = 0xf0000000, SYS_SPU_THREAD_BASE_LOW = 0xf0000000,
SYS_SPU_THREAD_BASE_MASK = 0xfffffff, SYS_SPU_THREAD_OFFSET = 0x100000,
SYS_SPU_THREAD_OFFSET = 0x00100000, SYS_SPU_THREAD_SNR1 = 0x5400c,
SYS_SPU_THREAD_SNR1 = 0x05400c, SYS_SPU_THREAD_SNR2 = 0x5C00c,
SYS_SPU_THREAD_SNR2 = 0x05C00c,
}; };
enum enum
@ -108,6 +129,195 @@ enum
SPU_RdSigNotify2_offs = 0x1C00C, SPU_RdSigNotify2_offs = 0x1C00C,
}; };
union spu_channel_t
{
struct sync_var_t
{
u32 count;
u32 value;
};
atomic_t<sync_var_t> sync_var; // atomic variable
sync_var_t data; // unsafe direct access
public:
bool push(u32 value)
{
bool out_result;
sync_var.atomic_op([&out_result, value](sync_var_t& data)
{
if ((out_result = data.count == 0))
{
data.count = 1;
data.value = value;
}
});
return out_result;
}
void push_logical_or(u32 value)
{
sync_var._or({ 1, value });
}
void push_uncond(u32 value)
{
sync_var.exchange({ 1, value });
}
bool pop(u32& out_value)
{
bool out_result;
sync_var.atomic_op([&out_result, &out_value](sync_var_t& data)
{
if ((out_result = data.count != 0))
{
out_value = data.value;
data.count = 0;
data.value = 0;
}
});
return out_result;
}
u32 pop_uncond()
{
u32 out_value;
sync_var.atomic_op([&out_value](sync_var_t& data)
{
out_value = data.value;
data.count = 0;
// value is not cleared and may be read again
});
return out_value;
}
void set_value(u32 value, u32 count = 1)
{
sync_var.write_relaxed({ count, value });
}
u32 get_value()
{
return sync_var.read_relaxed().value;
}
u32 get_count()
{
return sync_var.read_relaxed().count;
}
};
struct spu_channel_4_t
{
struct sync_var_t
{
u32 count;
u32 value0;
u32 value1;
u32 value2;
};
atomic_le_t<sync_var_t> sync_var;
atomic_le_t<u32> value3;
public:
void clear()
{
sync_var.write_relaxed({});
value3.write_relaxed({});
}
void push_uncond(u32 value)
{
value3.exchange(value);
sync_var.atomic_op([value](sync_var_t& data)
{
switch (data.count++)
{
case 0: data.value0 = value; break;
case 1: data.value1 = value; break;
case 2: data.value2 = value; break;
default: data.count = 4;
}
});
}
// out_count: count after removing first element
bool pop(u32& out_value, u32& out_count)
{
bool out_result;
const u32 last_value = value3.read_sync();
sync_var.atomic_op([&out_result, &out_value, &out_count, last_value](sync_var_t& data)
{
if ((out_result = data.count != 0))
{
out_value = data.value0;
out_count = --data.count;
data.value0 = data.value1;
data.value1 = data.value2;
data.value2 = last_value;
}
});
return out_result;
}
u32 get_count()
{
return sync_var.read_relaxed().count;
}
};
struct spu_interrupt_tag_t
{
atomic_le_t<u64> mask;
atomic_le_t<u64> stat;
atomic_le_t<s32> assigned;
std::mutex handler_mutex;
std::condition_variable cond;
public:
void set(u64 ints)
{
// leave only enabled interrupts
ints &= mask.read_relaxed();
if (ints && ~stat._or(ints) & ints)
{
// notify if at least 1 bit was set
cond.notify_all();
}
}
void clear(u64 ints)
{
stat &= ~ints;
}
void clear()
{
mask.write_relaxed(0);
stat.write_relaxed(0);
assigned.write_relaxed(-1);
}
};
#define mmToU64Ptr(x) ((u64*)(&x)) #define mmToU64Ptr(x) ((u64*)(&x))
#define mmToU32Ptr(x) ((u32*)(&x)) #define mmToU32Ptr(x) ((u32*)(&x))
#define mmToU16Ptr(x) ((u16*)(&x)) #define mmToU16Ptr(x) ((u16*)(&x))
@ -254,273 +464,113 @@ public:
} }
}; };
union SPU_SNRConfig_hdr
{
u64 value;
SPU_SNRConfig_hdr() {}
std::string ToString() const
{
return fmt::Format("%01x", value);
}
void Reset()
{
memset(this, 0, sizeof(*this));
}
};
struct SpuGroupInfo;
class SPUThread : public CPUThread class SPUThread : public CPUThread
{ {
public: public:
u128 GPR[128]; // General-Purpose Registers u128 GPR[128]; // General-Purpose Registers
SPU_FPSCR FPSCR; SPU_FPSCR FPSCR;
u32 SRR0;
SPU_SNRConfig_hdr cfg; // Signal Notification Registers Configuration (OR-mode enabled: 0x1 for SNR1, 0x2 for SNR2)
std::shared_ptr<EventPort> SPUPs[64]; // SPU Thread Event Ports
EventManager SPUQs; // SPU Queue Mapping
std::shared_ptr<SpuGroupInfo> group; // associated SPU Thread Group (null for raw spu)
u64 m_dec_start; // timestamp of writing decrementer value
u32 m_dec_value; // written decrementer value
u32 m_event_mask;
u32 m_events;
std::unordered_map<u32, std::function<bool(SPUThread& SPU)>> m_addr_to_hle_function_map; std::unordered_map<u32, std::function<bool(SPUThread& SPU)>> m_addr_to_hle_function_map;
struct IntrTag spu_mfc_arg_t ch_mfc_args;
{
u32 enabled; // 1 == true
u32 thread; // established interrupt PPU thread
u64 mask;
u64 stat;
IntrTag() std::vector<std::pair<u32, spu_mfc_arg_t>> mfc_queue; // Only used for stalled list transfers
: enabled(0)
, thread(0)
, mask(0)
, stat(0)
{
}
} m_intrtag[3];
// limited lock-free queue, most functions are barrier-free u32 ch_tag_mask;
template<size_t max_count> spu_channel_t ch_tag_stat;
class Channel spu_channel_t ch_stall_stat;
{ spu_channel_t ch_atomic_stat;
static_assert(max_count >= 1, "Invalid channel count");
struct ChannelData spu_channel_4_t ch_in_mbox;
{
u32 value;
u32 is_set;
};
atomic_t<ChannelData> m_data[max_count]; spu_channel_t ch_out_mbox;
size_t m_push; spu_channel_t ch_out_intr_mbox;
size_t m_pop;
public: u64 snr_config; // SPU SNR Config Register
__noinline Channel()
{
for (size_t i = 0; i < max_count; i++)
{
m_data[i].write_relaxed({});
}
m_push = 0;
m_pop = 0;
}
__forceinline void PopUncond(u32& res) spu_channel_t ch_snr1; // SPU Signal Notification Register 1
{ spu_channel_t ch_snr2; // SPU Signal Notification Register 2
res = m_data[m_pop].read_relaxed().value;
m_data[m_pop].write_relaxed({});
m_pop = (m_pop + 1) % max_count;
}
__forceinline bool Pop(u32& res) u32 ch_event_mask;
atomic_le_t<u32> ch_event_stat;
u64 ch_dec_start_timestamp; // timestamp of writing decrementer value
u32 ch_dec_value; // written decrementer value
atomic_le_t<u32> run_ctrl; // SPU Run Control register (only provided to get latest data written)
atomic_le_t<u32> status; // SPU Status register
atomic_le_t<u32> npc; // SPU Next Program Counter register
spu_interrupt_tag_t int0; // SPU Class 0 Interrupt Management
spu_interrupt_tag_t int2; // SPU Class 2 Interrupt Management
std::weak_ptr<spu_group_t> tg; // SPU Thread Group Id
std::unordered_map<u32, std::shared_ptr<event_queue_t>> spuq; // Event Queue Keys for SPU Thread
std::weak_ptr<event_queue_t> spup[64]; // SPU Ports
void write_snr(bool number, u32 value)
{ {
const auto data = m_data[m_pop].read_relaxed(); if (!number)
if (data.is_set)
{ {
res = data.value; if (snr_config & 1)
m_data[m_pop].write_relaxed({}); {
m_pop = (m_pop + 1) % max_count; ch_snr1.push_logical_or(value);
return true;
} }
else else
{ {
return false; ch_snr1.push_uncond(value);
} }
} }
__forceinline bool Pop_XCHG(u32& res) // not barrier-free, not tested
{
const auto data = m_data[m_pop].exchange({});
if (data.is_set)
{
res = data.value;
m_pop = (m_pop + 1) % max_count;
return true;
}
else else
{ {
return false; if (snr_config & 2)
}
}
__forceinline void PushUncond_OR(const u32 value) // not barrier-free, not tested
{ {
m_data[m_push]._or({ value, 1 }); ch_snr2.push_logical_or(value);
m_push = (m_push + 1) % max_count;
}
__forceinline void PushUncond(const u32 value)
{
m_data[m_push].write_relaxed({ value, 1 });
m_push = (m_push + 1) % max_count;
}
__forceinline bool Push(const u32 value)
{
if (m_data[m_push].read_relaxed().is_set)
{
return false;
} }
else else
{ {
PushUncond(value); ch_snr2.push_uncond(value);
return true; }
} }
} }
__forceinline u32 GetCount() const void do_dma_transfer(u32 cmd, spu_mfc_arg_t args);
{ void do_dma_list_cmd(u32 cmd, spu_mfc_arg_t args);
u32 res = 0; void process_mfc_cmd(u32 cmd);
for (size_t i = 0; i < max_count; i++)
{
res += m_data[i].read_relaxed().is_set ? 1 : 0;
}
return res;
}
__forceinline u32 GetFreeCount() const u32 get_ch_count(u32 ch);
{ u32 get_ch_value(u32 ch);
u32 res = 0; void set_ch_value(u32 ch, u32 value);
for (size_t i = 0; i < max_count; i++)
{
res += m_data[i].read_relaxed().is_set ? 0 : 1;
}
return res;
}
__forceinline void SetValue(const u32 value) void stop_and_signal(u32 code);
{ void halt();
m_data[m_push].direct_op([value](ChannelData& v)
{
v.value = value;
});
}
__forceinline u32 GetValue() const u8 read8(u32 lsa) const { return vm::read8(lsa + offset); }
{ u16 read16(u32 lsa) const { return vm::read16(lsa + offset); }
return m_data[m_pop].read_relaxed().value; u32 read32(u32 lsa) const { return vm::read32(lsa + offset); }
} u64 read64(u32 lsa) const { return vm::read64(lsa + offset); }
}; u128 read128(u32 lsa) const { return vm::read128(lsa + offset); }
struct MFCReg void write8(u32 lsa, u8 data) const { vm::write8(lsa + offset, data); }
{ void write16(u32 lsa, u16 data) const { vm::write16(lsa + offset, data); }
Channel<1> LSA; void write32(u32 lsa, u32 data) const { vm::write32(lsa + offset, data); }
Channel<1> EAH; void write64(u32 lsa, u64 data) const { vm::write64(lsa + offset, data); }
Channel<1> EAL; void write128(u32 lsa, u128 data) const { vm::write128(lsa + offset, data); }
Channel<1> Size_Tag;
Channel<1> CMDStatus;
Channel<1> QueryType; // only for prxy
Channel<1> QueryMask;
Channel<1> TagStatus;
Channel<1> AtomicStat;
} MFC1, MFC2;
struct StalledList void write16(u32 lsa, be_t<u16> data) const { vm::write16(lsa + offset, data); }
{ void write32(u32 lsa, be_t<u32> data) const { vm::write32(lsa + offset, data); }
u32 lsa; void write64(u32 lsa, be_t<u64> data) const { vm::write64(lsa + offset, data); }
u64 ea; void write128(u32 lsa, be_t<u128> data) const { vm::write128(lsa + offset, data); }
u16 tag;
u16 size;
u32 cmd;
MFCReg* MFCArgs;
StalledList()
: MFCArgs(nullptr)
{
}
} StallList[32];
Channel<1> StallStat;
struct
{
Channel<1> Out_MBox;
Channel<1> Out_IntrMBox;
Channel<4> In_MBox;
Channel<1> Status;
Channel<1> NPC;
Channel<1> SNR[2];
} SPU;
void WriteSNR(bool number, u32 value);
u32 LSA;
union
{
u64 EA;
struct { u32 EAH, EAL; };
};
u32 ls_offset;
void ProcessCmd(u32 cmd, u32 tag, u32 lsa, u64 ea, u32 size);
void ListCmd(u32 lsa, u64 ea, u16 tag, u16 size, u32 cmd, MFCReg& MFCArgs);
void EnqMfcCmd(MFCReg& MFCArgs);
bool CheckEvents();
u32 GetChannelCount(u32 ch);
void WriteChannel(u32 ch, const u128& r);
void ReadChannel(u128& r, u32 ch);
void StopAndSignal(u32 code);
u8 ReadLS8 (const u32 lsa) const { return vm::read8 (lsa + m_offset); }
u16 ReadLS16 (const u32 lsa) const { return vm::read16 (lsa + m_offset); }
u32 ReadLS32 (const u32 lsa) const { return vm::read32 (lsa + m_offset); }
u64 ReadLS64 (const u32 lsa) const { return vm::read64 (lsa + m_offset); }
u128 ReadLS128(const u32 lsa) const { return vm::read128(lsa + m_offset); }
void WriteLS8 (const u32 lsa, const u8& data) const { vm::write8 (lsa + m_offset, data); }
void WriteLS16 (const u32 lsa, const u16& data) const { vm::write16 (lsa + m_offset, data); }
void WriteLS32 (const u32 lsa, const u32& data) const { vm::write32 (lsa + m_offset, data); }
void WriteLS64 (const u32 lsa, const u64& data) const { vm::write64 (lsa + m_offset, data); }
void WriteLS128(const u32 lsa, const u128& data) const { vm::write128(lsa + m_offset, data); }
void RegisterHleFunction(u32 addr, std::function<bool(SPUThread & SPU)> function) void RegisterHleFunction(u32 addr, std::function<bool(SPUThread & SPU)> function)
{ {
m_addr_to_hle_function_map[addr] = function; m_addr_to_hle_function_map[addr] = function;
WriteLS32(addr, 0x00000003); // STOP 3 write32(addr, 0x00000003); // STOP 3
} }
void UnregisterHleFunction(u32 addr) void UnregisterHleFunction(u32 addr)
{ {
WriteLS32(addr, 0x00200000); // NOP
m_addr_to_hle_function_map.erase(addr); m_addr_to_hle_function_map.erase(addr);
} }
@ -530,7 +580,6 @@ public:
{ {
if (iter->first >= start_addr && iter->first <= end_addr) if (iter->first >= start_addr && iter->first <= end_addr)
{ {
WriteLS32(iter->first, 0x00200000); // NOP
m_addr_to_hle_function_map.erase(iter++); m_addr_to_hle_function_map.erase(iter++);
} }
else else
@ -603,6 +652,7 @@ public:
virtual void Task(); virtual void Task();
void FastCall(u32 ls_addr); void FastCall(u32 ls_addr);
void FastStop(); void FastStop();
void FastRun();
protected: protected:
virtual void DoReset(); virtual void DoReset();
@ -651,11 +701,13 @@ public:
cpu_thread& run() override cpu_thread& run() override
{ {
thread->Run(); auto& spu = static_cast<SPUThread&>(*thread);
static_cast<SPUThread*>(thread)->GPR[3].from64(argc); spu.Run();
static_cast<SPUThread*>(thread)->GPR[4].from64(argv.addr());
static_cast<SPUThread*>(thread)->GPR[5].from64(envp.addr()); spu.GPR[3].from64(argc);
spu.GPR[4].from64(argv.addr());
spu.GPR[5].from64(envp.addr());
return *this; return *this;
} }

View file

@ -1,8 +1,7 @@
#include "stdafx.h" #include "stdafx.h"
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h" #include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_event.h" #include "Emu/SysCalls/lv2/sys_event.h"
#include "Event.h" #include "Event.h"
@ -12,74 +11,77 @@ void EventManager::Init()
void EventManager::Clear() void EventManager::Clear()
{ {
key_map.clear(); eq_map.clear();
} }
bool EventManager::CheckKey(u64 key) bool EventManager::CheckKey(u64 key)
{ {
if (!key) return true; if (!key)
std::lock_guard<std::mutex> lock(m_lock);
return key_map.find(key) != key_map.end();
}
bool EventManager::RegisterKey(std::shared_ptr<EventQueue>& data, u64 key)
{
if (!key) return true;
std::lock_guard<std::mutex> lock(m_lock);
if (key_map.find(key) != key_map.end()) return false;
for (auto& v : key_map)
{ {
if (v.second == data) return false; // never exists
}
key_map[key] = data;
return true;
}
bool EventManager::GetEventQueue(u64 key, std::shared_ptr<EventQueue>& data)
{
data = nullptr;
if (!key) return false;
std::lock_guard<std::mutex> lock(m_lock);
auto f = key_map.find(key);
if (f != key_map.end())
{
data = f->second;
return true;
}
return false; return false;
}
std::lock_guard<std::mutex> lock(m_lock);
return eq_map.find(key) != eq_map.end();
}
bool EventManager::RegisterKey(std::shared_ptr<event_queue_t>& data, u64 key)
{
if (!key)
{
// always ok
return true;
}
std::lock_guard<std::mutex> lock(m_lock);
if (eq_map.find(key) != eq_map.end())
{
return false;
}
eq_map[key] = data;
return true;
} }
bool EventManager::UnregisterKey(u64 key) bool EventManager::UnregisterKey(u64 key)
{ {
if (!key) return false; if (!key)
std::lock_guard<std::mutex> lock(m_lock);
auto f = key_map.find(key);
if (f != key_map.end())
{ {
key_map.erase(f); // always ok
return true; return true;
} }
std::lock_guard<std::mutex> lock(m_lock);
auto f = eq_map.find(key);
if (f != eq_map.end())
{
eq_map.erase(f);
return true;
}
return false; return false;
} }
bool EventManager::SendEvent(u64 key, u64 source, u64 d1, u64 d2, u64 d3) std::shared_ptr<event_queue_t> EventManager::GetEventQueue(u64 key)
{ {
if (!key) return false; if (!key)
std::lock_guard<std::mutex> lock(m_lock);
auto f = key_map.find(key);
if (f == key_map.end())
{ {
return false; // never exists
return nullptr;
} }
f->second->events.push(source, d1, d2, d3); std::lock_guard<std::mutex> lock(m_lock);
return true;
auto f = eq_map.find(key);
if (f != eq_map.end())
{
return f->second;
}
return nullptr;
} }

View file

@ -1,19 +1,19 @@
#pragma once #pragma once
#include <unordered_map> #include <unordered_map>
struct EventQueue; struct event_queue_t;
class EventManager class EventManager
{ {
std::mutex m_lock; std::mutex m_lock;
std::unordered_map<u64, std::shared_ptr<EventQueue>> key_map; std::unordered_map<u64, std::shared_ptr<event_queue_t>> eq_map;
public: public:
void Init(); void Init();
void Clear(); void Clear();
bool CheckKey(u64 key); bool CheckKey(u64 key);
bool RegisterKey(std::shared_ptr<EventQueue>& data, u64 key); bool RegisterKey(std::shared_ptr<event_queue_t>& data, u64 key);
bool GetEventQueue(u64 key, std::shared_ptr<EventQueue>& data);
bool UnregisterKey(u64 key); bool UnregisterKey(u64 key);
bool SendEvent(u64 key, u64 source, u64 d1, u64 d2, u64 d3);
std::shared_ptr<event_queue_t> GetEventQueue(u64 key);
}; };

View file

@ -1,53 +1,16 @@
#include "stdafx.h" #include "stdafx.h"
#include "Utilities/Log.h" #include "Utilities/Log.h"
#include "Emu/System.h"
#include "Memory.h" #include "Memory.h"
#include "Emu/Cell/RawSPUThread.h"
MemoryBase Memory; MemoryBase Memory;
u32 MemoryBase::InitRawSPU(MemoryBlock* raw_spu) std::mutex g_memory_mutex;
{
LV2_LOCK(0);
u32 index;
for (index = 0; index < sizeof(RawSPUMem) / sizeof(RawSPUMem[0]); index++)
{
if (!RawSPUMem[index])
{
RawSPUMem[index] = raw_spu;
break;
}
}
MemoryBlocks.push_back(raw_spu->SetRange(RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * index, RAW_SPU_PROB_OFFSET));
return index;
}
void MemoryBase::CloseRawSPU(MemoryBlock* raw_spu, const u32 num)
{
LV2_LOCK(0);
for (int i = 0; i < MemoryBlocks.size(); ++i)
{
if (MemoryBlocks[i] == raw_spu)
{
MemoryBlocks.erase(MemoryBlocks.begin() + i);
break;
}
}
if (num < sizeof(RawSPUMem) / sizeof(RawSPUMem[0])) RawSPUMem[num] = nullptr;
}
void MemoryBase::Init(MemoryType type) void MemoryBase::Init(MemoryType type)
{ {
LV2_LOCK(0);
if (m_inited) return; if (m_inited) return;
m_inited = true; m_inited = true;
memset(RawSPUMem, 0, sizeof(RawSPUMem));
LOG_NOTICE(MEMORY, "Initializing memory: g_base_addr = 0x%llx, g_priv_addr = 0x%llx", (u64)vm::g_base_addr, (u64)vm::g_priv_addr); LOG_NOTICE(MEMORY, "Initializing memory: g_base_addr = 0x%llx, g_priv_addr = 0x%llx", (u64)vm::g_base_addr, (u64)vm::g_priv_addr);
#ifdef _WIN32 #ifdef _WIN32
@ -88,8 +51,6 @@ void MemoryBase::Init(MemoryType type)
void MemoryBase::Close() void MemoryBase::Close()
{ {
LV2_LOCK(0);
if (!m_inited) return; if (!m_inited) return;
m_inited = false; m_inited = false;
@ -105,35 +66,11 @@ void MemoryBase::Close()
MemoryBlocks.clear(); MemoryBlocks.clear();
} }
bool MemoryBase::WriteMMIO32(u32 addr, const u32 data)
{
LV2_LOCK(0);
if (RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET] && ((RawSPUThread*)RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET])->Write32(addr, data))
{
return true;
}
return false;
}
bool MemoryBase::ReadMMIO32(u32 addr, u32& result)
{
LV2_LOCK(0);
if (RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET] && ((RawSPUThread*)RawSPUMem[(addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET])->Read32(addr, &result))
{
return true;
}
return false;
}
bool MemoryBase::Map(const u32 addr, const u32 size) bool MemoryBase::Map(const u32 addr, const u32 size)
{ {
assert(size && (size | addr) % 4096 == 0); assert(size && (size | addr) % 4096 == 0);
LV2_LOCK(0); std::lock_guard<std::mutex> lock(g_memory_mutex);
for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++) for (u32 i = addr / 4096; i < addr / 4096 + size / 4096; i++)
{ {
@ -151,7 +88,7 @@ bool MemoryBase::Map(const u32 addr, const u32 size)
bool MemoryBase::Unmap(const u32 addr) bool MemoryBase::Unmap(const u32 addr)
{ {
LV2_LOCK(0); std::lock_guard<std::mutex> lock(g_memory_mutex);
for (u32 i = 0; i < MemoryBlocks.size(); i++) for (u32 i = 0; i < MemoryBlocks.size(); i++)
{ {
@ -238,7 +175,7 @@ DynamicMemoryBlockBase::DynamicMemoryBlockBase()
const u32 DynamicMemoryBlockBase::GetUsedSize() const const u32 DynamicMemoryBlockBase::GetUsedSize() const
{ {
LV2_LOCK(0); std::lock_guard<std::mutex> lock(g_memory_mutex);
u32 size = 0; u32 size = 0;
@ -257,7 +194,7 @@ bool DynamicMemoryBlockBase::IsInMyRange(const u32 addr, const u32 size)
MemoryBlock* DynamicMemoryBlockBase::SetRange(const u32 start, const u32 size) MemoryBlock* DynamicMemoryBlockBase::SetRange(const u32 start, const u32 size)
{ {
LV2_LOCK(0); std::lock_guard<std::mutex> lock(g_memory_mutex);
m_max_size = PAGE_4K(size); m_max_size = PAGE_4K(size);
if (!MemoryBlock::SetRange(start, 0)) if (!MemoryBlock::SetRange(start, 0))
@ -271,7 +208,7 @@ MemoryBlock* DynamicMemoryBlockBase::SetRange(const u32 start, const u32 size)
void DynamicMemoryBlockBase::Delete() void DynamicMemoryBlockBase::Delete()
{ {
LV2_LOCK(0); std::lock_guard<std::mutex> lock(g_memory_mutex);
m_allocated.clear(); m_allocated.clear();
m_max_size = 0; m_max_size = 0;
@ -293,7 +230,7 @@ bool DynamicMemoryBlockBase::AllocFixed(u32 addr, u32 size)
return false; return false;
} }
LV2_LOCK(0); std::lock_guard<std::mutex> lock(g_memory_mutex);
for (u32 i = 0; i<m_allocated.size(); ++i) for (u32 i = 0; i<m_allocated.size(); ++i)
{ {
@ -334,7 +271,7 @@ u32 DynamicMemoryBlockBase::AllocAlign(u32 size, u32 align)
exsize = size + align - 1; exsize = size + align - 1;
} }
LV2_LOCK(0); std::lock_guard<std::mutex> lock(g_memory_mutex);
for (u32 addr = MemoryBlock::GetStartAddr(); addr <= MemoryBlock::GetEndAddr() - exsize;) for (u32 addr = MemoryBlock::GetStartAddr(); addr <= MemoryBlock::GetEndAddr() - exsize;)
{ {
@ -375,7 +312,7 @@ bool DynamicMemoryBlockBase::Alloc()
bool DynamicMemoryBlockBase::Free(u32 addr) bool DynamicMemoryBlockBase::Free(u32 addr)
{ {
LV2_LOCK(0); std::lock_guard<std::mutex> lock(g_memory_mutex);
for (u32 num = 0; num < m_allocated.size(); num++) for (u32 num = 0; num < m_allocated.size(); num++)
{ {

View file

@ -33,7 +33,6 @@ public:
DynamicMemoryBlock Userspace; DynamicMemoryBlock Userspace;
DynamicMemoryBlock RSXFBMem; DynamicMemoryBlock RSXFBMem;
DynamicMemoryBlock StackMem; DynamicMemoryBlock StackMem;
MemoryBlock* RawSPUMem[(0x100000000 - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET];
VirtualMemoryBlock RSXIOMem; VirtualMemoryBlock RSXIOMem;
struct struct
@ -67,18 +66,10 @@ public:
void UnregisterPages(u32 addr, u32 size); void UnregisterPages(u32 addr, u32 size);
u32 InitRawSPU(MemoryBlock* raw_spu);
void CloseRawSPU(MemoryBlock* raw_spu, const u32 num);
void Init(MemoryType type); void Init(MemoryType type);
void Close(); void Close();
bool WriteMMIO32(u32 addr, const u32 data);
bool ReadMMIO32(u32 addr, u32& result);
u32 GetUserMemTotalSize() u32 GetUserMemTotalSize()
{ {
return UserMemory->GetSize(); return UserMemory->GetSize();

View file

@ -9,7 +9,7 @@
template<typename T, size_t size = sizeof(T)> template<typename T, size_t size = sizeof(T)>
struct _to_atomic struct _to_atomic
{ {
static_assert(size == 1 || size == 2 || size == 4 || size == 8, "Invalid atomic type"); static_assert(size == 1 || size == 2 || size == 4 || size == 8 || size == 16, "Invalid atomic type");
typedef T type; typedef T type;
}; };
@ -38,6 +38,12 @@ struct _to_atomic<T, 8>
typedef uint64_t type; typedef uint64_t type;
}; };
template<typename T>
struct _to_atomic<T, 16>
{
typedef u128 type;
};
template<typename T> template<typename T>
class _atomic_base class _atomic_base
{ {
@ -79,7 +85,7 @@ public:
} }
// write data without memory barrier // write data without memory barrier
__forceinline void write_relaxed(const T& value) volatile __forceinline void write_relaxed(const T& value)
{ {
data = (atomic_type&)(value); data = (atomic_type&)(value);
} }

196
rpcs3/Emu/Memory/refcnt.h Normal file
View file

@ -0,0 +1,196 @@
#pragma once
#include "atomic.h"
// run endless loop for debugging
__forceinline static void deadlock()
{
while (true)
{
std::this_thread::yield();
}
}
template<typename T>
class ref_t;
template<typename T>
class refcounter_t // non-relocateable "smart" pointer with ref counter
{
public:
typedef T type, * p_type;
typedef refcounter_t<T> rc_type;
// counter > 0, ptr != nullptr : object exists and shared
// counter > 0, ptr == nullptr : object exists and shared, but not owned by refcounter_t
// counter == 0, ptr != nullptr : object exists and not shared
// counter == 0, ptr == nullptr : object doesn't exist
// counter < 0 : bad state, used to provoke error for debugging
struct sync_var_t
{
s64 counter;
p_type ptr;
};
private:
atomic_le_t<sync_var_t> m_var;
friend class ref_t<T>;
// try to share object (increment counter), returns nullptr if doesn't exist or cannot be shared
__forceinline p_type ref_inc()
{
p_type out_ptr;
m_var.atomic_op([&out_ptr](sync_var_t& v)
{
assert(v.counter >= 0);
if ((out_ptr = v.ptr))
{
v.counter++;
}
});
return out_ptr;
}
// try to release previously shared object (decrement counter), returns true if should be deleted
__forceinline bool ref_dec()
{
bool do_delete;
m_var.atomic_op([&do_delete](sync_var_t& v)
{
assert(v.counter > 0);
do_delete = !--v.counter && !v.ptr;
});
return do_delete;
}
public:
refcounter_t()
{
// initialize ref counter
m_var.write_relaxed({ 0, nullptr });
}
~refcounter_t()
{
// set bad state
auto ref = m_var.exchange({ -1, nullptr });
// finalize
if (ref.counter)
{
deadlock();
}
else if (ref.ptr)
{
delete ref.ptr;
}
}
refcounter_t(const rc_type& right) = delete;
refcounter_t(rc_type&& right_rv) = delete;
rc_type& operator =(const rc_type& right) = delete;
rc_type& operator =(rc_type&& right_rv) = delete;
public:
// try to set new object (if it doesn't exist)
bool try_set(p_type ptr)
{
return m_var.compare_and_swap_test({ 0, nullptr }, { 0, ptr });
}
// try to remove object (if exists)
bool try_remove()
{
bool out_res;
p_type out_ptr;
m_var.atomic_op([&out_res, &out_ptr](sync_var_t& v)
{
out_res = (out_ptr = v.ptr);
if (v.counter)
{
out_ptr = nullptr;
}
v.ptr = nullptr;
});
if (out_ptr)
{
delete out_ptr;
}
return out_res;
}
};
template<typename T>
class ref_t
{
public:
typedef T type, * p_type;
typedef refcounter_t<T> * rc_type;
private:
rc_type m_rc;
p_type m_ptr;
public:
ref_t()
: m_rc(nullptr)
, m_ptr(nullptr)
{
}
ref_t(rc_type rc)
: m_rc(rc)
, m_ptr(rc->ref_inc())
{
}
~ref_t()
{
if (m_ptr && m_rc->ref_dec())
{
delete m_ptr;
}
}
ref_t(const ref_t& right) = delete;
ref_t(ref_t&& right_rv)
: m_rc(right_rv.m_rc)
, m_ptr(right_rv.m_ptr)
{
right_rv.m_rc = nullptr;
right_rv.m_ptr = nullptr;
}
ref_t& operator =(const ref_t& right) = delete;
ref_t& operator =(ref_t&& right_rv) = delete;
public:
T& operator *() const
{
return *m_ptr;
}
T* operator ->() const
{
return m_ptr;
}
explicit operator bool() const
{
return m_ptr;
}
};

View file

@ -37,7 +37,7 @@ namespace vm
return base_addr; return base_addr;
#else #else
int memory_handle = shm_open("/rpcs3_vm", O_RDWR | O_CREAT | O_EXCL, 0); int memory_handle = shm_open("/rpcs3_vm", O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR);
if (memory_handle == -1) if (memory_handle == -1)
{ {

View file

@ -1,7 +1,5 @@
#pragma once #pragma once
#include "Emu/Memory/atomic_type.h"
enum enum
{ {
CELL_GCM_DISPLAY_HSYNC = 1, CELL_GCM_DISPLAY_HSYNC = 1,

View file

@ -61,30 +61,30 @@ void CallbackManager::Init()
if (Memory.PSV.RAM.GetStartAddr()) if (Memory.PSV.RAM.GetStartAddr())
{ {
m_cb_thread = &Emu.GetCPU().AddThread(CPU_THREAD_ARMv7); m_cb_thread = Emu.GetCPU().AddThread(CPU_THREAD_ARMv7);
m_cb_thread->SetName("Callback Thread"); m_cb_thread->SetName("Callback Thread");
m_cb_thread->SetEntry(0); m_cb_thread->SetEntry(0);
m_cb_thread->SetPrio(1001); m_cb_thread->SetPrio(1001);
m_cb_thread->SetStackSize(0x10000); m_cb_thread->SetStackSize(0x10000);
m_cb_thread->InitStack(); m_cb_thread->InitStack();
m_cb_thread->InitRegs(); m_cb_thread->InitRegs();
static_cast<ARMv7Thread*>(m_cb_thread)->DoRun(); static_cast<ARMv7Thread&>(*m_cb_thread).DoRun();
} }
else else
{ {
m_cb_thread = &Emu.GetCPU().AddThread(CPU_THREAD_PPU); m_cb_thread = Emu.GetCPU().AddThread(CPU_THREAD_PPU);
m_cb_thread->SetName("Callback Thread"); m_cb_thread->SetName("Callback Thread");
m_cb_thread->SetEntry(0); m_cb_thread->SetEntry(0);
m_cb_thread->SetPrio(1001); m_cb_thread->SetPrio(1001);
m_cb_thread->SetStackSize(0x10000); m_cb_thread->SetStackSize(0x10000);
m_cb_thread->InitStack(); m_cb_thread->InitStack();
m_cb_thread->InitRegs(); m_cb_thread->InitRegs();
static_cast<PPUThread*>(m_cb_thread)->DoRun(); static_cast<PPUThread&>(*m_cb_thread).DoRun();
} }
thread_t cb_async_thread("CallbackManager thread", [this]() thread_t cb_async_thread("CallbackManager thread", [this]()
{ {
SetCurrentNamedThread(m_cb_thread); SetCurrentNamedThread(&*m_cb_thread);
while (!Emu.IsStopped()) while (!Emu.IsStopped())
{ {

View file

@ -10,7 +10,7 @@ class CallbackManager
std::mutex m_mutex; std::mutex m_mutex;
std::vector<std::function<s32(CPUThread&)>> m_cb_list; std::vector<std::function<s32(CPUThread&)>> m_cb_list;
std::vector<std::function<void(CPUThread&)>> m_async_list; std::vector<std::function<void(CPUThread&)>> m_async_list;
CPUThread* m_cb_thread; std::shared_ptr<CPUThread> m_cb_thread;
struct PauseResumeCBS struct PauseResumeCBS
{ {

View file

@ -490,6 +490,27 @@ bool patch_ppu_import(u32 addr, u32 index)
return true; return true;
} }
if (vm::check_addr(addr, 64) &&
data[0x0] == MFLR(r0) &&
data[0x1] == STD(r0, r1, 0x10) &&
data[0x2] == STDU(r1, r1, -0x80) &&
data[0x3] == STD(r2, r1, 0x70) &&
(data[0x4] & 0xffff0000) == LIS(r12, 0) &&
(data[0x5] & 0xffff0000) == LWZ(r12, r12, 0) &&
data[0x6] == LWZ(r0, r12, 0) &&
data[0x7] == LWZ(r2, r12, 4) &&
data[0x8] == MTCTR(r0) &&
data[0x9] == BCTRL() &&
data[0xa] == LD(r2, r1, 0x70) &&
data[0xb] == ADDI(r1, r1, 0x80) &&
data[0xc] == LD(r0, r1, 0x10) &&
data[0xd] == MTLR(r0) &&
data[0xe] == BLR())
{
vm::write32(addr, HACK(index | EIF_PERFORM_BLR));
return true;
}
if (vm::check_addr(addr, 56) && if (vm::check_addr(addr, 56) &&
(data[0x0] & 0xffff0000) == LI_(r12, 0) && (data[0x0] & 0xffff0000) == LI_(r12, 0) &&
(data[0x1] & 0xffff0000) == ORIS(r12, r12, 0) && (data[0x1] & 0xffff0000) == ORIS(r12, r12, 0) &&

View file

@ -223,7 +223,7 @@ u32 adecOpen(AudioDecoder* adec_ptr)
adec.id = adec_id; adec.id = adec_id;
adec.adecCb = (PPUThread*)&Emu.GetCPU().AddThread(CPU_THREAD_PPU); adec.adecCb = static_cast<PPUThread*>(Emu.GetCPU().AddThread(CPU_THREAD_PPU).get());
adec.adecCb->SetName(fmt::format("AudioDecoder[%d] Callback", adec_id)); adec.adecCb->SetName(fmt::format("AudioDecoder[%d] Callback", adec_id));
adec.adecCb->SetEntry(0); adec.adecCb->SetEntry(0);
adec.adecCb->SetPrio(1001); adec.adecCb->SetPrio(1001);

View file

@ -3,10 +3,9 @@
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/Modules.h" #include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/Callback.h" #include "Emu/SysCalls/Callback.h"
#include "Emu/Memory/atomic_type.h"
#include "rpcs3/Ini.h" #include "rpcs3/Ini.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h" #include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_time.h" #include "Emu/SysCalls/lv2/sys_time.h"
#include "Emu/SysCalls/lv2/sys_event.h" #include "Emu/SysCalls/lv2/sys_event.h"
#include "Emu/Event.h" #include "Emu/Event.h"
@ -396,8 +395,16 @@ s32 cellAudioInit()
} }
for (u32 i = 0; i < keys.size(); i++) for (u32 i = 0; i < keys.size(); i++)
{ {
auto eq = Emu.GetEventManager().GetEventQueue(keys[i]);
if (eq)
{
LV2_LOCK;
// TODO: check event source // TODO: check event source
Emu.GetEventManager().SendEvent(keys[i], 0x10103000e010e07, 0, 0, 0); eq->events.emplace_back(0x10103000e010e07, 0, 0, 0);
eq->cv.notify_one();
}
} }
//const u64 stamp3 = get_system_time(); //const u64 stamp3 = get_system_time();
@ -777,7 +784,7 @@ int cellAudioCreateNotifyEventQueue(vm::ptr<u32> id, vm::ptr<u64> key)
} }
event_key = (event_key << 48) | 0x80004d494f323221; // left part: 0x8000, 0x8001, 0x8002 ... event_key = (event_key << 48) | 0x80004d494f323221; // left part: 0x8000, 0x8001, 0x8002 ...
std::shared_ptr<EventQueue> eq(new EventQueue(SYS_SYNC_FIFO, SYS_PPU_QUEUE, event_key, event_key, 32)); std::shared_ptr<event_queue_t> eq(new event_queue_t(SYS_SYNC_FIFO, SYS_PPU_QUEUE, event_key, event_key, 32));
if (!Emu.GetEventManager().RegisterKey(eq, event_key)) if (!Emu.GetEventManager().RegisterKey(eq, event_key))
{ {

View file

@ -305,7 +305,7 @@ u32 dmuxOpen(Demuxer* dmux_ptr)
dmux.id = dmux_id; dmux.id = dmux_id;
dmux.dmuxCb = (PPUThread*)&Emu.GetCPU().AddThread(CPU_THREAD_PPU); dmux.dmuxCb = static_cast<PPUThread*>(Emu.GetCPU().AddThread(CPU_THREAD_PPU).get());
dmux.dmuxCb->SetName(fmt::format("Demuxer[%d] Callback", dmux_id)); dmux.dmuxCb->SetName(fmt::format("Demuxer[%d] Callback", dmux_id));
dmux.dmuxCb->SetEntry(0); dmux.dmuxCb->SetEntry(0);
dmux.dmuxCb->SetPrio(1001); dmux.dmuxCb->SetPrio(1001);

View file

@ -3,10 +3,10 @@
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/Modules.h" #include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/CB_FUNC.h" #include "Emu/SysCalls/CB_FUNC.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/SPUThread.h" #include "Emu/Cell/SPUThread.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h" #include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_lwmutex.h" #include "Emu/SysCalls/lv2/sys_lwmutex.h"
#include "Emu/SysCalls/lv2/sys_lwcond.h" #include "Emu/SysCalls/lv2/sys_lwcond.h"
#include "Emu/SysCalls/lv2/sys_spu.h" #include "Emu/SysCalls/lv2/sys_spu.h"
@ -144,24 +144,23 @@ s32 spursInit(
if (flags & SAF_UNKNOWN_FLAG_7) tgt |= 0x102; if (flags & SAF_UNKNOWN_FLAG_7) tgt |= 0x102;
if (flags & SAF_UNKNOWN_FLAG_8) tgt |= 0xC02; if (flags & SAF_UNKNOWN_FLAG_8) tgt |= 0xC02;
if (flags & SAF_UNKNOWN_FLAG_9) tgt |= 0x800; if (flags & SAF_UNKNOWN_FLAG_9) tgt |= 0x800;
auto tg = spu_thread_group_create(name + "CellSpursKernelGroup", nSpus, spuPriority, tgt, container); spurs->m.spuTG = spu_thread_group_create(name + "CellSpursKernelGroup", nSpus, spuPriority, tgt, container);
assert(tg); assert(spurs->m.spuTG.data());
spurs->m.spuTG = tg->m_id;
name += "CellSpursKernel0"; name += "CellSpursKernel0";
for (s32 num = 0; num < nSpus; num++, name[name.size() - 1]++) for (s32 num = 0; num < nSpus; num++, name[name.size() - 1]++)
{ {
auto spu = spu_thread_initialize(tg, num, spurs->m.spuImg, name, SYS_SPU_THREAD_OPTION_DEC_SYNC_TB_ENABLE, (u64)num << 32, spurs.addr(), 0, 0); const u32 id = spu_thread_initialize(spurs->m.spuTG, num, vm::ptr<sys_spu_image>::make(spurs.addr() + offsetof(CellSpurs, m.spuImg)), name, SYS_SPU_THREAD_OPTION_DEC_SYNC_TB_ENABLE, (u64)num << 32, spurs.addr(), 0, 0);
spu->RegisterHleFunction(spurs->m.spuImg.entry_point, spursKernelEntry); static_cast<SPUThread&>(*Emu.GetCPU().GetThread(id).get()).RegisterHleFunction(spurs->m.spuImg.entry_point, spursKernelEntry);
spurs->m.spus[num] = spu->GetId(); spurs->m.spus[num] = id;
} }
if (flags & SAF_SPU_PRINTF_ENABLED) if (flags & SAF_SPU_PRINTF_ENABLED)
{ {
// spu_printf: attach group // spu_printf: attach group
if (!spu_printf_agcb || spu_printf_agcb(tg->m_id) != CELL_OK) if (!spu_printf_agcb || spu_printf_agcb(spurs->m.spuTG) != CELL_OK)
{ {
// remove flag if failed // remove flag if failed
spurs->m.flags &= ~SAF_SPU_PRINTF_ENABLED; spurs->m.flags &= ~SAF_SPU_PRINTF_ENABLED;
@ -329,13 +328,13 @@ s32 spursInit(
return; return;
} }
} }
})->GetId(); });
spurs->m.ppu1 = ppu_thread_create(0, 0, ppuPriority, 0x8000, true, false, name + "SpursHdlr1", [spurs](PPUThread& CPU) spurs->m.ppu1 = ppu_thread_create(0, 0, ppuPriority, 0x8000, true, false, name + "SpursHdlr1", [spurs](PPUThread& CPU)
{ {
// TODO // TODO
})->GetId(); });
// enable exception event handler // enable exception event handler
if (spurs->m.enableEH.compare_and_swap_test(be_t<u32>::make(0), be_t<u32>::make(1))) if (spurs->m.enableEH.compare_and_swap_test(be_t<u32>::make(0), be_t<u32>::make(1)))
@ -1771,8 +1770,8 @@ s32 _cellSpursEventFlagWait(vm::ptr<CellSpursEventFlag> eventFlag, vm::ptr<u16>
u16 receivedEventFlag; u16 receivedEventFlag;
if (recv) { if (recv) {
// Block till something happens // Block till something happens
vm::var<sys_event_data> data; vm::var<sys_event_t> data;
auto rc = sys_event_queue_receive(eventFlag->m.eventQueueId, data, 0); auto rc = sys_event_queue_receive(GetCurrentPPUThread(), eventFlag->m.eventQueueId, data, 0);
if (rc != CELL_OK) if (rc != CELL_OK)
{ {
assert(0); assert(0);
@ -2968,7 +2967,7 @@ bool spursIsLibProfLoaded()
void spursTraceStatusUpdate(vm::ptr<CellSpurs> spurs) void spursTraceStatusUpdate(vm::ptr<CellSpurs> spurs)
{ {
LV2_LOCK(0); LV2_LOCK;
if (spurs->m.xCC != 0) if (spurs->m.xCC != 0)
{ {

View file

@ -2,9 +2,8 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/Modules.h" #include "Emu/SysCalls/Modules.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h" #include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_lwmutex.h" #include "Emu/SysCalls/lv2/sys_lwmutex.h"
#include "Emu/SysCalls/lv2/sys_lwcond.h" #include "Emu/SysCalls/lv2/sys_lwcond.h"
#include "Emu/SysCalls/lv2/sys_spu.h" #include "Emu/SysCalls/lv2/sys_spu.h"

View file

@ -3,6 +3,7 @@
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/Cell/SPUThread.h" #include "Emu/Cell/SPUThread.h"
#include "Emu/SysCalls/Modules.h" #include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_lwmutex.h" #include "Emu/SysCalls/lv2/sys_lwmutex.h"
#include "Emu/SysCalls/lv2/sys_lwcond.h" #include "Emu/SysCalls/lv2/sys_lwcond.h"
#include "Emu/SysCalls/lv2/sys_spu.h" #include "Emu/SysCalls/lv2/sys_spu.h"
@ -79,7 +80,7 @@ void cellSpursModulePutTrace(CellSpursTracePacket * packet, u32 dmaTagId) {
/// Check for execution right requests /// Check for execution right requests
u32 cellSpursModulePollStatus(SPUThread & spu, u32 * status) { u32 cellSpursModulePollStatus(SPUThread & spu, u32 * status) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100); auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
spu.GPR[3]._u32[3] = 1; spu.GPR[3]._u32[3] = 1;
if (ctxt->spurs->m.flags1 & SF1_32_WORKLOADS) { if (ctxt->spurs->m.flags1 & SF1_32_WORKLOADS) {
@ -99,24 +100,24 @@ u32 cellSpursModulePollStatus(SPUThread & spu, u32 * status) {
/// Exit current workload /// Exit current workload
void cellSpursModuleExit(SPUThread & spu) { void cellSpursModuleExit(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100); auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
spu.SetBranch(ctxt->exitToKernelAddr); spu.SetBranch(ctxt->exitToKernelAddr);
} }
/// Execute a DMA operation /// Execute a DMA operation
bool spursDma(SPUThread & spu, u32 cmd, u64 ea, u32 lsa, u32 size, u32 tag) { bool spursDma(SPUThread & spu, u32 cmd, u64 ea, u32 lsa, u32 size, u32 tag) {
spu.WriteChannel(MFC_LSA, u128::from32r(lsa)); spu.set_ch_value(MFC_LSA, lsa);
spu.WriteChannel(MFC_EAH, u128::from32r((u32)(ea >> 32))); spu.set_ch_value(MFC_EAH, (u32)(ea >> 32));
spu.WriteChannel(MFC_EAL, u128::from32r((u32)ea)); spu.set_ch_value(MFC_EAL, (u32)(ea));
spu.WriteChannel(MFC_Size, u128::from32r(size)); spu.set_ch_value(MFC_Size, size);
spu.WriteChannel(MFC_TagID, u128::from32r(tag)); spu.set_ch_value(MFC_TagID, tag);
spu.WriteChannel(MFC_Cmd, u128::from32r(cmd)); spu.set_ch_value(MFC_Cmd, cmd);
if (cmd == MFC_GETLLAR_CMD || cmd == MFC_PUTLLC_CMD || cmd == MFC_PUTLLUC_CMD) { if (cmd == MFC_GETLLAR_CMD || cmd == MFC_PUTLLC_CMD || cmd == MFC_PUTLLUC_CMD) {
u128 rv; u32 rv;
spu.ReadChannel(rv, MFC_RdAtomicStat); rv = spu.get_ch_value(MFC_RdAtomicStat);
auto success = rv._u32[3] ? true : false; auto success = rv ? true : false;
success = cmd == MFC_PUTLLC_CMD ? !success : success; success = cmd == MFC_PUTLLC_CMD ? !success : success;
return success; return success;
} }
@ -126,28 +127,21 @@ bool spursDma(SPUThread & spu, u32 cmd, u64 ea, u32 lsa, u32 size, u32 tag) {
/// Get the status of DMA operations /// Get the status of DMA operations
u32 spursDmaGetCompletionStatus(SPUThread & spu, u32 tagMask) { u32 spursDmaGetCompletionStatus(SPUThread & spu, u32 tagMask) {
u128 rv; spu.set_ch_value(MFC_WrTagMask, tagMask);
spu.set_ch_value(MFC_WrTagUpdate, MFC_TAG_UPDATE_IMMEDIATE);
spu.WriteChannel(MFC_WrTagMask, u128::from32r(tagMask)); return spu.get_ch_value(MFC_RdTagStat);
spu.WriteChannel(MFC_WrTagUpdate, u128::from32r(MFC_TAG_UPDATE_IMMEDIATE));
spu.ReadChannel(rv, MFC_RdTagStat);
return rv._u32[3];
} }
/// Wait for DMA operations to complete /// Wait for DMA operations to complete
u32 spursDmaWaitForCompletion(SPUThread & spu, u32 tagMask, bool waitForAll) { u32 spursDmaWaitForCompletion(SPUThread & spu, u32 tagMask, bool waitForAll) {
u128 rv; spu.set_ch_value(MFC_WrTagMask, tagMask);
spu.set_ch_value(MFC_WrTagUpdate, waitForAll ? MFC_TAG_UPDATE_ALL : MFC_TAG_UPDATE_ANY);
spu.WriteChannel(MFC_WrTagMask, u128::from32r(tagMask)); return spu.get_ch_value(MFC_RdTagStat);
spu.WriteChannel(MFC_WrTagUpdate, u128::from32r(waitForAll ? MFC_TAG_UPDATE_ALL : MFC_TAG_UPDATE_ANY));
spu.ReadChannel(rv, MFC_RdTagStat);
return rv._u32[3];
} }
/// Halt the SPU /// Halt the SPU
void spursHalt(SPUThread & spu) { void spursHalt(SPUThread & spu) {
spu.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_HALT); spu.halt();
spu.Stop();
} }
////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////
@ -156,7 +150,7 @@ void spursHalt(SPUThread & spu) {
/// Select a workload to run /// Select a workload to run
bool spursKernel1SelectWorkload(SPUThread & spu) { bool spursKernel1SelectWorkload(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100); auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
// The first and only argument to this function is a boolean that is set to false if the function // The first and only argument to this function is a boolean that is set to false if the function
// is called by the SPURS kernel and set to true if called by cellSpursModulePollStatus. // is called by the SPURS kernel and set to true if called by cellSpursModulePollStatus.
@ -302,7 +296,7 @@ bool spursKernel1SelectWorkload(SPUThread & spu) {
} }
} }
memcpy(vm::get_ptr(spu.ls_offset + 0x100), spurs, 128); memcpy(vm::get_ptr(spu.offset + 0x100), spurs, 128);
}); });
u64 result = (u64)wklSelectedId << 32; u64 result = (u64)wklSelectedId << 32;
@ -313,7 +307,7 @@ bool spursKernel1SelectWorkload(SPUThread & spu) {
/// Select a workload to run /// Select a workload to run
bool spursKernel2SelectWorkload(SPUThread & spu) { bool spursKernel2SelectWorkload(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100); auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
// The first and only argument to this function is a boolean that is set to false if the function // The first and only argument to this function is a boolean that is set to false if the function
// is called by the SPURS kernel and set to true if called by cellSpursModulePollStatus. // is called by the SPURS kernel and set to true if called by cellSpursModulePollStatus.
@ -449,7 +443,7 @@ bool spursKernel2SelectWorkload(SPUThread & spu) {
} }
} }
memcpy(vm::get_ptr(spu.ls_offset + 0x100), spurs, 128); memcpy(vm::get_ptr(spu.offset + 0x100), spurs, 128);
}); });
u64 result = (u64)wklSelectedId << 32; u64 result = (u64)wklSelectedId << 32;
@ -460,7 +454,7 @@ bool spursKernel2SelectWorkload(SPUThread & spu) {
/// SPURS kernel dispatch workload /// SPURS kernel dispatch workload
void spursKernelDispatchWorkload(SPUThread & spu, u64 widAndPollStatus) { void spursKernelDispatchWorkload(SPUThread & spu, u64 widAndPollStatus) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100); auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
auto isKernel2 = ctxt->spurs->m.flags1 & SF1_32_WORKLOADS ? true : false; auto isKernel2 = ctxt->spurs->m.flags1 & SF1_32_WORKLOADS ? true : false;
auto pollStatus = (u32)widAndPollStatus; auto pollStatus = (u32)widAndPollStatus;
@ -471,10 +465,10 @@ void spursKernelDispatchWorkload(SPUThread & spu, u64 widAndPollStatus) {
wid < CELL_SPURS_MAX_WORKLOAD2 && isKernel2 ? &ctxt->spurs->m.wklInfo2[wid & 0xf] : wid < CELL_SPURS_MAX_WORKLOAD2 && isKernel2 ? &ctxt->spurs->m.wklInfo2[wid & 0xf] :
&ctxt->spurs->m.wklInfoSysSrv; &ctxt->spurs->m.wklInfoSysSrv;
memcpy(vm::get_ptr(spu.ls_offset + 0x3FFE0), wklInfoOffset, 0x20); memcpy(vm::get_ptr(spu.offset + 0x3FFE0), wklInfoOffset, 0x20);
// Load the workload to LS // Load the workload to LS
auto wklInfo = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.ls_offset + 0x3FFE0); auto wklInfo = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.offset + 0x3FFE0);
if (ctxt->wklCurrentAddr != wklInfo->addr) { if (ctxt->wklCurrentAddr != wklInfo->addr) {
switch (wklInfo->addr.addr().value()) { switch (wklInfo->addr.addr().value()) {
case SPURS_IMG_ADDR_SYS_SRV_WORKLOAD: case SPURS_IMG_ADDR_SYS_SRV_WORKLOAD:
@ -484,7 +478,7 @@ void spursKernelDispatchWorkload(SPUThread & spu, u64 widAndPollStatus) {
spu.RegisterHleFunction(0xA00, spursTasksetEntry); spu.RegisterHleFunction(0xA00, spursTasksetEntry);
break; break;
default: default:
memcpy(vm::get_ptr(spu.ls_offset + 0xA00), wklInfo->addr.get_ptr(), wklInfo->size); memcpy(vm::get_ptr(spu.offset + 0xA00), wklInfo->addr.get_ptr(), wklInfo->size);
break; break;
} }
@ -508,7 +502,7 @@ void spursKernelDispatchWorkload(SPUThread & spu, u64 widAndPollStatus) {
/// SPURS kernel workload exit /// SPURS kernel workload exit
bool spursKernelWorkloadExit(SPUThread & spu) { bool spursKernelWorkloadExit(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100); auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
auto isKernel2 = ctxt->spurs->m.flags1 & SF1_32_WORKLOADS ? true : false; auto isKernel2 = ctxt->spurs->m.flags1 & SF1_32_WORKLOADS ? true : false;
// Select next workload to run // Select next workload to run
@ -532,7 +526,7 @@ bool spursKernelEntry(SPUThread & spu) {
} }
} }
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100); auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
memset(ctxt, 0, sizeof(SpursKernelContext)); memset(ctxt, 0, sizeof(SpursKernelContext));
// Save arguments // Save arguments
@ -578,7 +572,7 @@ bool spursKernelEntry(SPUThread & spu) {
/// Entry point of the system service /// Entry point of the system service
bool spursSysServiceEntry(SPUThread & spu) { bool spursSysServiceEntry(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + spu.GPR[3]._u32[3]); auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + spu.GPR[3]._u32[3]);
auto arg = spu.GPR[4]._u64[1]; auto arg = spu.GPR[4]._u64[1];
auto pollStatus = spu.GPR[5]._u32[3]; auto pollStatus = spu.GPR[5]._u32[3];
@ -598,8 +592,8 @@ void spursSysServiceIdleHandler(SPUThread & spu, SpursKernelContext * ctxt) {
bool shouldExit; bool shouldExit;
while (true) { while (true) {
vm::reservation_acquire(vm::get_ptr(spu.ls_offset + 0x100), vm::cast(ctxt->spurs.addr()), 128, [&spu](){ spu.Notify(); }); vm::reservation_acquire(vm::get_ptr(spu.offset + 0x100), vm::cast(ctxt->spurs.addr()), 128, [&spu](){ spu.Notify(); });
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x100); auto spurs = vm::get_ptr<CellSpurs>(spu.offset + 0x100);
// Find the number of SPUs that are idling in this SPURS instance // Find the number of SPUs that are idling in this SPURS instance
u32 nIdlingSpus = 0; u32 nIdlingSpus = 0;
@ -669,7 +663,7 @@ void spursSysServiceIdleHandler(SPUThread & spu, SpursKernelContext * ctxt) {
if (Emu.IsStopped()) return; if (Emu.IsStopped()) return;
} }
if (vm::reservation_update(vm::cast(ctxt->spurs.addr()), vm::get_ptr(spu.ls_offset + 0x100), 128) && (shouldExit || foundReadyWorkload)) { if (vm::reservation_update(vm::cast(ctxt->spurs.addr()), vm::get_ptr(spu.offset + 0x100), 128) && (shouldExit || foundReadyWorkload)) {
break; break;
} }
} }
@ -681,7 +675,7 @@ void spursSysServiceIdleHandler(SPUThread & spu, SpursKernelContext * ctxt) {
/// Main function for the system service /// Main function for the system service
void spursSysServiceMain(SPUThread & spu, u32 pollStatus) { void spursSysServiceMain(SPUThread & spu, u32 pollStatus) {
auto ctxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100); auto ctxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
if (ctxt->spurs.addr() % CellSpurs::align) { if (ctxt->spurs.addr() % CellSpurs::align) {
assert(!"spursSysServiceMain(): invalid spurs alignment"); assert(!"spursSysServiceMain(): invalid spurs alignment");
@ -693,7 +687,7 @@ void spursSysServiceMain(SPUThread & spu, u32 pollStatus) {
if (ctxt->sysSrvInitialised == 0) { if (ctxt->sysSrvInitialised == 0) {
ctxt->sysSrvInitialised = 1; ctxt->sysSrvInitialised = 1;
vm::reservation_acquire(vm::get_ptr(spu.ls_offset + 0x100), vm::cast(ctxt->spurs.addr()), 128); vm::reservation_acquire(vm::get_ptr(spu.offset + 0x100), vm::cast(ctxt->spurs.addr()), 128);
vm::reservation_op(vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.wklState1)), 128, [&]() { vm::reservation_op(vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.wklState1)), 128, [&]() {
auto spurs = ctxt->spurs.priv_ptr(); auto spurs = ctxt->spurs.priv_ptr();
@ -707,7 +701,7 @@ void spursSysServiceMain(SPUThread & spu, u32 pollStatus) {
spurs->m.sysSrvOnSpu |= 1 << ctxt->spuNum; spurs->m.sysSrvOnSpu |= 1 << ctxt->spuNum;
memcpy(vm::get_ptr(spu.ls_offset + 0x2D80), spurs->m.wklState1, 128); memcpy(vm::get_ptr(spu.offset + 0x2D80), spurs->m.wklState1, 128);
}); });
ctxt->traceBuffer = 0; ctxt->traceBuffer = 0;
@ -805,7 +799,7 @@ void spursSysServiceProcessRequests(SPUThread & spu, SpursKernelContext * ctxt)
updateTrace = true; updateTrace = true;
} }
memcpy(vm::get_ptr(spu.ls_offset + 0x2D80), spurs->m.wklState1, 128); memcpy(vm::get_ptr(spu.offset + 0x2D80), spurs->m.wklState1, 128);
}); });
// Process update workload message // Process update workload message
@ -826,24 +820,24 @@ void spursSysServiceProcessRequests(SPUThread & spu, SpursKernelContext * ctxt)
/// Activate a workload /// Activate a workload
void spursSysServiceActivateWorkload(SPUThread & spu, SpursKernelContext * ctxt) { void spursSysServiceActivateWorkload(SPUThread & spu, SpursKernelContext * ctxt) {
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x100); auto spurs = vm::get_ptr<CellSpurs>(spu.offset + 0x100);
memcpy(vm::get_ptr(spu.ls_offset + 0x30000), vm::get_ptr(vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.wklInfo1))), 0x200); memcpy(vm::get_ptr(spu.offset + 0x30000), vm::get_ptr(vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.wklInfo1))), 0x200);
if (spurs->m.flags1 & SF1_32_WORKLOADS) { if (spurs->m.flags1 & SF1_32_WORKLOADS) {
memcpy(vm::get_ptr(spu.ls_offset + 0x30200), vm::get_ptr(vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.wklInfo2))), 0x200); memcpy(vm::get_ptr(spu.offset + 0x30200), vm::get_ptr(vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.wklInfo2))), 0x200);
} }
u32 wklShutdownBitSet = 0; u32 wklShutdownBitSet = 0;
ctxt->wklRunnable1 = 0; ctxt->wklRunnable1 = 0;
ctxt->wklRunnable2 = 0; ctxt->wklRunnable2 = 0;
for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) { for (u32 i = 0; i < CELL_SPURS_MAX_WORKLOAD; i++) {
auto wklInfo1 = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.ls_offset + 0x30000); auto wklInfo1 = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.offset + 0x30000);
// Copy the priority of the workload for this SPU and its unique id to the LS // Copy the priority of the workload for this SPU and its unique id to the LS
ctxt->priority[i] = wklInfo1[i].priority[ctxt->spuNum] == 0 ? 0 : 0x10 - wklInfo1[i].priority[ctxt->spuNum]; ctxt->priority[i] = wklInfo1[i].priority[ctxt->spuNum] == 0 ? 0 : 0x10 - wklInfo1[i].priority[ctxt->spuNum];
ctxt->wklUniqueId[i] = wklInfo1[i].uniqueId.read_relaxed(); ctxt->wklUniqueId[i] = wklInfo1[i].uniqueId.read_relaxed();
if (spurs->m.flags1 & SF1_32_WORKLOADS) { if (spurs->m.flags1 & SF1_32_WORKLOADS) {
auto wklInfo2 = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.ls_offset + 0x30200); auto wklInfo2 = vm::get_ptr<CellSpurs::WorkloadInfo>(spu.offset + 0x30200);
// Copy the priority of the workload for this SPU to the LS // Copy the priority of the workload for this SPU to the LS
if (wklInfo2[i].priority[ctxt->spuNum]) { if (wklInfo2[i].priority[ctxt->spuNum]) {
@ -895,7 +889,7 @@ void spursSysServiceActivateWorkload(SPUThread & spu, SpursKernelContext * ctxt)
} }
} }
memcpy(vm::get_ptr(spu.ls_offset + 0x2D80), spurs->m.wklState1, 128); memcpy(vm::get_ptr(spu.offset + 0x2D80), spurs->m.wklState1, 128);
}); });
if (wklShutdownBitSet) { if (wklShutdownBitSet) {
@ -930,7 +924,7 @@ void spursSysServiceUpdateShutdownCompletionEvents(SPUThread & spu, SpursKernelC
} }
} }
memcpy(vm::get_ptr(spu.ls_offset + 0x2D80), spurs->m.wklState1, 128); memcpy(vm::get_ptr(spu.offset + 0x2D80), spurs->m.wklState1, 128);
}); });
if (wklNotifyBitSet) { if (wklNotifyBitSet) {
@ -970,19 +964,19 @@ void spursSysServiceTraceUpdate(SPUThread & spu, SpursKernelContext * ctxt, u32
notify = true; notify = true;
} }
memcpy(vm::get_ptr(spu.ls_offset + 0x2D80), spurs->m.wklState1, 128); memcpy(vm::get_ptr(spu.offset + 0x2D80), spurs->m.wklState1, 128);
}); });
// Get trace parameters from CellSpurs and store them in the LS // Get trace parameters from CellSpurs and store them in the LS
if (((sysSrvMsgUpdateTrace & (1 << ctxt->spuNum)) != 0) || (arg3 != 0)) { if (((sysSrvMsgUpdateTrace & (1 << ctxt->spuNum)) != 0) || (arg3 != 0)) {
vm::reservation_acquire(vm::get_ptr(spu.ls_offset + 0x80), vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.traceBuffer)), 128); vm::reservation_acquire(vm::get_ptr(spu.offset + 0x80), vm::cast(ctxt->spurs.addr() + offsetof(CellSpurs, m.traceBuffer)), 128);
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x80 - offsetof(CellSpurs, m.traceBuffer)); auto spurs = vm::get_ptr<CellSpurs>(spu.offset + 0x80 - offsetof(CellSpurs, m.traceBuffer));
if (ctxt->traceMsgCount != 0xFF || spurs->m.traceBuffer.addr() == 0) { if (ctxt->traceMsgCount != 0xFF || spurs->m.traceBuffer.addr() == 0) {
spursSysServiceTraceSaveCount(spu, ctxt); spursSysServiceTraceSaveCount(spu, ctxt);
} else { } else {
memcpy(vm::get_ptr(spu.ls_offset + 0x2C00), vm::get_ptr(spurs->m.traceBuffer.addr() & -0x4), 0x80); memcpy(vm::get_ptr(spu.offset + 0x2C00), vm::get_ptr(spurs->m.traceBuffer.addr() & -0x4), 0x80);
auto traceBuffer = vm::get_ptr<CellSpursTraceInfo>(spu.ls_offset + 0x2C00); auto traceBuffer = vm::get_ptr<CellSpursTraceInfo>(spu.offset + 0x2C00);
ctxt->traceMsgCount = traceBuffer->count[ctxt->spuNum]; ctxt->traceMsgCount = traceBuffer->count[ctxt->spuNum];
} }
@ -994,7 +988,7 @@ void spursSysServiceTraceUpdate(SPUThread & spu, SpursKernelContext * ctxt, u32
} }
if (notify) { if (notify) {
auto spurs = vm::get_ptr<CellSpurs>(spu.ls_offset + 0x2D80 - offsetof(CellSpurs, m.wklState1)); auto spurs = vm::get_ptr<CellSpurs>(spu.offset + 0x2D80 - offsetof(CellSpurs, m.wklState1));
sys_spu_thread_send_event(spu, spurs->m.spuPort, 2, 0); sys_spu_thread_send_event(spu, spurs->m.spuPort, 2, 0);
} }
} }
@ -1016,7 +1010,7 @@ void spursSysServiceCleanupAfterSystemWorkload(SPUThread & spu, SpursKernelConte
wklId = spurs->m.sysSrvWorkload[ctxt->spuNum]; wklId = spurs->m.sysSrvWorkload[ctxt->spuNum];
spurs->m.sysSrvWorkload[ctxt->spuNum] = 0xFF; spurs->m.sysSrvWorkload[ctxt->spuNum] = 0xFF;
memcpy(vm::get_ptr(spu.ls_offset + 0x2D80), spurs->m.wklState1, 128); memcpy(vm::get_ptr(spu.offset + 0x2D80), spurs->m.wklState1, 128);
}); });
if (do_return) return; if (do_return) return;
@ -1034,7 +1028,7 @@ void spursSysServiceCleanupAfterSystemWorkload(SPUThread & spu, SpursKernelConte
spurs->m.wklIdleSpuCountOrReadyCount2[wklId & 0x0F].write_relaxed(spurs->m.wklIdleSpuCountOrReadyCount2[wklId & 0x0F].read_relaxed() - 1); spurs->m.wklIdleSpuCountOrReadyCount2[wklId & 0x0F].write_relaxed(spurs->m.wklIdleSpuCountOrReadyCount2[wklId & 0x0F].read_relaxed() - 1);
} }
memcpy(vm::get_ptr(spu.ls_offset + 0x100), spurs, 128); memcpy(vm::get_ptr(spu.offset + 0x100), spurs, 128);
}); });
// Set the current workload id to the id of the pre-empted workload since cellSpursModulePutTrace // Set the current workload id to the id of the pre-empted workload since cellSpursModulePutTrace
@ -1069,8 +1063,8 @@ enum SpursTasksetRequest {
/// Taskset PM entry point /// Taskset PM entry point
bool spursTasksetEntry(SPUThread & spu) { bool spursTasksetEntry(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700); auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
auto kernelCtxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + spu.GPR[3]._u32[3]); auto kernelCtxt = vm::get_ptr<SpursKernelContext>(spu.offset + spu.GPR[3]._u32[3]);
auto arg = spu.GPR[4]._u64[1]; auto arg = spu.GPR[4]._u64[1];
auto pollStatus = spu.GPR[5]._u32[3]; auto pollStatus = spu.GPR[5]._u32[3];
@ -1100,7 +1094,7 @@ bool spursTasksetEntry(SPUThread & spu) {
/// Entry point into the Taskset PM for task syscalls /// Entry point into the Taskset PM for task syscalls
bool spursTasksetSyscallEntry(SPUThread & spu) { bool spursTasksetSyscallEntry(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700); auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
// Save task context // Save task context
ctxt->savedContextLr = spu.GPR[0]; ctxt->savedContextLr = spu.GPR[0];
@ -1122,7 +1116,7 @@ bool spursTasksetSyscallEntry(SPUThread & spu) {
/// Resume a task /// Resume a task
void spursTasksetResumeTask(SPUThread & spu) { void spursTasksetResumeTask(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700); auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
// Restore task context // Restore task context
spu.GPR[0] = ctxt->savedContextLr; spu.GPR[0] = ctxt->savedContextLr;
@ -1136,8 +1130,8 @@ void spursTasksetResumeTask(SPUThread & spu) {
/// Start a task /// Start a task
void spursTasksetStartTask(SPUThread & spu, CellSpursTaskArgument & taskArgs) { void spursTasksetStartTask(SPUThread & spu, CellSpursTaskArgument & taskArgs) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700); auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
auto taskset = vm::get_ptr<CellSpursTaskset>(spu.ls_offset + 0x2700); auto taskset = vm::get_ptr<CellSpursTaskset>(spu.offset + 0x2700);
spu.GPR[2].clear(); spu.GPR[2].clear();
spu.GPR[3] = u128::from64r(taskArgs._u64[0], taskArgs._u64[1]); spu.GPR[3] = u128::from64r(taskArgs._u64[0], taskArgs._u64[1]);
@ -1152,8 +1146,8 @@ void spursTasksetStartTask(SPUThread & spu, CellSpursTaskArgument & taskArgs) {
/// Process a request and update the state of the taskset /// Process a request and update the state of the taskset
s32 spursTasksetProcessRequest(SPUThread & spu, s32 request, u32 * taskId, u32 * isWaiting) { s32 spursTasksetProcessRequest(SPUThread & spu, s32 request, u32 * taskId, u32 * isWaiting) {
auto kernelCtxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100); auto kernelCtxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700); auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
s32 rc = CELL_OK; s32 rc = CELL_OK;
s32 numNewlyReadyTasks; s32 numNewlyReadyTasks;
@ -1294,7 +1288,7 @@ s32 spursTasksetProcessRequest(SPUThread & spu, s32 request, u32 * taskId, u32 *
taskset->m.signalled = signalled; taskset->m.signalled = signalled;
taskset->m.ready = ready; taskset->m.ready = ready;
memcpy(vm::get_ptr(spu.ls_offset + 0x2700), taskset, 128); memcpy(vm::get_ptr(spu.offset + 0x2700), taskset, 128);
}); });
// Increment the ready count of the workload by the number of tasks that have become ready // Increment the ready count of the workload by the number of tasks that have become ready
@ -1311,7 +1305,7 @@ s32 spursTasksetProcessRequest(SPUThread & spu, s32 request, u32 * taskId, u32 *
spurs->m.wklIdleSpuCountOrReadyCount2[kernelCtxt->wklCurrentId & 0x0F].write_relaxed(readyCount); spurs->m.wklIdleSpuCountOrReadyCount2[kernelCtxt->wklCurrentId & 0x0F].write_relaxed(readyCount);
} }
memcpy(vm::get_ptr(spu.ls_offset + 0x100), spurs, 128); memcpy(vm::get_ptr(spu.offset + 0x100), spurs, 128);
}); });
return rc; return rc;
@ -1338,7 +1332,7 @@ bool spursTasksetPollStatus(SPUThread & spu) {
/// Exit the Taskset PM /// Exit the Taskset PM
void spursTasksetExit(SPUThread & spu) { void spursTasksetExit(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700); auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
// Trace - STOP // Trace - STOP
CellSpursTracePacket pkt; CellSpursTracePacket pkt;
@ -1358,9 +1352,9 @@ void spursTasksetExit(SPUThread & spu) {
/// Invoked when a task exits /// Invoked when a task exits
void spursTasksetOnTaskExit(SPUThread & spu, u64 addr, u32 taskId, s32 exitCode, u64 args) { void spursTasksetOnTaskExit(SPUThread & spu, u64 addr, u32 taskId, s32 exitCode, u64 args) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700); auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
memcpy(vm::get_ptr(spu.ls_offset + 0x10000), vm::get_ptr(addr & -0x80), (addr & 0x7F) << 11); memcpy(vm::get_ptr(spu.offset + 0x10000), vm::get_ptr(addr & -0x80), (addr & 0x7F) << 11);
spu.GPR[3]._u64[1] = ctxt->taskset.addr(); spu.GPR[3]._u64[1] = ctxt->taskset.addr();
spu.GPR[4]._u32[3] = taskId; spu.GPR[4]._u32[3] = taskId;
@ -1371,8 +1365,8 @@ void spursTasksetOnTaskExit(SPUThread & spu, u64 addr, u32 taskId, s32 exitCode,
/// Save the context of a task /// Save the context of a task
s32 spursTasketSaveTaskContext(SPUThread & spu) { s32 spursTasketSaveTaskContext(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700); auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
auto taskInfo = vm::get_ptr<CellSpursTaskset::TaskInfo>(spu.ls_offset + 0x2780); auto taskInfo = vm::get_ptr<CellSpursTaskset::TaskInfo>(spu.offset + 0x2780);
//spursDmaWaitForCompletion(spu, 0xFFFFFFFF); //spursDmaWaitForCompletion(spu, 0xFFFFFFFF);
@ -1404,20 +1398,18 @@ s32 spursTasketSaveTaskContext(SPUThread & spu) {
u128 r; u128 r;
spu.FPSCR.Read(r); spu.FPSCR.Read(r);
ctxt->savedContextFpscr = r; ctxt->savedContextFpscr = r;
spu.ReadChannel(r, SPU_RdEventMask); ctxt->savedSpuWriteEventMask = spu.get_ch_value(SPU_RdEventMask);
ctxt->savedSpuWriteEventMask = r._u32[3]; ctxt->savedWriteTagGroupQueryMask = spu.get_ch_value(MFC_RdTagMask);
spu.ReadChannel(r, MFC_RdTagMask);
ctxt->savedWriteTagGroupQueryMask = r._u32[3];
// Store the processor context // Store the processor context
const u32 contextSaveStorage = vm::cast(taskInfo->context_save_storage_and_alloc_ls_blocks & -0x80); const u32 contextSaveStorage = vm::cast(taskInfo->context_save_storage_and_alloc_ls_blocks & -0x80);
memcpy(vm::get_ptr(contextSaveStorage), vm::get_ptr(spu.ls_offset + 0x2C80), 0x380); memcpy(vm::get_ptr(contextSaveStorage), vm::get_ptr(spu.offset + 0x2C80), 0x380);
// Save LS context // Save LS context
for (auto i = 6; i < 128; i++) { for (auto i = 6; i < 128; i++) {
if (ls_pattern._bit[i]) { if (ls_pattern._bit[i]) {
// TODO: Combine DMA requests for consecutive blocks into a single request // TODO: Combine DMA requests for consecutive blocks into a single request
memcpy(vm::get_ptr(contextSaveStorage + 0x400 + ((i - 6) << 11)), vm::get_ptr(spu.ls_offset + CELL_SPURS_TASK_TOP + ((i - 6) << 11)), 0x800); memcpy(vm::get_ptr(contextSaveStorage + 0x400 + ((i - 6) << 11)), vm::get_ptr(spu.offset + CELL_SPURS_TASK_TOP + ((i - 6) << 11)), 0x800);
} }
} }
@ -1427,8 +1419,8 @@ s32 spursTasketSaveTaskContext(SPUThread & spu) {
/// Taskset dispatcher /// Taskset dispatcher
void spursTasksetDispatch(SPUThread & spu) { void spursTasksetDispatch(SPUThread & spu) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700); auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
auto taskset = vm::get_ptr<CellSpursTaskset>(spu.ls_offset + 0x2700); auto taskset = vm::get_ptr<CellSpursTaskset>(spu.offset + 0x2700);
u32 taskId; u32 taskId;
u32 isWaiting; u32 isWaiting;
@ -1441,8 +1433,8 @@ void spursTasksetDispatch(SPUThread & spu) {
ctxt->taskId = taskId; ctxt->taskId = taskId;
// DMA in the task info for the selected task // DMA in the task info for the selected task
memcpy(vm::get_ptr(spu.ls_offset + 0x2780), &ctxt->taskset->m.task_info[taskId], sizeof(CellSpursTaskset::TaskInfo)); memcpy(vm::get_ptr(spu.offset + 0x2780), &ctxt->taskset->m.task_info[taskId], sizeof(CellSpursTaskset::TaskInfo));
auto taskInfo = vm::get_ptr<CellSpursTaskset::TaskInfo>(spu.ls_offset + 0x2780); auto taskInfo = vm::get_ptr<CellSpursTaskset::TaskInfo>(spu.offset + 0x2780);
auto elfAddr = taskInfo->elf_addr.addr().value(); auto elfAddr = taskInfo->elf_addr.addr().value();
taskInfo->elf_addr.set(taskInfo->elf_addr.addr() & 0xFFFFFFFFFFFFFFF8ull); taskInfo->elf_addr.set(taskInfo->elf_addr.addr() & 0xFFFFFFFFFFFFFFF8ull);
@ -1456,7 +1448,7 @@ void spursTasksetDispatch(SPUThread & spu) {
if (isWaiting == 0) { if (isWaiting == 0) {
// If we reach here it means that the task is being started and not being resumed // If we reach here it means that the task is being started and not being resumed
memset(vm::get_ptr<void>(spu.ls_offset + CELL_SPURS_TASK_TOP), 0, CELL_SPURS_TASK_BOTTOM - CELL_SPURS_TASK_TOP); memset(vm::get_ptr<void>(spu.offset + CELL_SPURS_TASK_TOP), 0, CELL_SPURS_TASK_BOTTOM - CELL_SPURS_TASK_TOP);
ctxt->guidAddr = CELL_SPURS_TASK_TOP; ctxt->guidAddr = CELL_SPURS_TASK_TOP;
u32 entryPoint; u32 entryPoint;
@ -1477,7 +1469,7 @@ void spursTasksetDispatch(SPUThread & spu) {
ctxt->x2FD4 = elfAddr & 5; // TODO: Figure this out ctxt->x2FD4 = elfAddr & 5; // TODO: Figure this out
if ((elfAddr & 5) == 1) { if ((elfAddr & 5) == 1) {
memcpy(vm::get_ptr(spu.ls_offset + 0x2FC0), &((CellSpursTaskset2*)(ctxt->taskset.get_ptr()))->m.task_exit_code[taskId], 0x10); memcpy(vm::get_ptr(spu.offset + 0x2FC0), &((CellSpursTaskset2*)(ctxt->taskset.get_ptr()))->m.task_exit_code[taskId], 0x10);
} }
// Trace - GUID // Trace - GUID
@ -1487,7 +1479,7 @@ void spursTasksetDispatch(SPUThread & spu) {
cellSpursModulePutTrace(&pkt, 0x1F); cellSpursModulePutTrace(&pkt, 0x1F);
if (elfAddr & 2) { // TODO: Figure this out if (elfAddr & 2) { // TODO: Figure this out
spu.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_STOP); spu.status |= SPU_STATUS_STOPPED_BY_STOP;
spu.Stop(); spu.Stop();
return; return;
} }
@ -1495,7 +1487,7 @@ void spursTasksetDispatch(SPUThread & spu) {
spursTasksetStartTask(spu, taskInfo->args); spursTasksetStartTask(spu, taskInfo->args);
} else { } else {
if (taskset->m.enable_clear_ls) { if (taskset->m.enable_clear_ls) {
memset(vm::get_ptr<void>(spu.ls_offset + CELL_SPURS_TASK_TOP), 0, CELL_SPURS_TASK_BOTTOM - CELL_SPURS_TASK_TOP); memset(vm::get_ptr<void>(spu.offset + CELL_SPURS_TASK_TOP), 0, CELL_SPURS_TASK_BOTTOM - CELL_SPURS_TASK_TOP);
} }
// If the entire LS is saved then there is no need to load the ELF as it will be be saved in the context save area as well // If the entire LS is saved then there is no need to load the ELF as it will be be saved in the context save area as well
@ -1512,11 +1504,11 @@ void spursTasksetDispatch(SPUThread & spu) {
// Load saved context from main memory to LS // Load saved context from main memory to LS
const u32 contextSaveStorage = vm::cast(taskInfo->context_save_storage_and_alloc_ls_blocks & -0x80); const u32 contextSaveStorage = vm::cast(taskInfo->context_save_storage_and_alloc_ls_blocks & -0x80);
memcpy(vm::get_ptr(spu.ls_offset + 0x2C80), vm::get_ptr(contextSaveStorage), 0x380); memcpy(vm::get_ptr(spu.offset + 0x2C80), vm::get_ptr(contextSaveStorage), 0x380);
for (auto i = 6; i < 128; i++) { for (auto i = 6; i < 128; i++) {
if (ls_pattern._bit[i]) { if (ls_pattern._bit[i]) {
// TODO: Combine DMA requests for consecutive blocks into a single request // TODO: Combine DMA requests for consecutive blocks into a single request
memcpy(vm::get_ptr(spu.ls_offset + CELL_SPURS_TASK_TOP + ((i - 6) << 11)), vm::get_ptr(contextSaveStorage + 0x400 + ((i - 6) << 11)), 0x800); memcpy(vm::get_ptr(spu.offset + CELL_SPURS_TASK_TOP + ((i - 6) << 11)), vm::get_ptr(contextSaveStorage + 0x400 + ((i - 6) << 11)), 0x800);
} }
} }
@ -1524,8 +1516,8 @@ void spursTasksetDispatch(SPUThread & spu) {
// Restore saved registers // Restore saved registers
spu.FPSCR.Write(ctxt->savedContextFpscr.value()); spu.FPSCR.Write(ctxt->savedContextFpscr.value());
spu.WriteChannel(MFC_WrTagMask, u128::from32r(ctxt->savedWriteTagGroupQueryMask)); spu.set_ch_value(MFC_WrTagMask, ctxt->savedWriteTagGroupQueryMask);
spu.WriteChannel(SPU_WrEventMask, u128::from32r(ctxt->savedSpuWriteEventMask)); spu.set_ch_value(SPU_WrEventMask, ctxt->savedSpuWriteEventMask);
// Trace - GUID // Trace - GUID
memset(&pkt, 0, sizeof(pkt)); memset(&pkt, 0, sizeof(pkt));
@ -1534,7 +1526,7 @@ void spursTasksetDispatch(SPUThread & spu) {
cellSpursModulePutTrace(&pkt, 0x1F); cellSpursModulePutTrace(&pkt, 0x1F);
if (elfAddr & 2) { // TODO: Figure this out if (elfAddr & 2) { // TODO: Figure this out
spu.SPU.Status.SetValue(SPU_STATUS_STOPPED_BY_STOP); spu.status |= SPU_STATUS_STOPPED_BY_STOP;
spu.Stop(); spu.Stop();
return; return;
} }
@ -1546,8 +1538,8 @@ void spursTasksetDispatch(SPUThread & spu) {
/// Process a syscall request /// Process a syscall request
s32 spursTasksetProcessSyscall(SPUThread & spu, u32 syscallNum, u32 args) { s32 spursTasksetProcessSyscall(SPUThread & spu, u32 syscallNum, u32 args) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700); auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
auto taskset = vm::get_ptr<CellSpursTaskset>(spu.ls_offset + 0x2700); auto taskset = vm::get_ptr<CellSpursTaskset>(spu.offset + 0x2700);
// If the 0x10 bit is set in syscallNum then its the 2nd version of the // If the 0x10 bit is set in syscallNum then its the 2nd version of the
// syscall (e.g. cellSpursYield2 instead of cellSpursYield) and so don't wait // syscall (e.g. cellSpursYield2 instead of cellSpursYield) and so don't wait
@ -1625,7 +1617,7 @@ s32 spursTasksetProcessSyscall(SPUThread & spu, u32 syscallNum, u32 args) {
cellSpursModulePutTrace(&pkt, ctxt->dmaTagId); cellSpursModulePutTrace(&pkt, ctxt->dmaTagId);
// Clear the GUID of the task // Clear the GUID of the task
memset(vm::get_ptr<void>(spu.ls_offset + ctxt->guidAddr), 0, 0x10); memset(vm::get_ptr<void>(spu.offset + ctxt->guidAddr), 0, 0x10);
if (spursTasksetPollStatus(spu)) { if (spursTasksetPollStatus(spu)) {
spursTasksetExit(spu); spursTasksetExit(spu);
@ -1639,8 +1631,8 @@ s32 spursTasksetProcessSyscall(SPUThread & spu, u32 syscallNum, u32 args) {
/// Initialise the Taskset PM /// Initialise the Taskset PM
void spursTasksetInit(SPUThread & spu, u32 pollStatus) { void spursTasksetInit(SPUThread & spu, u32 pollStatus) {
auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.ls_offset + 0x2700); auto ctxt = vm::get_ptr<SpursTasksetContext>(spu.offset + 0x2700);
auto kernelCtxt = vm::get_ptr<SpursKernelContext>(spu.ls_offset + 0x100); auto kernelCtxt = vm::get_ptr<SpursKernelContext>(spu.offset + 0x100);
kernelCtxt->moduleId[0] = 'T'; kernelCtxt->moduleId[0] = 'T';
kernelCtxt->moduleId[1] = 'K'; kernelCtxt->moduleId[1] = 'K';
@ -1688,7 +1680,7 @@ s32 spursTasksetLoadElf(SPUThread & spu, u32 * entryPoint, u32 * lowestLoadAddr,
} }
} }
loader.load_data(spu.ls_offset, skipWriteableSegments); loader.load_data(spu.offset, skipWriteableSegments);
*entryPoint = loader.m_ehdr.data_be.e_entry; *entryPoint = loader.m_ehdr.data_be.e_entry;
if (*lowestLoadAddr) { if (*lowestLoadAddr) {
*lowestLoadAddr = _lowestLoadAddr; *lowestLoadAddr = _lowestLoadAddr;

View file

@ -3,9 +3,8 @@
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/Modules.h" #include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/CB_FUNC.h" #include "Emu/SysCalls/CB_FUNC.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h" #include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_event.h" #include "Emu/SysCalls/lv2/sys_event.h"
#include "Emu/SysCalls/lv2/sys_process.h" #include "Emu/SysCalls/lv2/sys_process.h"
#include "Emu/Event.h" #include "Emu/Event.h"
@ -1071,7 +1070,7 @@ s32 syncLFQueueGetPushPointer(vm::ptr<CellSyncLFQueue> queue, s32& pointer, u32
} }
} }
if (s32 res = sys_event_queue_receive(queue->m_eq_id, vm::ptr<sys_event_data>::make(0), 0)) if (s32 res = sys_event_queue_receive(GetCurrentPPUThread(), queue->m_eq_id, vm::ptr<sys_event_t>::make(0), 0))
{ {
assert(!"sys_event_queue_receive() failed"); assert(!"sys_event_queue_receive() failed");
} }
@ -1422,7 +1421,7 @@ s32 syncLFQueueGetPopPointer(vm::ptr<CellSyncLFQueue> queue, s32& pointer, u32 i
} }
} }
if (s32 res = sys_event_queue_receive(queue->m_eq_id, vm::ptr<sys_event_data>::make(0), 0)) if (s32 res = sys_event_queue_receive(GetCurrentPPUThread(), queue->m_eq_id, vm::ptr<sys_event_t>::make(0), 0))
{ {
assert(!"sys_event_queue_receive() failed"); assert(!"sys_event_queue_receive() failed");
} }

View file

@ -213,7 +213,7 @@ u32 vdecOpen(VideoDecoder* vdec_ptr)
vdec.id = vdec_id; vdec.id = vdec_id;
vdec.vdecCb = (PPUThread*)&Emu.GetCPU().AddThread(CPU_THREAD_PPU); vdec.vdecCb = static_cast<PPUThread*>(Emu.GetCPU().AddThread(CPU_THREAD_PPU).get());
vdec.vdecCb->SetName(fmt::format("VideoDecoder[%d] Callback", vdec_id)); vdec.vdecCb->SetName(fmt::format("VideoDecoder[%d] Callback", vdec_id));
vdec.vdecCb->SetEntry(0); vdec.vdecCb->SetEntry(0);
vdec.vdecCb->SetPrio(1001); vdec.vdecCb->SetPrio(1001);

View file

@ -333,14 +333,16 @@ int cellSurMixerCreate(vm::ptr<const CellSurMixerConfig> config)
{ {
AudioPortConfig& port = g_audio.ports[g_surmx.audio_port]; AudioPortConfig& port = g_audio.ports[g_surmx.audio_port];
PPUThread& cb_thread = *(PPUThread*)&Emu.GetCPU().AddThread(CPU_THREAD_PPU); auto cb_thread = Emu.GetCPU().AddThread(CPU_THREAD_PPU);
cb_thread.SetName("Surmixer Callback Thread");
cb_thread.SetEntry(0); auto& ppu = static_cast<PPUThread&>(*cb_thread);
cb_thread.SetPrio(1001); ppu.SetName("Surmixer Callback Thread");
cb_thread.SetStackSize(0x10000); ppu.SetEntry(0);
cb_thread.InitStack(); ppu.SetPrio(1001);
cb_thread.InitRegs(); ppu.SetStackSize(0x10000);
cb_thread.DoRun(); ppu.InitStack();
ppu.InitRegs();
ppu.DoRun();
while (port.state.read_relaxed() != AUDIO_PORT_STATE_CLOSED && !Emu.IsStopped()) while (port.state.read_relaxed() != AUDIO_PORT_STATE_CLOSED && !Emu.IsStopped())
{ {
@ -357,7 +359,7 @@ int cellSurMixerCreate(vm::ptr<const CellSurMixerConfig> config)
memset(mixdata, 0, sizeof(mixdata)); memset(mixdata, 0, sizeof(mixdata));
if (surMixerCb) if (surMixerCb)
{ {
surMixerCb(cb_thread, surMixerCbArg, (u32)mixcount, 256); surMixerCb(ppu, surMixerCbArg, (u32)mixcount, 256);
} }
//u64 stamp1 = get_system_time(); //u64 stamp1 = get_system_time();
@ -462,7 +464,7 @@ int cellSurMixerCreate(vm::ptr<const CellSurMixerConfig> config)
ssp.clear(); ssp.clear();
} }
Emu.GetCPU().RemoveThread(cb_thread.GetId()); Emu.GetCPU().RemoveThread(ppu.GetId());
surMixerCb.set(0); surMixerCb.set(0);
}); });

View file

@ -4,10 +4,10 @@
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/Modules.h" #include "Emu/SysCalls/Modules.h"
#include "Emu/SysCalls/CB_FUNC.h" #include "Emu/SysCalls/CB_FUNC.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/FS/vfsFile.h" #include "Emu/FS/vfsFile.h"
#include "Emu/SysCalls/lv2/sleep_queue_type.h" #include "Emu/SysCalls/lv2/sleep_queue.h"
#include "Emu/SysCalls/lv2/sys_interrupt.h"
#include "Emu/SysCalls/lv2/sys_spu.h" #include "Emu/SysCalls/lv2/sys_spu.h"
#include "Emu/SysCalls/lv2/sys_lwmutex.h" #include "Emu/SysCalls/lv2/sys_lwmutex.h"
#include "Emu/SysCalls/lv2/sys_spinlock.h" #include "Emu/SysCalls/lv2/sys_spinlock.h"
@ -263,6 +263,15 @@ s64 _sys_process_at_Exitspawn()
return CELL_OK; return CELL_OK;
} }
s32 sys_interrupt_thread_disestablish(PPUThread& CPU, u32 ih)
{
sysPrxForUser.Todo("sys_interrupt_thread_disestablish(ih=%d)", ih);
vm::stackvar<u64> r13(CPU);
return _sys_interrupt_thread_disestablish(ih, r13);
}
int sys_process_is_stack(u32 p) int sys_process_is_stack(u32 p)
{ {
sysPrxForUser.Log("sys_process_is_stack(p=0x%x)", p); sysPrxForUser.Log("sys_process_is_stack(p=0x%x)", p);
@ -329,7 +338,7 @@ int sys_raw_spu_load(s32 id, vm::ptr<const char> path, vm::ptr<u32> entry)
u32 _entry; u32 _entry;
LoadSpuImage(f, _entry, RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * id); LoadSpuImage(f, _entry, RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * id);
*entry = _entry; *entry = _entry | 1;
return CELL_OK; return CELL_OK;
} }
@ -340,7 +349,7 @@ int sys_raw_spu_image_load(int id, vm::ptr<sys_spu_image> img)
// TODO: use segment info // TODO: use segment info
memcpy(vm::get_ptr<void>(RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * id), vm::get_ptr<void>(img->addr), 256 * 1024); memcpy(vm::get_ptr<void>(RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * id), vm::get_ptr<void>(img->addr), 256 * 1024);
vm::write32(RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * id + RAW_SPU_PROB_OFFSET + SPU_NPC_offs, (u32)img->entry_point); vm::write32(RAW_SPU_BASE_ADDR + RAW_SPU_OFFSET * id + RAW_SPU_PROB_OFFSET + SPU_NPC_offs, img->entry_point | be_t<u32>::make(1));
return CELL_OK; return CELL_OK;
} }
@ -598,6 +607,8 @@ Module sysPrxForUser("sysPrxForUser", []()
REG_FUNC(sysPrxForUser, _sys_process_at_Exitspawn); REG_FUNC(sysPrxForUser, _sys_process_at_Exitspawn);
REG_FUNC(sysPrxForUser, sys_process_is_stack); REG_FUNC(sysPrxForUser, sys_process_is_stack);
REG_FUNC(sysPrxForUser, sys_interrupt_thread_disestablish);
REG_FUNC(sysPrxForUser, sys_ppu_thread_create); REG_FUNC(sysPrxForUser, sys_ppu_thread_create);
REG_FUNC(sysPrxForUser, sys_ppu_thread_get_id); REG_FUNC(sysPrxForUser, sys_ppu_thread_get_id);
REG_FUNC(sysPrxForUser, sys_ppu_thread_exit); REG_FUNC(sysPrxForUser, sys_ppu_thread_exit);

View file

@ -10,7 +10,7 @@ namespace sys_libc_func
{ {
void memcpy(vm::ptr<void> dst, vm::ptr<const void> src, u32 size) void memcpy(vm::ptr<void> dst, vm::ptr<const void> src, u32 size)
{ {
sys_libc.Warning("memcpy(dst=0x%x, src=0x%x, size=0x%x)", dst, src, size); sys_libc.Log("memcpy(dst=0x%x, src=0x%x, size=0x%x)", dst, src, size);
::memcpy(dst.get_ptr(), src.get_ptr(), size); ::memcpy(dst.get_ptr(), src.get_ptr(), size);
} }

View file

@ -4,7 +4,7 @@
#include "Emu/IdManager.h" #include "Emu/IdManager.h"
#include "Utilities/Thread.h" #include "Utilities/Thread.h"
#include "lv2/sleep_queue_type.h" #include "lv2/sleep_queue.h"
#include "lv2/sys_lwmutex.h" #include "lv2/sys_lwmutex.h"
#include "lv2/sys_lwcond.h" #include "lv2/sys_lwcond.h"
#include "lv2/sys_mutex.h" #include "lv2/sys_mutex.h"

View file

@ -5,10 +5,9 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "ModuleManager.h" #include "ModuleManager.h"
#include "Emu/Memory/atomic_type.h"
#include "lv2/cellFs.h" #include "lv2/cellFs.h"
#include "lv2/sleep_queue_type.h" #include "lv2/sleep_queue.h"
#include "lv2/sys_lwmutex.h" #include "lv2/sys_lwmutex.h"
#include "lv2/sys_mutex.h" #include "lv2/sys_mutex.h"
#include "lv2/sys_cond.h" #include "lv2/sys_cond.h"
@ -133,7 +132,7 @@ const ppu_func_caller sc_table[1024] =
bind_func(sys_event_flag_trywait), //86 (0x056) bind_func(sys_event_flag_trywait), //86 (0x056)
bind_func(sys_event_flag_set), //87 (0x057) bind_func(sys_event_flag_set), //87 (0x057)
bind_func(sys_interrupt_thread_eoi), //88 (0x058) bind_func(sys_interrupt_thread_eoi), //88 (0x058)
bind_func(sys_interrupt_thread_disestablish), //89 (0x059) bind_func(_sys_interrupt_thread_disestablish), //89 (0x059)
bind_func(sys_semaphore_create), //90 (0x05A) bind_func(sys_semaphore_create), //90 (0x05A)
bind_func(sys_semaphore_destroy), //91 (0x05B) bind_func(sys_semaphore_destroy), //91 (0x05B)
bind_func(sys_semaphore_wait), //92 (0x05C) bind_func(sys_semaphore_wait), //92 (0x05C)

View file

@ -525,8 +525,6 @@ s32 cellFsFGetBlockSize(u32 fd, vm::ptr<u64> sector_size, vm::ptr<u64> block_siz
{ {
sys_fs.Warning("cellFsFGetBlockSize(fd=0x%x, sector_size=0x%x, block_size=0x%x)", fd, sector_size, block_size); sys_fs.Warning("cellFsFGetBlockSize(fd=0x%x, sector_size=0x%x, block_size=0x%x)", fd, sector_size, block_size);
LV2_LOCK(0);
std::shared_ptr<vfsStream> file; std::shared_ptr<vfsStream> file;
if (!sys_fs.CheckId(fd, file)) if (!sys_fs.CheckId(fd, file))
return CELL_ESRCH; return CELL_ESRCH;

View file

@ -3,11 +3,10 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/IdManager.h" #include "Emu/IdManager.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h" #include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h" #include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h" #include "sleep_queue.h"
sleep_queue_t::~sleep_queue_t() sleep_queue_t::~sleep_queue_t()
{ {

View file

@ -2,11 +2,10 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h" #include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h" #include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h" #include "sleep_queue.h"
#include "sys_time.h" #include "sys_time.h"
#include "sys_mutex.h" #include "sys_mutex.h"
#include "sys_cond.h" #include "sys_cond.h"

View file

@ -2,11 +2,10 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/Cell/PPUThread.h" #include "Emu/Cell/PPUThread.h"
#include "Emu/Event.h" #include "Emu/Event.h"
#include "sleep_queue_type.h" #include "sleep_queue.h"
#include "sys_time.h" #include "sys_time.h"
#include "sys_process.h" #include "sys_process.h"
#include "sys_event.h" #include "sys_event.h"
@ -15,66 +14,68 @@ SysCallBase sys_event("sys_event");
u32 event_queue_create(u32 protocol, s32 type, u64 name_u64, u64 event_queue_key, s32 size) u32 event_queue_create(u32 protocol, s32 type, u64 name_u64, u64 event_queue_key, s32 size)
{ {
std::shared_ptr<EventQueue> eq(new EventQueue(protocol, type, name_u64, event_queue_key, size)); std::shared_ptr<event_queue_t> queue(new event_queue_t(protocol, type, name_u64, event_queue_key, size));
if (event_queue_key && !Emu.GetEventManager().RegisterKey(eq, event_queue_key)) Emu.GetEventManager().RegisterKey(queue, event_queue_key);
{
return 0;
}
const u32 id = sys_event.GetNewId(eq, TYPE_EVENT_QUEUE); return sys_event.GetNewId(queue, TYPE_EVENT_QUEUE);
eq->sq.set_full_name(fmt::Format("EventQueue(%d)", id));
sys_event.Warning("*** event_queue created [%s] (protocol=0x%x, type=0x%x, key=0x%llx, size=0x%x): id = %d",
std::string((const char*)&name_u64, 8).c_str(), protocol, type, event_queue_key, size, id);
return id;
} }
s32 sys_event_queue_create(vm::ptr<u32> equeue_id, vm::ptr<sys_event_queue_attr> attr, u64 event_queue_key, s32 size) s32 sys_event_queue_create(vm::ptr<u32> equeue_id, vm::ptr<sys_event_queue_attr> attr, u64 event_queue_key, s32 size)
{ {
sys_event.Warning("sys_event_queue_create(equeue_id_addr=0x%x, attr_addr=0x%x, event_queue_key=0x%llx, size=%d)", sys_event.Warning("sys_event_queue_create(equeue_id=*0x%x, attr=*0x%x, event_queue_key=0x%llx, size=%d)", equeue_id, attr, event_queue_key, size);
equeue_id.addr(), attr.addr(), event_queue_key, size);
if(size <= 0 || size > 127) if (size <= 0 || size > 127)
{ {
return CELL_EINVAL; return CELL_EINVAL;
} }
switch (attr->protocol.data()) const u32 protocol = attr->protocol;
switch (protocol)
{ {
case se32(SYS_SYNC_PRIORITY): break; case SYS_SYNC_PRIORITY: break;
case se32(SYS_SYNC_RETRY): sys_event.Error("Invalid protocol (SYS_SYNC_RETRY)"); return CELL_EINVAL; case SYS_SYNC_RETRY: sys_event.Error("Invalid protocol (SYS_SYNC_RETRY)"); return CELL_EINVAL;
case se32(SYS_SYNC_PRIORITY_INHERIT): sys_event.Error("Invalid protocol (SYS_SYNC_PRIORITY_INHERIT)"); return CELL_EINVAL; case SYS_SYNC_PRIORITY_INHERIT: sys_event.Error("Invalid protocol (SYS_SYNC_PRIORITY_INHERIT)"); return CELL_EINVAL;
case se32(SYS_SYNC_FIFO): break; case SYS_SYNC_FIFO: break;
default: sys_event.Error("Unknown protocol (0x%x)", attr->protocol); return CELL_EINVAL; default: sys_event.Error("Unknown protocol (0x%x)", protocol); return CELL_EINVAL;
} }
switch (attr->type.data()) const u32 type = attr->type;
switch (type)
{ {
case se32(SYS_PPU_QUEUE): break; case SYS_PPU_QUEUE: break;
case se32(SYS_SPU_QUEUE): break; case SYS_SPU_QUEUE: break;
default: sys_event.Error("Unknown event queue type (0x%x)", attr->type); return CELL_EINVAL; default: sys_event.Error("Unknown event queue type (0x%x)", type); return CELL_EINVAL;
} }
if (event_queue_key && Emu.GetEventManager().CheckKey(event_queue_key)) LV2_LOCK;
if (Emu.GetEventManager().CheckKey(event_queue_key))
{ {
return CELL_EEXIST; return CELL_EEXIST;
} }
if (u32 id = event_queue_create(attr->protocol, attr->type, attr->name_u64, event_queue_key, size)) std::shared_ptr<event_queue_t> queue(new event_queue_t(protocol, type, attr->name_u64, event_queue_key, size));
if (!Emu.GetEventManager().RegisterKey(queue, event_queue_key))
{ {
*equeue_id = id; return CELL_EAGAIN;
return CELL_OK;
} }
return CELL_EAGAIN; *equeue_id = sys_event.GetNewId(queue, TYPE_EVENT_QUEUE);
return CELL_OK;
} }
s32 sys_event_queue_destroy(u32 equeue_id, int mode) s32 sys_event_queue_destroy(u32 equeue_id, s32 mode)
{ {
sys_event.Todo("sys_event_queue_destroy(equeue_id=%d, mode=0x%x)", equeue_id, mode); sys_event.Warning("sys_event_queue_destroy(equeue_id=%d, mode=%d)", equeue_id, mode);
std::shared_ptr<EventQueue> eq; LV2_LOCK;
if (!Emu.GetIdManager().GetIDData(equeue_id, eq))
std::shared_ptr<event_queue_t> queue;
if (!Emu.GetIdManager().GetIDData(equeue_id, queue))
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
@ -84,204 +85,152 @@ s32 sys_event_queue_destroy(u32 equeue_id, int mode)
return CELL_EINVAL; return CELL_EINVAL;
} }
//u32 tid = GetCurrentPPUThread().GetId(); if (!mode && queue->waiters)
//eq->sq.m_mutex.lock(); {
//eq->owner.lock(tid); return CELL_EBUSY;
// check if some threads are waiting for an event }
//if (!mode && eq->sq.list.size()) else
//{ {
// eq->owner.unlock(tid); // set special value for waiters
// eq->sq.m_mutex.unlock(); queue->waiters.exchange(-1);
// return CELL_EBUSY; }
//}
//eq->owner.unlock(tid, ~0);
//eq->sq.m_mutex.unlock();
//while (eq->sq.list.size())
//{
// std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
// if (Emu.IsStopped())
// {
// sys_event.Warning("sys_event_queue_destroy(equeue=%d) aborted", equeue_id);
// break;
// }
//}
Emu.GetEventManager().UnregisterKey(eq->key); Emu.GetEventManager().UnregisterKey(queue->key);
eq->ports.clear();
Emu.GetIdManager().RemoveID(equeue_id); Emu.GetIdManager().RemoveID(equeue_id);
return CELL_OK; return CELL_OK;
} }
s32 sys_event_queue_tryreceive(u32 equeue_id, vm::ptr<sys_event_data> event_array, s32 size, vm::ptr<u32> number) s32 sys_event_queue_tryreceive(u32 equeue_id, vm::ptr<sys_event_t> event_array, s32 size, vm::ptr<u32> number)
{ {
sys_event.Todo("sys_event_queue_tryreceive(equeue_id=%d, event_array_addr=0x%x, size=%d, number_addr=0x%x)", sys_event.Warning("sys_event_queue_tryreceive(equeue_id=%d, event_array=*0x%x, size=%d, number=*0x%x)", equeue_id, event_array, size, number);
equeue_id, event_array.addr(), size, number.addr());
std::shared_ptr<EventQueue> eq; LV2_LOCK;
if (!Emu.GetIdManager().GetIDData(equeue_id, eq))
std::shared_ptr<event_queue_t> queue;
if (!Emu.GetIdManager().GetIDData(equeue_id, queue))
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
if (eq->type != SYS_PPU_QUEUE) if (size < 0)
{
throw __FUNCTION__;
}
if (queue->type != SYS_PPU_QUEUE)
{ {
return CELL_EINVAL; return CELL_EINVAL;
} }
if (size == 0) s32 count = 0;
while (count < size && queue->events.size())
{ {
*number = 0; auto& event = queue->events.front();
return CELL_OK; event_array[count++] = { be_t<u64>::make(event.source), be_t<u64>::make(event.data1), be_t<u64>::make(event.data2), be_t<u64>::make(event.data3) };
queue->events.pop_front();
} }
//u32 tid = GetCurrentPPUThread().GetId(); *number = count;
//eq->sq.m_mutex.lock();
//eq->owner.lock(tid);
//if (eq->sq.list.size())
//{
// *number = 0;
// eq->owner.unlock(tid);
// eq->sq.m_mutex.unlock();
// return CELL_OK;
//}
*number = eq->events.pop_all(event_array.get_ptr(), size);
//eq->owner.unlock(tid);
//eq->sq.m_mutex.unlock();
return CELL_OK; return CELL_OK;
} }
s32 sys_event_queue_receive(u32 equeue_id, vm::ptr<sys_event_data> dummy_event, u64 timeout) s32 sys_event_queue_receive(PPUThread& CPU, u32 equeue_id, vm::ptr<sys_event_t> dummy_event, u64 timeout)
{ {
// dummy_event argument is ignored, data returned in registers sys_event.Log("sys_event_queue_receive(equeue_id=%d, event=*0x%x, timeout=0x%llx)", equeue_id, dummy_event, timeout);
sys_event.Log("sys_event_queue_receive(equeue_id=%d, dummy_event_addr=0x%x, timeout=%lld)",
equeue_id, dummy_event.addr(), timeout);
const u64 start_time = get_system_time(); const u64 start_time = get_system_time();
std::shared_ptr<EventQueue> eq; LV2_LOCK;
if (!Emu.GetIdManager().GetIDData(equeue_id, eq))
std::shared_ptr<event_queue_t> queue;
if (!Emu.GetIdManager().GetIDData(equeue_id, queue))
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
if (eq->type != SYS_PPU_QUEUE) if (queue->type != SYS_PPU_QUEUE)
{ {
return CELL_EINVAL; return CELL_EINVAL;
} }
const u32 tid = GetCurrentPPUThread().GetId(); // protocol is ignored in current implementation
queue->waiters++;
eq->sq.push(tid, eq->protocol); // add thread to sleep queue while (queue->events.empty())
while (true)
{ {
const u32 old_owner = eq->owner.compare_and_swap(0, tid); if (queue->waiters < 0)
const s32 res = old_owner ? (old_owner == tid ? 1 : 2) : 0;
switch (res)
{ {
case 0: queue->waiters--;
{
const u32 next = eq->events.count() ? eq->sq.signal(eq->protocol) : 0;
if (next != tid)
{
if (!eq->owner.compare_and_swap_test(tid, next))
{
assert(!"sys_event_queue_receive() failed (I)");
}
break;
}
// fallthrough
}
case 1:
{
sys_event_data event;
eq->events.pop(event);
if (!eq->owner.compare_and_swap_test(tid, 0))
{
assert(!"sys_event_queue_receive() failed (II)");
}
sys_event.Log(" *** event received: source=0x%llx, d1=0x%llx, d2=0x%llx, d3=0x%llx",
(u64)event.source, (u64)event.data1, (u64)event.data2, (u64)event.data3);
/* passing event data in registers */
PPUThread& t = GetCurrentPPUThread();
t.GPR[4] = event.source;
t.GPR[5] = event.data1;
t.GPR[6] = event.data2;
t.GPR[7] = event.data3;
if (!eq->sq.invalidate(tid, eq->protocol) && !eq->sq.pop(tid, eq->protocol))
{
assert(!"sys_event_queue_receive() failed (receiving)");
}
return CELL_OK;
}
}
if (!~old_owner)
{
if (!eq->sq.invalidate(tid, eq->protocol))
{
assert(!"sys_event_queue_receive() failed (cancelling)");
}
return CELL_ECANCELED; return CELL_ECANCELED;
} }
std::this_thread::sleep_for(std::chrono::milliseconds(1)); // hack
if (timeout && get_system_time() - start_time > timeout) if (timeout && get_system_time() - start_time > timeout)
{ {
if (!eq->sq.invalidate(tid, eq->protocol)) queue->waiters--;
{
assert(!"sys_event_queue_receive() failed (timeout)");
}
return CELL_ETIMEDOUT; return CELL_ETIMEDOUT;
} }
if (Emu.IsStopped()) if (Emu.IsStopped())
{ {
sys_event.Warning("sys_event_queue_receive(equeue=%d) aborted", equeue_id); sys_event.Warning("sys_event_queue_receive(equeue_id=%d) aborted", equeue_id);
return CELL_OK; return CELL_OK;
} }
queue->cv.wait_for(lv2_lock, std::chrono::milliseconds(1));
} }
// event data is returned in registers (second arg is not used)
auto& event = queue->events.front();
CPU.GPR[4] = event.source;
CPU.GPR[5] = event.data1;
CPU.GPR[6] = event.data2;
CPU.GPR[7] = event.data3;
queue->events.pop_front();
queue->waiters--;
return CELL_OK;
} }
s32 sys_event_queue_drain(u32 equeue_id) s32 sys_event_queue_drain(u32 equeue_id)
{ {
sys_event.Log("sys_event_queue_drain(equeue_id=%d)", equeue_id); sys_event.Log("sys_event_queue_drain(equeue_id=%d)", equeue_id);
std::shared_ptr<EventQueue> eq; LV2_LOCK;
if (!Emu.GetIdManager().GetIDData(equeue_id, eq))
std::shared_ptr<event_queue_t> queue;
if (!Emu.GetIdManager().GetIDData(equeue_id, queue))
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
eq->events.clear(); queue->events = {};
return CELL_OK; return CELL_OK;
} }
u32 event_port_create(u64 name) u32 event_port_create(u64 name)
{ {
std::shared_ptr<EventPort> eport(new EventPort()); std::shared_ptr<event_port_t> eport(new event_port_t(SYS_EVENT_PORT_LOCAL, name));
u32 id = sys_event.GetNewId(eport, TYPE_EVENT_PORT);
eport->name = name ? name : ((u64)process_getpid() << 32) | (u64)id; return sys_event.GetNewId(eport, TYPE_EVENT_PORT);
sys_event.Warning("*** sys_event_port created: id = %d, name=0x%llx", id, eport->name);
return id;
} }
s32 sys_event_port_create(vm::ptr<u32> eport_id, s32 port_type, u64 name) s32 sys_event_port_create(vm::ptr<u32> eport_id, s32 port_type, u64 name)
{ {
sys_event.Warning("sys_event_port_create(eport_id_addr=0x%x, port_type=0x%x, name=0x%llx)", sys_event.Warning("sys_event_port_create(eport_id=*0x%x, port_type=%d, name=0x%llx)", eport_id, port_type, name);
eport_id.addr(), port_type, name);
if (port_type != SYS_EVENT_PORT_LOCAL) if (port_type != SYS_EVENT_PORT_LOCAL)
{ {
sys_event.Error("sys_event_port_create: invalid port_type(0x%x)", port_type); sys_event.Error("sys_event_port_create(): invalid port_type (%d)", port_type);
return CELL_EINVAL; return CELL_EINVAL;
} }
*eport_id = event_port_create(name); LV2_LOCK;
std::shared_ptr<event_port_t> eport(new event_port_t(port_type, name));
*eport_id = sys_event.GetNewId(eport, TYPE_EVENT_PORT);
return CELL_OK; return CELL_OK;
} }
@ -289,24 +238,19 @@ s32 sys_event_port_destroy(u32 eport_id)
{ {
sys_event.Warning("sys_event_port_destroy(eport_id=%d)", eport_id); sys_event.Warning("sys_event_port_destroy(eport_id=%d)", eport_id);
std::shared_ptr<EventPort> eport; LV2_LOCK;
if (!Emu.GetIdManager().GetIDData(eport_id, eport))
std::shared_ptr<event_port_t> port;
if (!Emu.GetIdManager().GetIDData(eport_id, port))
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
if (!eport->m_mutex.try_lock()) if (!port->queue.expired())
{ {
return CELL_EISCONN; return CELL_EISCONN;
} }
if (eport->eq)
{
eport->m_mutex.unlock();
return CELL_EISCONN;
}
eport->m_mutex.unlock();
Emu.GetIdManager().RemoveID(eport_id); Emu.GetIdManager().RemoveID(eport_id);
return CELL_OK; return CELL_OK;
} }
@ -315,37 +259,26 @@ s32 sys_event_port_connect_local(u32 eport_id, u32 equeue_id)
{ {
sys_event.Warning("sys_event_port_connect_local(eport_id=%d, equeue_id=%d)", eport_id, equeue_id); sys_event.Warning("sys_event_port_connect_local(eport_id=%d, equeue_id=%d)", eport_id, equeue_id);
std::shared_ptr<EventPort> eport; LV2_LOCK;
if (!Emu.GetIdManager().GetIDData(eport_id, eport))
std::shared_ptr<event_port_t> port;
std::shared_ptr<event_queue_t> queue;
if (!Emu.GetIdManager().GetIDData(eport_id, port) || !Emu.GetIdManager().GetIDData(equeue_id, queue))
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
if (!eport->m_mutex.try_lock()) if (port->type != SYS_EVENT_PORT_LOCAL)
{
return CELL_EINVAL;
}
if (!port->queue.expired())
{ {
return CELL_EISCONN; return CELL_EISCONN;
} }
if (eport->eq) port->queue = queue;
{
eport->m_mutex.unlock();
return CELL_EISCONN;
}
std::shared_ptr<EventQueue> equeue;
if (!Emu.GetIdManager().GetIDData(equeue_id, equeue))
{
sys_event.Error("sys_event_port_connect_local: event_queue(%d) not found!", equeue_id);
eport->m_mutex.unlock();
return CELL_ESRCH;
}
else
{
equeue->ports.add(eport);
}
eport->eq = equeue;
eport->m_mutex.unlock();
return CELL_OK; return CELL_OK;
} }
@ -353,51 +286,64 @@ s32 sys_event_port_disconnect(u32 eport_id)
{ {
sys_event.Warning("sys_event_port_disconnect(eport_id=%d)", eport_id); sys_event.Warning("sys_event_port_disconnect(eport_id=%d)", eport_id);
std::shared_ptr<EventPort> eport; LV2_LOCK;
if (!Emu.GetIdManager().GetIDData(eport_id, eport))
std::shared_ptr<event_port_t> port;
if (!Emu.GetIdManager().GetIDData(eport_id, port))
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
if (!eport->eq) std::shared_ptr<event_queue_t> queue = port->queue.lock();
if (!queue)
{ {
return CELL_ENOTCONN; return CELL_ENOTCONN;
} }
if (!eport->m_mutex.try_lock()) // CELL_EBUSY is not returned
{
return CELL_EBUSY;
}
eport->eq->ports.remove(eport); //const u64 source = port->name ? port->name : ((u64)process_getpid() << 32) | (u64)eport_id;
eport->eq = nullptr;
eport->m_mutex.unlock(); //for (auto& event : queue->events)
//{
// if (event.source == source)
// {
// return CELL_EBUSY; // ???
// }
//}
port->queue.reset();
return CELL_OK; return CELL_OK;
} }
s32 sys_event_port_send(u32 eport_id, u64 data1, u64 data2, u64 data3) s32 sys_event_port_send(u32 eport_id, u64 data1, u64 data2, u64 data3)
{ {
sys_event.Log("sys_event_port_send(eport_id=%d, data1=0x%llx, data2=0x%llx, data3=0x%llx)", sys_event.Log("sys_event_port_send(eport_id=%d, data1=0x%llx, data2=0x%llx, data3=0x%llx)", eport_id, data1, data2, data3);
eport_id, data1, data2, data3);
std::shared_ptr<EventPort> eport; LV2_LOCK;
if (!Emu.GetIdManager().GetIDData(eport_id, eport))
std::shared_ptr<event_port_t> port;
if (!Emu.GetIdManager().GetIDData(eport_id, port))
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
std::lock_guard<std::mutex> lock(eport->m_mutex); std::shared_ptr<event_queue_t> queue = port->queue.lock();
std::shared_ptr<EventQueue> eq = eport->eq; if (!queue)
if (!eq)
{ {
return CELL_ENOTCONN; return CELL_ENOTCONN;
} }
if (!eq->events.push(eport->name, data1, data2, data3)) if (queue->events.size() >= queue->size)
{ {
return CELL_EBUSY; return CELL_EBUSY;
} }
const u64 source = port->name ? port->name : ((u64)process_getpid() << 32) | (u64)eport_id;
queue->events.emplace_back(source, data1, data2, data3);
queue->cv.notify_one();
return CELL_OK; return CELL_OK;
} }

View file

@ -1,41 +1,43 @@
#pragma once #pragma once
#define FIX_SPUQ(x) ((u64)x | 0x5350555100000000ULL) // Event Queue Type
// arbitrary code to prevent "special" zero value in key argument enum : u32
enum EventQueueType
{ {
SYS_PPU_QUEUE = 1, SYS_PPU_QUEUE = 1,
SYS_SPU_QUEUE = 2, SYS_SPU_QUEUE = 2,
}; };
enum EventQueueDestroyMode // Event Queue Destroy Mode
enum : s32
{ {
// DEFAULT = 0,
SYS_EVENT_QUEUE_DESTROY_FORCE = 1, SYS_EVENT_QUEUE_DESTROY_FORCE = 1,
}; };
enum EventPortType // Event Port Type
enum : s32
{ {
SYS_EVENT_PORT_LOCAL = 1, SYS_EVENT_PORT_LOCAL = 1,
}; };
enum EventSourceType // Event Source Type
enum : u32
{ {
SYS_SPU_THREAD_EVENT_USER = 1, SYS_SPU_THREAD_EVENT_USER = 1,
/* SYS_SPU_THREAD_EVENT_DMA = 2, */ // not supported SYS_SPU_THREAD_EVENT_DMA = 2, // not supported
}; };
enum EventSourceKey : u64 // Event Source Key
enum : u64
{ {
SYS_SPU_THREAD_EVENT_USER_KEY = 0xFFFFFFFF53505501, SYS_SPU_THREAD_EVENT_USER_KEY = 0xFFFFFFFF53505501,
/* SYS_SPU_THREAD_EVENT_DMA_KEY = 0xFFFFFFFF53505502, */ SYS_SPU_THREAD_EVENT_DMA_KEY = 0xFFFFFFFF53505502, // ???
}; };
struct sys_event_queue_attr struct sys_event_queue_attr
{ {
be_t<u32> protocol; // SYS_SYNC_PRIORITY or SYS_SYNC_FIFO be_t<u32> protocol; // SYS_SYNC_PRIORITY or SYS_SYNC_FIFO
be_t<s32> type; // SYS_PPU_QUEUE or SYS_SPU_QUEUE be_t<s32> type; // SYS_PPU_QUEUE or SYS_SPU_QUEUE
union union
{ {
char name[8]; char name[8];
@ -43,7 +45,7 @@ struct sys_event_queue_attr
}; };
}; };
struct sys_event_data struct sys_event_t
{ {
be_t<u64> source; be_t<u64> source;
be_t<u64> data1; be_t<u64> data1;
@ -51,168 +53,61 @@ struct sys_event_data
be_t<u64> data3; be_t<u64> data3;
}; };
struct EventQueue; struct event_t
struct EventPort
{ {
u64 name; // generated or user-specified code that is passed to sys_event_data struct u64 source;
std::shared_ptr<EventQueue> eq; // event queue this port has been connected to u64 data1;
std::mutex m_mutex; // may be locked until the event sending is finished u64 data2;
u64 data3;
EventPort(u64 name = 0) event_t(u64 source, u64 data1, u64 data2, u64 data3)
: eq(nullptr) : source(source)
, data1(data1)
, data2(data2)
, data3(data3)
{
}
};
struct event_queue_t
{
const u32 protocol;
const s32 type;
const u64 name;
const u64 key;
const s32 size;
std::deque<event_t> events;
// TODO: use sleep queue, remove condition variable (use thread's one instead)
std::condition_variable cv;
std::atomic<s32> waiters;
event_queue_t(u32 protocol, s32 type, u64 name, u64 key, s32 size)
: protocol(protocol)
, type(type)
, name(name)
, key(key)
, size(size)
, waiters(0)
{
}
};
struct event_port_t
{
const s32 type; // port type, must be SYS_EVENT_PORT_LOCAL
const u64 name; // passed as event source (generated from id and process id if not set)
std::weak_ptr<event_queue_t> queue; // event queue this port is connected to
event_port_t(s32 type, u64 name)
: type(type)
, name(name) , name(name)
{ {
} }
}; };
class EventRingBuffer class PPUThread;
{
std::vector<sys_event_data> data;
std::mutex m_mutex;
u32 buf_pos;
u32 buf_count;
public:
const u32 size;
EventRingBuffer(u32 size)
: size(size)
, buf_pos(0)
, buf_count(0)
{
data.resize(size);
}
void clear()
{
std::lock_guard<std::mutex> lock(m_mutex);
buf_count = 0;
buf_pos = 0;
}
bool push(u64 name, u64 d1, u64 d2, u64 d3)
{
std::lock_guard<std::mutex> lock(m_mutex);
if (buf_count >= size) return false;
sys_event_data& ref = data[(buf_pos + buf_count++) % size];
ref.source = name;
ref.data1 = d1;
ref.data2 = d2;
ref.data3 = d3;
return true;
}
bool pop(sys_event_data& ref)
{
std::lock_guard<std::mutex> lock(m_mutex);
if (!buf_count) return false;
sys_event_data& from = data[buf_pos];
buf_pos = (buf_pos + 1) % size;
buf_count--;
ref.source = from.source;
ref.data1 = from.data1;
ref.data2 = from.data2;
ref.data3 = from.data3;
return true;
}
u32 pop_all(sys_event_data* ptr, u32 max)
{
std::lock_guard<std::mutex> lock(m_mutex);
u32 res = 0;
while (buf_count && max)
{
sys_event_data& from = data[buf_pos];
ptr->source = from.source;
ptr->data1 = from.data1;
ptr->data2 = from.data2;
ptr->data3 = from.data3;
buf_pos = (buf_pos + 1) % size;
buf_count--;
max--;
ptr++;
res++;
}
return res;
}
u32 count() const
{
return buf_count;
}
};
class EventPortList
{
std::vector<std::shared_ptr<EventPort>> data;
std::mutex m_mutex;
public:
void clear()
{
std::lock_guard<std::mutex> lock(m_mutex);
for (u32 i = 0; i < data.size(); i++)
{
// TODO: force all ports to disconnect
//std::lock_guard<std::mutex> lock2(data[i]->m_mutex);
//data[i]->eq = nullptr;
}
data.clear();
}
void add(std::shared_ptr<EventPort>& port)
{
std::lock_guard<std::mutex> lock(m_mutex);
data.push_back(port);
}
void remove(std::shared_ptr<EventPort>& port)
{
std::lock_guard<std::mutex> lock(m_mutex);
for (u32 i = 0; i < data.size(); i++)
{
if (data[i].get() == port.get())
{
data.erase(data.begin() + i);
return;
}
}
}
};
struct EventQueue
{
sleep_queue_t sq;
EventPortList ports;
EventRingBuffer events;
atomic_le_t<u32> owner;
const union
{
u64 name_u64;
char name[8];
};
const u32 protocol;
const int type;
const u64 key;
EventQueue(u32 protocol, int type, u64 name, u64 key, int size)
: type(type)
, protocol(protocol)
, name_u64(name)
, key(key)
, events(size) // size: max event count this queue can hold
{
owner.write_relaxed(0);
}
};
// Aux // Aux
u32 event_port_create(u64 name); u32 event_port_create(u64 name);
@ -221,8 +116,8 @@ u32 event_queue_create(u32 protocol, s32 type, u64 name_u64, u64 event_queue_key
// SysCalls // SysCalls
s32 sys_event_queue_create(vm::ptr<u32> equeue_id, vm::ptr<sys_event_queue_attr> attr, u64 event_queue_key, s32 size); s32 sys_event_queue_create(vm::ptr<u32> equeue_id, vm::ptr<sys_event_queue_attr> attr, u64 event_queue_key, s32 size);
s32 sys_event_queue_destroy(u32 equeue_id, s32 mode); s32 sys_event_queue_destroy(u32 equeue_id, s32 mode);
s32 sys_event_queue_receive(u32 equeue_id, vm::ptr<sys_event_data> dummy_event, u64 timeout); s32 sys_event_queue_receive(PPUThread& CPU, u32 equeue_id, vm::ptr<sys_event_t> dummy_event, u64 timeout);
s32 sys_event_queue_tryreceive(u32 equeue_id, vm::ptr<sys_event_data> event_array, s32 size, vm::ptr<u32> number); s32 sys_event_queue_tryreceive(u32 equeue_id, vm::ptr<sys_event_t> event_array, s32 size, vm::ptr<u32> number);
s32 sys_event_queue_drain(u32 event_queue_id); s32 sys_event_queue_drain(u32 event_queue_id);
s32 sys_event_port_create(vm::ptr<u32> eport_id, s32 port_type, u64 name); s32 sys_event_port_create(vm::ptr<u32> eport_id, s32 port_type, u64 name);

View file

@ -2,11 +2,10 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h" #include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h" #include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h" #include "sleep_queue.h"
#include "sys_event_flag.h" #include "sys_event_flag.h"
SysCallBase sys_event_flag("sys_event_flag"); SysCallBase sys_event_flag("sys_event_flag");

View file

@ -2,38 +2,47 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Emu/SysCalls/CB_FUNC.h"
#include "Emu/CPU/CPUThreadManager.h" #include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h" #include "Emu/Cell/PPUThread.h"
#include "Emu/Cell/RawSPUThread.h" #include "Emu/Cell/RawSPUThread.h"
#include "sys_interrupt.h" #include "sys_interrupt.h"
static SysCallBase sys_interrupt("sys_interrupt"); SysCallBase sys_interrupt("sys_interrupt");
s32 sys_interrupt_tag_destroy(u32 intrtag) s32 sys_interrupt_tag_destroy(u32 intrtag)
{ {
sys_interrupt.Warning("sys_interrupt_tag_destroy(intrtag=%d)", intrtag); sys_interrupt.Warning("sys_interrupt_tag_destroy(intrtag=%d)", intrtag);
u32 id = intrtag & 0xff; const u32 class_id = intrtag >> 8;
u32 class_id = intrtag >> 8;
RawSPUThread* t = Emu.GetCPU().GetRawSPUThread(id);
if (!t || class_id > 2 || class_id == 1) if (class_id != 0 && class_id != 2)
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
if (!t->m_intrtag[class_id].enabled) std::shared_ptr<CPUThread> t = Emu.GetCPU().GetRawSPUThread(intrtag & 0xff);
if (!t)
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
if (t->m_intrtag[class_id].thread) RawSPUThread& spu = static_cast<RawSPUThread&>(*t);
auto& tag = class_id ? spu.int2 : spu.int0;
if (s32 old = tag.assigned.compare_and_swap(0, -1))
{
if (old > 0)
{ {
return CELL_EBUSY; return CELL_EBUSY;
} }
t->m_intrtag[class_id].enabled = 0; return CELL_ESRCH;
}
return CELL_OK; return CELL_OK;
} }
@ -41,58 +50,99 @@ s32 sys_interrupt_thread_establish(vm::ptr<u32> ih, u32 intrtag, u64 intrthread,
{ {
sys_interrupt.Warning("sys_interrupt_thread_establish(ih_addr=0x%x, intrtag=%d, intrthread=%lld, arg=0x%llx)", ih.addr(), intrtag, intrthread, arg); sys_interrupt.Warning("sys_interrupt_thread_establish(ih_addr=0x%x, intrtag=%d, intrthread=%lld, arg=0x%llx)", ih.addr(), intrtag, intrthread, arg);
u32 id = intrtag & 0xff; const u32 class_id = intrtag >> 8;
u32 class_id = intrtag >> 8;
RawSPUThread* t = Emu.GetCPU().GetRawSPUThread(id);
if (!t || class_id > 2 || class_id == 1) if (class_id != 0 && class_id != 2)
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
if (!t->m_intrtag[class_id].enabled) std::shared_ptr<CPUThread> t = Emu.GetCPU().GetRawSPUThread(intrtag & 0xff);
if (!t)
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
if (t->m_intrtag[class_id].thread) // ??? RawSPUThread& spu = static_cast<RawSPUThread&>(*t);
{
return CELL_ESTAT; auto& tag = class_id ? spu.int2 : spu.int0;
}
// CELL_ESTAT is not returned (can't detect exact condition)
std::shared_ptr<CPUThread> it = Emu.GetCPU().GetThread((u32)intrthread);
std::shared_ptr<CPUThread> it = Emu.GetCPU().GetThread(intrthread);
if (!it) if (!it)
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
if (it->m_has_interrupt || !it->m_is_interrupt) std::shared_ptr<interrupt_handler_t> handler(new interrupt_handler_t{ it });
PPUThread& ppu = static_cast<PPUThread&>(*it);
{
LV2_LOCK;
if (ppu.custom_task)
{ {
return CELL_EAGAIN; return CELL_EAGAIN;
} }
*ih = (t->m_intrtag[class_id].thread = intrthread); if (s32 res = tag.assigned.atomic_op<s32>(CELL_OK, [](s32& value) -> s32
it->m_interrupt_arg = arg; {
if (value < 0)
{
return CELL_ESRCH;
}
value++;
return CELL_OK;
}))
{
return res;
}
ppu.custom_task = [t, &tag, arg](PPUThread& CPU)
{
auto func = vm::ptr<void(u64 arg)>::make(CPU.entry);
std::unique_lock<std::mutex> cond_lock(tag.handler_mutex);
while (!Emu.IsStopped())
{
if (tag.stat.read_relaxed())
{
func(CPU, arg); // call interrupt handler until int status is clear
}
tag.cond.wait_for(cond_lock, std::chrono::milliseconds(1));
}
};
}
*ih = sys_interrupt.GetNewId(handler, TYPE_INTR_SERVICE_HANDLE);
ppu.Exec();
return CELL_OK; return CELL_OK;
} }
s32 sys_interrupt_thread_disestablish(u32 ih) s32 _sys_interrupt_thread_disestablish(u32 ih, vm::ptr<u64> r13)
{ {
sys_interrupt.Todo("sys_interrupt_thread_disestablish(ih=%d)", ih); sys_interrupt.Todo("_sys_interrupt_thread_disestablish(ih=%d)", ih);
std::shared_ptr<CPUThread> it = Emu.GetCPU().GetThread(ih); std::shared_ptr<interrupt_handler_t> handler;
if (!it) if (!sys_interrupt.CheckId(ih, handler))
{ {
return CELL_ESRCH; return CELL_ESRCH;
} }
if (!it->m_has_interrupt || !it->m_is_interrupt) PPUThread& ppu = static_cast<PPUThread&>(*handler->handler);
{
return CELL_ESRCH;
}
// TODO: wait for sys_interrupt_thread_eoi() and destroy interrupt thread // TODO: wait for sys_interrupt_thread_eoi() and destroy interrupt thread
*r13 = ppu.GPR[13];
return CELL_OK; return CELL_OK;
} }
@ -101,5 +151,4 @@ void sys_interrupt_thread_eoi()
sys_interrupt.Log("sys_interrupt_thread_eoi()"); sys_interrupt.Log("sys_interrupt_thread_eoi()");
GetCurrentPPUThread().FastStop(); GetCurrentPPUThread().FastStop();
return;
} }

View file

@ -1,7 +1,14 @@
#pragma once #pragma once
class PPUThread;
struct interrupt_handler_t
{
std::shared_ptr<CPUThread> handler;
};
// SysCalls // SysCalls
s32 sys_interrupt_tag_destroy(u32 intrtag); s32 sys_interrupt_tag_destroy(u32 intrtag);
s32 sys_interrupt_thread_establish(vm::ptr<u32> ih, u32 intrtag, u64 intrthread, u64 arg); s32 sys_interrupt_thread_establish(vm::ptr<u32> ih, u32 intrtag, u64 intrthread, u64 arg);
s32 sys_interrupt_thread_disestablish(u32 ih); s32 _sys_interrupt_thread_disestablish(u32 ih, vm::ptr<u64> r13);
void sys_interrupt_thread_eoi(); void sys_interrupt_thread_eoi();

View file

@ -2,10 +2,9 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/Cell/PPUThread.h" #include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h" #include "sleep_queue.h"
#include "sys_time.h" #include "sys_time.h"
#include "sys_lwmutex.h" #include "sys_lwmutex.h"
#include "sys_lwcond.h" #include "sys_lwcond.h"

View file

@ -2,11 +2,10 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h" #include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h" #include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h" #include "sleep_queue.h"
#include "sys_time.h" #include "sys_time.h"
#include "sys_lwmutex.h" #include "sys_lwmutex.h"
@ -56,8 +55,6 @@ s32 sys_lwmutex_destroy(PPUThread& CPU, vm::ptr<sys_lwmutex_t> lwmutex)
{ {
sys_lwmutex.Warning("sys_lwmutex_destroy(lwmutex_addr=0x%x)", lwmutex.addr()); sys_lwmutex.Warning("sys_lwmutex_destroy(lwmutex_addr=0x%x)", lwmutex.addr());
LV2_LOCK(0);
u32 sq_id = lwmutex->sleep_queue; u32 sq_id = lwmutex->sleep_queue;
if (!Emu.GetIdManager().CheckID(sq_id)) return CELL_ESRCH; if (!Emu.GetIdManager().CheckID(sq_id)) return CELL_ESRCH;

View file

@ -2,11 +2,10 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h" #include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h" #include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h" #include "sleep_queue.h"
#include "sys_time.h" #include "sys_time.h"
#include "sys_mutex.h" #include "sys_mutex.h"

View file

@ -3,13 +3,12 @@
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Emu/SysCalls/CB_FUNC.h" #include "Emu/SysCalls/CB_FUNC.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h" #include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h" #include "Emu/Cell/PPUThread.h"
#include "sys_ppu_thread.h" #include "sys_ppu_thread.h"
static SysCallBase sys_ppu_thread("sys_ppu_thread"); SysCallBase sys_ppu_thread("sys_ppu_thread");
static const u32 PPU_THREAD_ID_INVALID = 0xFFFFFFFFU/*UUUUUUUUUUuuuuuuuuuu~~~~~~~~*/; static const u32 PPU_THREAD_ID_INVALID = 0xFFFFFFFFU/*UUUUUUUUUUuuuuuuuuuu~~~~~~~~*/;
@ -163,76 +162,47 @@ s32 sys_ppu_thread_restart(u64 thread_id)
return CELL_OK; return CELL_OK;
} }
PPUThread* ppu_thread_create(u32 entry, u64 arg, s32 prio, u32 stacksize, bool is_joinable, bool is_interrupt, const std::string& name, std::function<void(PPUThread&)> task) u32 ppu_thread_create(u32 entry, u64 arg, s32 prio, u32 stacksize, bool is_joinable, bool is_interrupt, std::string name, std::function<void(PPUThread&)> task)
{ {
PPUThread& new_thread = *(PPUThread*)&Emu.GetCPU().AddThread(CPU_THREAD_PPU); auto new_thread = Emu.GetCPU().AddThread(CPU_THREAD_PPU);
// Note: (Syphurith) I haven't figured out the minimum stack size of PPU Thread. auto& ppu = static_cast<PPUThread&>(*new_thread);
// Maybe it can be done with pthread_attr_getstacksize function.
// And i toke 4096 (PTHREAD_STACK_MIN, and the smallest allocation unit) for this.
if ((stacksize % 4096) || (stacksize == 0)) {
// If not times of smallest allocation unit, round it up to the nearest one.
// And regard zero as a same condition.
sys_ppu_thread.Warning("sys_ppu_thread_create: stacksize increased from 0x%x to 0x%x.",
stacksize, SYS_PPU_THREAD_STACK_MIN * ((u32)(stacksize / SYS_PPU_THREAD_STACK_MIN) + 1));
stacksize = SYS_PPU_THREAD_STACK_MIN * ((u32)(stacksize / SYS_PPU_THREAD_STACK_MIN) + 1);
}
u32 id = new_thread.GetId(); ppu.SetEntry(entry);
new_thread.SetEntry(entry); ppu.SetPrio(prio);
new_thread.SetPrio(prio); ppu.SetStackSize(stacksize < 0x4000 ? 0x4000 : stacksize); // (hack) adjust minimal stack size
new_thread.SetStackSize(stacksize); ppu.SetJoinable(is_joinable);
new_thread.SetJoinable(is_joinable); ppu.SetName(name);
new_thread.m_has_interrupt = false; ppu.custom_task = task;
new_thread.m_is_interrupt = is_interrupt; ppu.Run();
new_thread.SetName(name);
new_thread.custom_task = task;
sys_ppu_thread.Notice("*** New PPU Thread [%s] (%s, entry=0x%x): id = %d", name.c_str(),
is_interrupt ? "interrupt" :
(is_joinable ? "joinable" : "detached"), entry, id);
if (!is_interrupt) if (!is_interrupt)
{ {
new_thread.Run(); ppu.GPR[3] = arg;
new_thread.GPR[3] = arg; ppu.Exec();
new_thread.Exec();
}
else
{
new_thread.InitStack();
new_thread.InitRegs();
new_thread.DoRun();
} }
return &new_thread; return ppu.GetId();
} }
s32 sys_ppu_thread_create(vm::ptr<u64> thread_id, u32 entry, u64 arg, s32 prio, u32 stacksize, u64 flags, vm::ptr<const char> threadname) s32 sys_ppu_thread_create(vm::ptr<u64> thread_id, u32 entry, u64 arg, s32 prio, u32 stacksize, u64 flags, vm::ptr<const char> threadname)
{ {
sys_ppu_thread.Log("sys_ppu_thread_create(thread_id_addr=0x%x, entry=0x%x, arg=0x%llx, prio=%d, stacksize=0x%x, flags=0x%llx, threadname_addr=0x%x('%s'))", sys_ppu_thread.Warning("sys_ppu_thread_create(thread_id=*0x%x, entry=0x%x, arg=0x%llx, prio=%d, stacksize=0x%x, flags=0x%llx, threadname=*0x%x)", thread_id, entry, arg, prio, stacksize, flags, threadname);
thread_id.addr(), entry, arg, prio, stacksize, flags, threadname.addr(), threadname ? threadname.get_ptr() : "");
bool is_joinable = false; if (prio < 0 || prio > 3071)
bool is_interrupt = false;
switch (flags)
{ {
case 0: break; return CELL_EINVAL;
case SYS_PPU_THREAD_CREATE_JOINABLE:
is_joinable = true;
break;
case SYS_PPU_THREAD_CREATE_INTERRUPT:
is_interrupt = true;
break;
default: sys_ppu_thread.Error("sys_ppu_thread_create(): unknown flags value (0x%llx)", flags); return CELL_EPERM;
} }
std::string name = threadname ? threadname.get_ptr() : ""; bool is_joinable = flags & SYS_PPU_THREAD_CREATE_JOINABLE;
bool is_interrupt = flags & SYS_PPU_THREAD_CREATE_INTERRUPT;
*thread_id = ppu_thread_create(entry, arg, prio, stacksize, is_joinable, is_interrupt, name)->GetId(); if (is_joinable && is_interrupt)
{
return CELL_EPERM;
}
*thread_id = ppu_thread_create(entry, arg, prio, stacksize, is_joinable, is_interrupt, threadname ? threadname.get_ptr() : "");
return CELL_OK; return CELL_OK;
} }
@ -240,7 +210,7 @@ void sys_ppu_thread_once(PPUThread& CPU, vm::ptr<atomic_t<u32>> once_ctrl, vm::p
{ {
sys_ppu_thread.Warning("sys_ppu_thread_once(once_ctrl_addr=0x%x, init_addr=0x%x)", once_ctrl.addr(), init.addr()); sys_ppu_thread.Warning("sys_ppu_thread_once(once_ctrl_addr=0x%x, init_addr=0x%x)", once_ctrl.addr(), init.addr());
LV2_LOCK(0); LV2_LOCK;
if (once_ctrl->compare_and_swap_test(be_t<u32>::make(SYS_PPU_THREAD_ONCE_INIT), be_t<u32>::make(SYS_PPU_THREAD_DONE_INIT))) if (once_ctrl->compare_and_swap_test(be_t<u32>::make(SYS_PPU_THREAD_ONCE_INIT), be_t<u32>::make(SYS_PPU_THREAD_DONE_INIT)))
{ {
@ -258,12 +228,15 @@ s32 sys_ppu_thread_get_id(PPUThread& CPU, vm::ptr<u64> thread_id)
s32 sys_ppu_thread_rename(u64 thread_id, vm::ptr<const char> name) s32 sys_ppu_thread_rename(u64 thread_id, vm::ptr<const char> name)
{ {
sys_ppu_thread.Log("sys_ppu_thread_rename(thread_id=%d, name_addr=0x%x('%s'))", thread_id, name.addr(), name.get_ptr()); sys_ppu_thread.Log("sys_ppu_thread_rename(thread_id=0x%llx, name=*0x%x)", thread_id, name);
std::shared_ptr<CPUThread> thr = Emu.GetCPU().GetThread(thread_id); std::shared_ptr<CPUThread> t = Emu.GetCPU().GetThread(thread_id, CPU_THREAD_PPU);
if (!thr)
if (!t)
{
return CELL_ESRCH; return CELL_ESRCH;
}
thr->SetThreadName(name.get_ptr()); t->SetThreadName(name.get_ptr());
return CELL_OK; return CELL_OK;
} }

View file

@ -20,7 +20,7 @@ enum stackSize
}; };
// Aux // Aux
PPUThread* ppu_thread_create(u32 entry, u64 arg, s32 prio, u32 stacksize, bool is_joinable, bool is_interrupt, const std::string& name, std::function<void(PPUThread&)> task = nullptr); u32 ppu_thread_create(u32 entry, u64 arg, s32 prio, u32 stacksize, bool is_joinable, bool is_interrupt, std::string name, std::function<void(PPUThread&)> task = nullptr);
// SysCalls // SysCalls
void sys_ppu_thread_exit(PPUThread& CPU, u64 errorcode); void sys_ppu_thread_exit(PPUThread& CPU, u64 errorcode);

View file

@ -2,10 +2,9 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/Cell/PPUThread.h" #include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h" #include "sleep_queue.h"
#include "sys_time.h" #include "sys_time.h"
#include "sys_rwlock.h" #include "sys_rwlock.h"

View file

@ -2,11 +2,10 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/CPU/CPUThreadManager.h" #include "Emu/CPU/CPUThreadManager.h"
#include "Emu/Cell/PPUThread.h" #include "Emu/Cell/PPUThread.h"
#include "sleep_queue_type.h" #include "sleep_queue.h"
#include "sys_time.h" #include "sys_time.h"
#include "sys_semaphore.h" #include "sys_semaphore.h"

View file

@ -2,7 +2,6 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "sys_spinlock.h" #include "sys_spinlock.h"

File diff suppressed because it is too large Load diff

View file

@ -32,7 +32,7 @@ enum : u64
SYS_SPU_THREAD_GROUP_EVENT_SYSTEM_MODULE_KEY = 0xFFFFFFFF53505504ull, SYS_SPU_THREAD_GROUP_EVENT_SYSTEM_MODULE_KEY = 0xFFFFFFFF53505504ull,
}; };
enum enum : u32
{ {
SPU_THREAD_GROUP_STATUS_NOT_INITIALIZED, SPU_THREAD_GROUP_STATUS_NOT_INITIALIZED,
SPU_THREAD_GROUP_STATUS_INITIALIZED, SPU_THREAD_GROUP_STATUS_INITIALIZED,
@ -54,7 +54,7 @@ enum : s32
struct sys_spu_thread_group_attribute struct sys_spu_thread_group_attribute
{ {
be_t<u32> nsize; be_t<u32> nsize; // name length including NULL terminator
vm::bptr<const char> name; vm::bptr<const char> name;
be_t<s32> type; be_t<s32> type;
be_t<u32> ct; // memory container id be_t<u32> ct; // memory container id
@ -121,35 +121,50 @@ enum : u32
SYS_SPU_IMAGE_DIRECT = 1, SYS_SPU_IMAGE_DIRECT = 1,
}; };
struct SpuGroupInfo struct spu_arg_t
{ {
std::vector<u32> list; u64 arg1;
std::atomic<u32> lock; u64 arg2;
std::string m_name; u64 arg3;
u32 m_id; u64 arg4;
s32 m_prio; };
s32 m_type;
u32 m_ct;
u32 m_count;
s32 m_state; //SPU Thread Group State.
u32 m_exit_status;
bool m_group_exit;
SpuGroupInfo(const std::string& name, u32 num, s32 prio, s32 type, u32 ct) // SPU Thread Group Join State Flag
: m_name(name) enum : u32
, m_prio(prio) {
, m_type(type) STGJSF_IS_JOINING = (1 << 0),
, m_ct(ct) STGJSF_TERMINATED = (1 << 1), // set if SPU Thread Group is terminated by sys_spu_thread_group_terminate
, lock(0) STGJSF_GROUP_EXIT = (1 << 2), // set if SPU Thread Group is terminated by sys_spu_thread_group_exit
, m_count(num) };
, m_state(0)
, m_exit_status(0) struct spu_group_t
, m_group_exit(false) {
const std::string name;
const u32 num; // SPU Number
const s32 type; // SPU Thread Group Type
const u32 ct; // Memory Container Id
std::array<std::shared_ptr<CPUThread>, 256> threads;
std::array<spu_arg_t, 256> args; // SPU Thread Arguments
std::array<vm::ptr<sys_spu_image>, 256> images; // SPU Thread Images
s32 prio; // SPU Thread Group Priority
u32 state; // SPU Thread Group State
s32 exit_status; // SPU Thread Group Exit Status
std::atomic<u32> join_state; // flags used to detect exit cause
std::condition_variable join_cv; // used to signal waiting PPU thread
spu_group_t(std::string name, u32 num, s32 prio, s32 type, u32 ct)
: name(name)
, num(num)
, prio(prio)
, type(type)
, ct(ct)
, state(SPU_THREAD_GROUP_STATUS_NOT_INITIALIZED)
, exit_status(0)
, join_state(0)
{ {
m_state = SPU_THREAD_GROUP_STATUS_NOT_INITIALIZED; //Before all the nums done, it is not initialized.
list.resize(256);
for (auto& v : list) v = 0;
m_state = SPU_THREAD_GROUP_STATUS_INITIALIZED; //Then Ready to Start. Cause Reference use New i can only place this here.
} }
}; };
@ -161,22 +176,21 @@ u32 LoadSpuImage(vfsStream& stream, u32& spu_ep);
// Aux // Aux
s32 spu_image_import(sys_spu_image& img, u32 src, u32 type); s32 spu_image_import(sys_spu_image& img, u32 src, u32 type);
std::shared_ptr<SpuGroupInfo> spu_thread_group_create(const std::string& name, u32 num, s32 prio, s32 type, u32 container); u32 spu_thread_group_create(const std::string& name, u32 num, s32 prio, s32 type, u32 container);
SPUThread* spu_thread_initialize(std::shared_ptr<SpuGroupInfo>& group, u32 spu_num, sys_spu_image& img, const std::string& name, u32 option, u64 a1, u64 a2, u64 a3, u64 a4, std::function<void(SPUThread&)> task = nullptr); u32 spu_thread_initialize(u32 group, u32 spu_num, vm::ptr<sys_spu_image> img, const std::string& name, u32 option, u64 a1, u64 a2, u64 a3, u64 a4, std::function<void(SPUThread&)> task = nullptr);
// SysCalls // SysCalls
s32 sys_spu_initialize(u32 max_usable_spu, u32 max_raw_spu); s32 sys_spu_initialize(u32 max_usable_spu, u32 max_raw_spu);
s32 sys_spu_image_open(vm::ptr<sys_spu_image> img, vm::ptr<const char> path); s32 sys_spu_image_open(vm::ptr<sys_spu_image> img, vm::ptr<const char> path);
s32 sys_spu_thread_initialize(vm::ptr<u32> thread, u32 group, u32 spu_num, vm::ptr<sys_spu_image> img, vm::ptr<sys_spu_thread_attribute> attr, vm::ptr<sys_spu_thread_argument> arg); s32 sys_spu_thread_initialize(vm::ptr<u32> thread, u32 group, u32 spu_num, vm::ptr<sys_spu_image> img, vm::ptr<sys_spu_thread_attribute> attr, vm::ptr<sys_spu_thread_argument> arg);
s32 sys_spu_thread_set_argument(u32 id, vm::ptr<sys_spu_thread_argument> arg); s32 sys_spu_thread_set_argument(u32 id, vm::ptr<sys_spu_thread_argument> arg);
s32 sys_spu_thread_group_create(vm::ptr<u32> id, u32 num, s32 prio, vm::ptr<sys_spu_thread_group_attribute> attr);
s32 sys_spu_thread_group_destroy(u32 id); s32 sys_spu_thread_group_destroy(u32 id);
s32 sys_spu_thread_group_start(u32 id); s32 sys_spu_thread_group_start(u32 id);
s32 sys_spu_thread_group_suspend(u32 id); s32 sys_spu_thread_group_suspend(u32 id);
s32 sys_spu_thread_group_resume(u32 id); s32 sys_spu_thread_group_resume(u32 id);
s32 sys_spu_thread_group_yield(u32 id); s32 sys_spu_thread_group_yield(u32 id);
s32 sys_spu_thread_group_terminate(u32 id, int value); s32 sys_spu_thread_group_terminate(u32 id, s32 value);
s32 sys_spu_thread_group_create(vm::ptr<u32> id, u32 num, int prio, vm::ptr<sys_spu_thread_group_attribute> attr);
s32 sys_spu_thread_create(vm::ptr<u32> thread_id, vm::ptr<u32> entry, u64 arg, int prio, u32 stacksize, u64 flags, u32 threadname_addr);
s32 sys_spu_thread_group_join(u32 id, vm::ptr<u32> cause, vm::ptr<u32> status); s32 sys_spu_thread_group_join(u32 id, vm::ptr<u32> cause, vm::ptr<u32> status);
s32 sys_spu_thread_group_connect_event(u32 id, u32 eq, u32 et); s32 sys_spu_thread_group_connect_event(u32 id, u32 eq, u32 et);
s32 sys_spu_thread_group_disconnect_event(u32 id, u32 et); s32 sys_spu_thread_group_disconnect_event(u32 id, u32 et);
@ -194,7 +208,7 @@ s32 sys_spu_thread_bind_queue(u32 id, u32 spuq, u32 spuq_num);
s32 sys_spu_thread_unbind_queue(u32 id, u32 spuq_num); s32 sys_spu_thread_unbind_queue(u32 id, u32 spuq_num);
s32 sys_spu_thread_get_exit_status(u32 id, vm::ptr<u32> status); s32 sys_spu_thread_get_exit_status(u32 id, vm::ptr<u32> status);
s32 sys_raw_spu_create(vm::ptr<u32> id, u32 attr_addr); s32 sys_raw_spu_create(vm::ptr<u32> id, vm::ptr<void> attr);
s32 sys_raw_spu_destroy(u32 id); s32 sys_raw_spu_destroy(u32 id);
s32 sys_raw_spu_create_interrupt_tag(u32 id, u32 class_id, u32 hwthread, vm::ptr<u32> intrtag); s32 sys_raw_spu_create_interrupt_tag(u32 id, u32 class_id, u32 hwthread, vm::ptr<u32> intrtag);
s32 sys_raw_spu_set_int_mask(u32 id, u32 class_id, u64 mask); s32 sys_raw_spu_set_int_mask(u32 id, u32 class_id, u64 mask);

View file

@ -2,7 +2,6 @@
#include "Emu/Memory/Memory.h" #include "Emu/Memory/Memory.h"
#include "Emu/System.h" #include "Emu/System.h"
#include "Emu/SysCalls/SysCalls.h" #include "Emu/SysCalls/SysCalls.h"
#include "Emu/Memory/atomic_type.h"
#include "Emu/Event.h" #include "Emu/Event.h"
#include "sys_timer.h" #include "sys_timer.h"
@ -80,7 +79,7 @@ s32 sys_timer_connect_event_queue(u32 timer_id, u32 queue_id, u64 name, u64 data
timer_id, queue_id, name, data1, data2); timer_id, queue_id, name, data1, data2);
std::shared_ptr<timer> timer_data = nullptr; std::shared_ptr<timer> timer_data = nullptr;
std::shared_ptr<EventQueue> equeue = nullptr; std::shared_ptr<event_queue_t> equeue = nullptr;
if(!sys_timer.CheckId(timer_id, timer_data)) return CELL_ESRCH; if(!sys_timer.CheckId(timer_id, timer_data)) return CELL_ESRCH;
if(!sys_timer.CheckId(queue_id, equeue)) return CELL_ESRCH; if(!sys_timer.CheckId(queue_id, equeue)) return CELL_ESRCH;

View file

@ -25,6 +25,7 @@
#include "Emu/RSX/GSManager.h" #include "Emu/RSX/GSManager.h"
#include "Emu/Audio/AudioManager.h" #include "Emu/Audio/AudioManager.h"
#include "Emu/FS/VFS.h" #include "Emu/FS/VFS.h"
#include "Emu/Event.h"
#include "Emu/SysCalls/SyncPrimitivesManager.h" #include "Emu/SysCalls/SyncPrimitivesManager.h"
#include "Loader/PSF.h" #include "Loader/PSF.h"

View file

@ -79,7 +79,7 @@ class Emulator
std::vector<u64> m_break_points; std::vector<u64> m_break_points;
std::vector<u64> m_marked_points; std::vector<u64> m_marked_points;
std::recursive_mutex m_core_mutex; std::mutex m_core_mutex;
CPUThreadManager* m_thread_manager; CPUThreadManager* m_thread_manager;
PadManager* m_pad_manager; PadManager* m_pad_manager;
@ -137,7 +137,7 @@ public:
m_emu_path = path; m_emu_path = path;
} }
std::recursive_mutex& GetCoreMutex() { return m_core_mutex; } std::mutex& GetCoreMutex() { return m_core_mutex; }
CPUThreadManager& GetCPU() { return *m_thread_manager; } CPUThreadManager& GetCPU() { return *m_thread_manager; }
PadManager& GetPadManager() { return *m_pad_manager; } PadManager& GetPadManager() { return *m_pad_manager; }
@ -199,7 +199,7 @@ public:
__forceinline bool IsReady() const { return m_status == Ready; } __forceinline bool IsReady() const { return m_status == Ready; }
}; };
#define LV2_LOCK(x) std::lock_guard<std::recursive_mutex> core_lock##x(Emu.GetCoreMutex()) #define LV2_LOCK std::unique_lock<std::mutex> lv2_lock(Emu.GetCoreMutex())
extern Emulator Emu; extern Emulator Emu;

View file

@ -73,7 +73,7 @@ InstructionEditorDialog::InstructionEditorDialog(wxPanel *parent, u64 _pc, CPUTh
s_panel_margin_x->AddSpacer(12); s_panel_margin_x->AddSpacer(12);
this->Connect(wxEVT_COMMAND_TEXT_UPDATED, wxCommandEventHandler(InstructionEditorDialog::updatePreview)); this->Connect(wxEVT_COMMAND_TEXT_UPDATED, wxCommandEventHandler(InstructionEditorDialog::updatePreview));
t2_instr->SetValue(wxString::Format("%08x", vm::read32(CPU->GetOffset() + pc))); t2_instr->SetValue(wxString::Format("%08x", vm::read32(CPU->offset + pc)));
this->SetSizerAndFit(s_panel_margin_x); this->SetSizerAndFit(s_panel_margin_x);
@ -83,7 +83,7 @@ InstructionEditorDialog::InstructionEditorDialog(wxPanel *parent, u64 _pc, CPUTh
if (!t2_instr->GetValue().ToULong(&opcode, 16)) if (!t2_instr->GetValue().ToULong(&opcode, 16))
wxMessageBox("This instruction could not be parsed.\nNo changes were made.","Error"); wxMessageBox("This instruction could not be parsed.\nNo changes were made.","Error");
else else
vm::write32(CPU->GetOffset() + pc, (u32)opcode); vm::write32(CPU->offset + pc, (u32)opcode);
} }
} }

View file

@ -248,10 +248,10 @@ void InterpreterDisAsmFrame::ShowAddr(const u64 addr)
} }
else else
{ {
disasm->offset = vm::get_ptr<u8>(CPU->GetOffset()); disasm->offset = vm::get_ptr<u8>(CPU->offset);
for(uint i=0, count = 4; i<m_item_count; ++i, PC += count) for(uint i=0, count = 4; i<m_item_count; ++i, PC += count)
{ {
if(!vm::check_addr(CPU->GetOffset() + PC, 4)) if(!vm::check_addr(CPU->offset + PC, 4))
{ {
m_list->SetItem(i, 0, wxString(IsBreakPoint(PC) ? ">>> " : " ") + wxString::Format("[%08llx] illegal address", PC)); m_list->SetItem(i, 0, wxString(IsBreakPoint(PC) ? ">>> " : " ") + wxString::Format("[%08llx] illegal address", PC));
count = 4; count = 4;
@ -259,7 +259,7 @@ void InterpreterDisAsmFrame::ShowAddr(const u64 addr)
} }
disasm->dump_pc = PC; disasm->dump_pc = PC;
count = decoder->DecodeMemory(CPU->GetOffset() + PC); count = decoder->DecodeMemory(CPU->offset + PC);
if(IsBreakPoint(PC)) if(IsBreakPoint(PC))
{ {

View file

@ -178,7 +178,7 @@
<ClCompile Include="Emu\SysCalls\FuncList.cpp" /> <ClCompile Include="Emu\SysCalls\FuncList.cpp" />
<ClCompile Include="Emu\SysCalls\LogBase.cpp" /> <ClCompile Include="Emu\SysCalls\LogBase.cpp" />
<ClCompile Include="Emu\SysCalls\lv2\cellFs.cpp" /> <ClCompile Include="Emu\SysCalls\lv2\cellFs.cpp" />
<ClCompile Include="Emu\SysCalls\lv2\sleep_queue_type.cpp" /> <ClCompile Include="Emu\SysCalls\lv2\sleep_queue.cpp" />
<ClCompile Include="Emu\SysCalls\lv2\sys_cond.cpp" /> <ClCompile Include="Emu\SysCalls\lv2\sys_cond.cpp" />
<ClCompile Include="Emu\SysCalls\lv2\sys_event.cpp" /> <ClCompile Include="Emu\SysCalls\lv2\sys_event.cpp" />
<ClCompile Include="Emu\SysCalls\lv2\sys_event_flag.cpp" /> <ClCompile Include="Emu\SysCalls\lv2\sys_event_flag.cpp" />
@ -369,6 +369,7 @@
<ClInclude Include="Emu\Cell\PPUOpcodes.h" /> <ClInclude Include="Emu\Cell\PPUOpcodes.h" />
<ClInclude Include="Emu\Cell\PPUThread.h" /> <ClInclude Include="Emu\Cell\PPUThread.h" />
<ClInclude Include="Emu\Cell\RawSPUThread.h" /> <ClInclude Include="Emu\Cell\RawSPUThread.h" />
<ClInclude Include="Emu\Cell\SPUContext.h" />
<ClInclude Include="Emu\Cell\SPUDecoder.h" /> <ClInclude Include="Emu\Cell\SPUDecoder.h" />
<ClInclude Include="Emu\Cell\SPUDisAsm.h" /> <ClInclude Include="Emu\Cell\SPUDisAsm.h" />
<ClInclude Include="Emu\Cell\SPUInstrTable.h" /> <ClInclude Include="Emu\Cell\SPUInstrTable.h" />
@ -409,7 +410,8 @@
<ClInclude Include="Emu\Io\PadHandler.h" /> <ClInclude Include="Emu\Io\PadHandler.h" />
<ClInclude Include="Emu\Memory\Memory.h" /> <ClInclude Include="Emu\Memory\Memory.h" />
<ClInclude Include="Emu\Memory\MemoryBlock.h" /> <ClInclude Include="Emu\Memory\MemoryBlock.h" />
<ClInclude Include="Emu\Memory\atomic_type.h" /> <ClInclude Include="Emu\Memory\atomic.h" />
<ClInclude Include="Emu\Memory\refcnt.h" />
<ClInclude Include="Emu\RSX\CgBinaryProgram.h" /> <ClInclude Include="Emu\RSX\CgBinaryProgram.h" />
<ClInclude Include="Emu\RSX\GCM.h" /> <ClInclude Include="Emu\RSX\GCM.h" />
<ClInclude Include="Emu\RSX\GL\GLBuffers.h" /> <ClInclude Include="Emu\RSX\GL\GLBuffers.h" />
@ -439,7 +441,7 @@
<ClInclude Include="Emu\SysCalls\ErrorCodes.h" /> <ClInclude Include="Emu\SysCalls\ErrorCodes.h" />
<ClInclude Include="Emu\SysCalls\LogBase.h" /> <ClInclude Include="Emu\SysCalls\LogBase.h" />
<ClInclude Include="Emu\SysCalls\lv2\cellFs.h" /> <ClInclude Include="Emu\SysCalls\lv2\cellFs.h" />
<ClInclude Include="Emu\SysCalls\lv2\sleep_queue_type.h" /> <ClInclude Include="Emu\SysCalls\lv2\sleep_queue.h" />
<ClInclude Include="Emu\SysCalls\lv2\sys_cond.h" /> <ClInclude Include="Emu\SysCalls\lv2\sys_cond.h" />
<ClInclude Include="Emu\SysCalls\lv2\sys_event.h" /> <ClInclude Include="Emu\SysCalls\lv2\sys_event.h" />
<ClInclude Include="Emu\SysCalls\lv2\sys_event_flag.h" /> <ClInclude Include="Emu\SysCalls\lv2\sys_event_flag.h" />

View file

@ -650,9 +650,6 @@
<ClCompile Include="Emu\ARMv7\Modules\sceLibm.cpp"> <ClCompile Include="Emu\ARMv7\Modules\sceLibm.cpp">
<Filter>Emu\CPU\ARMv7\Modules</Filter> <Filter>Emu\CPU\ARMv7\Modules</Filter>
</ClCompile> </ClCompile>
<ClCompile Include="Emu\SysCalls\lv2\sleep_queue_type.cpp">
<Filter>Emu\SysCalls\lv2</Filter>
</ClCompile>
<ClCompile Include="Emu\SysCalls\SyncPrimitivesManager.cpp"> <ClCompile Include="Emu\SysCalls\SyncPrimitivesManager.cpp">
<Filter>Emu\SysCalls</Filter> <Filter>Emu\SysCalls</Filter>
</ClCompile> </ClCompile>
@ -860,6 +857,9 @@
<ClCompile Include="Emu\SysCalls\Modules\sys_libc.cpp"> <ClCompile Include="Emu\SysCalls\Modules\sys_libc.cpp">
<Filter>Emu\SysCalls\Modules</Filter> <Filter>Emu\SysCalls\Modules</Filter>
</ClCompile> </ClCompile>
<ClCompile Include="Emu\SysCalls\lv2\sleep_queue.cpp">
<Filter>Emu\SysCalls\lv2</Filter>
</ClCompile>
</ItemGroup> </ItemGroup>
<ItemGroup> <ItemGroup>
<ClInclude Include="Crypto\aes.h"> <ClInclude Include="Crypto\aes.h">
@ -1447,9 +1447,6 @@
<ClInclude Include="Emu\SysCalls\SyncPrimitivesManager.h"> <ClInclude Include="Emu\SysCalls\SyncPrimitivesManager.h">
<Filter>Emu\SysCalls</Filter> <Filter>Emu\SysCalls</Filter>
</ClInclude> </ClInclude>
<ClInclude Include="Emu\Memory\atomic_type.h">
<Filter>Emu\Memory</Filter>
</ClInclude>
<ClInclude Include="Crypto\ec.h"> <ClInclude Include="Crypto\ec.h">
<Filter>Crypto</Filter> <Filter>Crypto</Filter>
</ClInclude> </ClInclude>
@ -1459,9 +1456,6 @@
<ClInclude Include="Emu\ARMv7\PSVFuncList.h"> <ClInclude Include="Emu\ARMv7\PSVFuncList.h">
<Filter>Emu\CPU\ARMv7</Filter> <Filter>Emu\CPU\ARMv7</Filter>
</ClInclude> </ClInclude>
<ClInclude Include="Emu\SysCalls\lv2\sleep_queue_type.h">
<Filter>Emu\SysCalls\lv2</Filter>
</ClInclude>
<ClInclude Include="Emu\SysCalls\lv2\cellFs.h"> <ClInclude Include="Emu\SysCalls\lv2\cellFs.h">
<Filter>Emu\SysCalls\lv2</Filter> <Filter>Emu\SysCalls\lv2</Filter>
</ClInclude> </ClInclude>
@ -1537,5 +1531,17 @@
<ClInclude Include="Emu\SysCalls\Modules\cellSearch.h"> <ClInclude Include="Emu\SysCalls\Modules\cellSearch.h">
<Filter>Emu\SysCalls\Modules</Filter> <Filter>Emu\SysCalls\Modules</Filter>
</ClInclude> </ClInclude>
<ClInclude Include="Emu\Cell\SPUContext.h">
<Filter>Emu\CPU\Cell</Filter>
</ClInclude>
<ClInclude Include="Emu\SysCalls\lv2\sleep_queue.h">
<Filter>Emu\SysCalls\lv2</Filter>
</ClInclude>
<ClInclude Include="Emu\Memory\atomic.h">
<Filter>Emu\Memory</Filter>
</ClInclude>
<ClInclude Include="Emu\Memory\refcnt.h">
<Filter>Emu\Memory</Filter>
</ClInclude>
</ItemGroup> </ItemGroup>
</Project> </Project>

View file

@ -27,6 +27,7 @@
#include <condition_variable> #include <condition_variable>
#include <memory> #include <memory>
#include <vector> #include <vector>
#include <queue>
#include <set> #include <set>
#include <array> #include <array>
#include <string> #include <string>
@ -62,5 +63,8 @@ template<typename T> __forceinline T align(const T addr, int align)
#include "Utilities/BEType.h" #include "Utilities/BEType.h"
#include "Utilities/StrFmt.h" #include "Utilities/StrFmt.h"
#include "Emu/Memory/atomic.h"
#include "Emu/Memory/refcnt.h"
#define _PRGNAME_ "RPCS3" #define _PRGNAME_ "RPCS3"
#define _PRGVER_ "0.0.0.5" #define _PRGVER_ "0.0.0.5"